共查询到20条相似文献,搜索用时 15 毫秒
1.
Shajahan AN Timblin BK Sandoval R Tiruppathi C Malik AB Minshall RD 《The Journal of biological chemistry》2004,279(19):20392-20400
Albumin transcytosis, a determinant of transendothelial permeability, is mediated by the release of caveolae from the plasma membrane. We addressed the role of Src phosphorylation of the GTPase dynamin-2 in the mechanism of caveolae release and albumin transport. Studies were made in microvascular endothelial cells in which the uptake of cholera toxin subunit B, a marker of caveolae, and (125)I-albumin was used to assess caveolae-mediated endocytosis. Albumin binding to the 60-kDa cell surface albumin-binding protein, gp60, induced Src activation (phosphorylation on Tyr(416)) within 1 min and resulted in Src-dependent tyrosine phosphorylation of dynamin-2, which increased its association with caveolin-1, the caveolae scaffold protein. Expression of kinase-defective Src mutant interfered with the association between dynamin-2, which caveolin-1 and prevented the uptake of albumin. Expression of non-Src-phosphorylatable dynamin (Y231F/Y597F) resulted in reduced association with caveolin-1, and in contrast to WT-dynamin-2, the mutant failed to translocate to the caveolin-rich membrane fraction. The Y231F/Y597F dynamin-2 mutant expression also resulted in impaired albumin and cholera toxin subunit B uptake and reduced transendothelial albumin transport. Thus, Src-mediated phosphorylation of dynamin-2 is an essential requirement for scission of caveolae and the resultant transendothelial transport of albumin. 相似文献
2.
Caveolae are flask-shaped plasma membrane invaginations that mediate endocytosis and transcytosis of plasma macromolecules, such as albumin, insulin and low-density lipoprotein (LDL), as well as certain viruses, bacteria and bacterial toxins. Caveolae-mediated transcytosis of macromolecules is critical for maintaining vascular homeostasis by regulating the oncotic pressure gradient and tissue delivery of drugs, vitamins, lipids and ions. Entrapment of cargo within caveolae induces activation of signalling cascades leading to caveolae fission and internalization. Activation of Src tyrosine kinase is an early and essential step that triggers detachment of loaded caveolae from the plasma membrane. In this review, we examine how Src-mediated phosphorylation regulates caveolae-mediated transport by orchestrating the localization and activity of essential proteins of the endocytic machinery to regulate caveolae formation and fission. 相似文献
3.
Siddiqui SS Siddiqui ZK Malik AB 《American journal of physiology. Lung cellular and molecular physiology》2004,286(5):L1016-L1026
Vascular endothelial cells undergo albumin endocytosis using a set of albumin binding proteins. This process is important for maintaining cellular homeostasis. We showed by several criteria that the previously described 73-kDa endothelial cell surface albumin binding protein is the 75-kDa transforming growth factor (TGF)-beta receptor type II (TbetaRII). Albumin coimmunoprecipitated with TbetaRII from a membrane fraction from rat lung microvascular endothelial cells. Albumin endocytosis-negative COS-7 cells became albumin endocytosis competent when transfected with wild-type TbetaRII but not when transfected with a domain-negative kinase mutant of TbetaRII. An antibody specific for TbetaRII inhibited albumin endocytosis. A mink lung epithelial cell line, which expresses both the TGF-beta receptor type I (TbetaRI) and the TbetaRII receptor, exhibited albumin binding to the cell surface and endocytosis. In contrast, mutant L-17 and DR-26 cells lacking TbetaRI or TbetaRII, respectively, each showed a dramatic reduction in binding and endocytosis. Albumin endocytosis induced Smad2 phosphorylation and Smad4 translocation as well as increased protein expression of the inhibitory Smad, Smad7. We identified regions of significant homology between amino acid sequences of albumin and TGF-beta, suggesting a structural basis for the interaction of albumin with the TGF-beta receptors and subsequent activation of TbetaRII signaling. The observed albumin-induced internalization of TbetaRII signaling may be an important mechanism in the vessel wall for controlling TGF-beta responses in endothelial cells. 相似文献
4.
Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells 总被引:26,自引:0,他引:26
Hisamoto K Ohmichi M Kurachi H Hayakawa J Kanda Y Nishio Y Adachi K Tasaka K Miyoshi E Fujiwara N Taniguchi N Murata Y 《The Journal of biological chemistry》2001,276(5):3459-3467
Although estrogen is known to activate endothelial nitric oxide synthase (eNOS) in the vascular endothelium, the molecular mechanism responsible for this effect remains to be elucidated. In studies of both human umbilical vein endothelial cells (HUVECs) and simian virus 40-transformed rat lung vascular endothelial cells (TRLECs), 17beta-estradiol (E2), but not 17alpha-E2, caused acute activation of eNOS that was unaffected by actinomycin D and was specifically blocked by the pure estrogen receptor antagonist ICI-182,780. Treatment of both TRLECs and HUVECs with 17beta-E2 stimulated the activation of Akt, and the PI3K inhibitor wortmannin blocked the 17beta-E2-induced activation of Akt. 17beta-E2-induced Akt activation was also inhibited by ICI-182,780, but not by actinomycin D. Either treatment with wortmannin or exogenous expression of a dominant negative Akt in TRLECs decreased the 17beta-E2-induced eNOS activation. Moreover, 17beta-E2-induced Akt activation actually enhances the phosphorylation of eNOS. 17beta-E2-induced Akt activation was dependent on both extracellular and intracellular Ca(2+). We further examined the 17beta-E2-induced Akt activity in Chinese hamster ovary (CHO) cells transiently transfected with cDNAs for estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta). 17beta-E2 stimulated the activation of Akt in CHO cells expressing ERalpha but not in CHO cells expressing ERbeta. Our findings suggest that 17beta-E2 induced eNOS activation through an Akt-dependent mechanism, which is mediated by ERalpha via a nongenomic mechanism. 相似文献
5.
N L Parinandi S Roy S Shi R J Cummings A J Morris J G Garcia V Natarajan 《Archives of biochemistry and biophysics》2001,396(2):231-243
We have shown earlier that oxidant-induced activation of phospholipase D (PLD) in vascular endothelial cells (ECs) is regulated by protein tyrosine kinases. To further understand the regulation of oxidant-induced PLD activation, we investigated the role of Src kinase. Treatment of bovine pulmonary artery ECs (BPAECs) with a model oxidant, diperoxovanadate (DPV), at 5 microM concentration, for 30 min, stimulated PLD activity (four- to eightfold), which was attenuated by tyrosine kinase inhibitors and by Src kinase-specific inhibitors PP-1 and PP-2, in a dose- and time-dependent fashion. Furthermore, BPAECs exposed to DPV (5 microM) for 2 min showed activation of Src kinase as observed by increased tyrosine phosphorylation and autophosphorylation in Src immunoprecipitates, which was attenuated by PP-2. Src immunoprecipitates of cell lysates from control BPAECs exhibited PLD activity in cell-free preparations, which was Arf- and Rho-sensitive and was enhanced at 2 min of DPV (5 microM) treatment. Also, Western blots of Src immunoprecipitates of control cells revealed the presence of PLD(1) and PLD(2), suggesting the association of PLD with Src kinase under basal conditions. However, exposure of cells to DPV (5 microM) for 2 min enhanced the association of PLD(2) but not PLD(1) with Src. Western blotting of immunoprecipitates of PLD(1) and PLD(2) isoforms of control BPAECs revealed the presence of Src under basal conditions and exposure of cells to DPV (5 microM) for 2 min enhanced the association of PLD(2) with Src in PLD(2) immunoprecipitates. Transient expression of a dominant negative mutant of Src in BPAECs attenuated DPV- but not TPA-induced PLD activation. In cell-free preparations, Src did not phosphorylate either PLD(1) or PLD(2) compared to protein kinase Calpha or p38 mitogen-activated protein kinase. These data show for the first time a direct association of Src with PLD in ECs and regulation of PLD in intact cells. 相似文献
6.
Mitochondrial Dok-4 recruits Src kinase and regulates NF-kappaB activation in endothelial cells 总被引:1,自引:0,他引:1
Itoh S Lemay S Osawa M Che W Duan Y Tompkins A Brookes PS Sheu SS Abe J 《The Journal of biological chemistry》2005,280(28):26383-26396
The downstream of kinase (Dok) family of adapter proteins consists of at least five members structurally characterized by an NH2-terminal tandem of conserved pleckstrin homology and phosphotyrosine binding domains linked to a unique COOH-terminal region. To determine the role of the novel adapter protein Dok-4 in endothelial cells, we first investigated the cell localization of Dok-4. Most surprisingly, immunofluorescence microscopy, cell fractionation studies, and studies with enhanced green fluorescent protein chimeras showed that wild type Dok-4 (Dok-4-WT) specifically localized in mitochondria. An NH2-terminal deletion mutant of Dok-4 (Dok-4-(deltaN11-29)), which lacks the mitochondrial targeting sequence, could not accumulate in mitochondria. Co-immunoprecipitation revealed an interaction of c-Src with Dok-4-WT in endothelial cells. Most interestingly, overexpression of Dok-4-WT, but not Dok-4-(deltaN1-99), increased mitochondrial c-Src expression, whereas knock-down of endogenous Dok-4 with a small interfering RNA vector greatly inhibited mitochondrial localization of c-Src, suggesting a unique function for Dok-4 as an anchoring protein for c-Src in mitochondria. Dok-4-WT significantly decreased 39-kDa subunit complex I expression. PP2, a specific Src kinase inhibitor, prevented the Dok-4-mediated complex I decrease, suggesting the involvement of Src kinase in regulation of complex I expression. Dok-4-WT enhanced tumor necrosis factor-alpha (TNF-alpha)-mediated reactive oxygen species (ROS) production, supporting the functional relevance of a Dok-4-Src-complex I/ROS signaling pathway in mitochondria. Finally, Dok-4 enhanced TNF-alpha-mediated NF-kappaB activation, whereas this was inhibited by transfection with Dok-4 small interfering RNA. In addition, Dok-4-induced NF-kappaB activation was also inhibited by transfection of a dominant negative form of c-Src. These data suggest a role for mitochondrial Dok-4 as an anchoring molecule for the tyrosine kinase c-Src, and in turn as a regulator of TNF-alpha-mediated ROS production and NF-kappaB activation. 相似文献
7.
Stefanie Fruhwürth Margit Pavelka Robert Bittman Werner J Kovacs Katharina M Walter Clemens Rhrl Herbert Stangl 《World journal of biological chemistry》2013,4(4):131-140
AIM: To describe the way stations of high-density lipoprotein(HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescencemicroscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type Ⅰ mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrincoated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis. 相似文献
8.
Imola Wilhelm Péter Nagyőszi Attila E. Farkas Pierre‐Olivier Couraud Ignacio A. Romero Babette Weksler Csilla Fazakas Ngo Thi Khue Dung Sándor Bottka Hannelore Bauer Hans‐Christian Bauer István A. Krizbai 《Journal of neurochemistry》2008,107(1):116-126
Because of the relative impermeability of the blood‐brain barrier (BBB), many drugs are unable to reach the CNS in therapeutically relevant concentration. One method to deliver drugs to the CNS is the osmotic opening of the BBB using mannitol. Hyperosmotic mannitol induces a strong phosphorylation on tyrosine residues in a broad spectrum of proteins in cerebral endothelial cells, the principal components of the BBB. Previously, we have shown that among targets of tyrosine phosphorylation are β‐catenin, extracellular signal‐regulated kinase 1/2 and the non‐receptor tyrosine kinase Src. The aim of this study was to identify new signalling pathways activated by hypertonicity in cerebral endothelial cells. Using an antibody array and immunoprecipitation we identified the receptor tyrosine kinase Axl to become tyrosine phosphorylated in response to hyperosmotic mannitol. Besides activation, Axl was also cleaved in response to osmotic stress. Degradation of Axl proved to be metalloproteinase‐ and proteasome‐dependent and resulted in 50–55 kDa C‐terminal products which remained phosphorylated even after degradation. Specific knockdown of Axl increased the rate of apoptosis in hyperosmotic mannitol‐treated cells; therefore, we assume that activation of Axl may be a protective mechanism against hypertonicity‐induced apoptosis. Our results identify Axl as an important element of osmotic stress‐induced signalling. 相似文献
9.
10.
Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells 总被引:21,自引:0,他引:21
Canstatin, a 24-kDa peptide derived from the C-terminal globular non-collagenous (NC1) domain of the alpha2 chain of type IV collagen, was previously shown to induce apoptosis in cultured endothelial cells and to inhibit angiogenesis in vitro and in vivo. In this report, we demonstrate that canstatin inhibits the phosphorylation of Akt, focal adhesion kinase, mammalian target of rapamycin, eukaryotic initiation factor-4E-binding protein-1, and ribosomal S6 kinase in cultured human umbilical vein endothelial cells. It also induces Fas ligand expression, activates procaspases 8 and 9 cleavage, reduces mitochondrial membrane potential, and increases cell death (as determined by propidium iodide staining). Canstatin-induced activation of procaspases 8 and 9 as well as the induced reduction in mitochondrial membrane potential and cell viability were attenuated by the forced expression of FLICE-inhibitory protein. Canstatin-induced procaspase 8 activation and cell death were also inhibited by a neutralizing anti-Fas antibody. Collectively, these data indicate that canstatin-induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependent upon signaling events transduced through membrane death receptors. 相似文献
11.
12.
Young-Mi Kim Young-Myoung Kim You Mie Lee Hae-Sun Kim Jong Dai Kim Yongwon Choi Kyu-Won Kim Soo-Young Lee Young-Guen Kwon 《The Journal of biological chemistry》2002,277(9):6799-6805
Angiogenesis is an essential step for many physiological and pathological processes. Tumor necrosis factor (TNF) superfamily cytokines are increasingly recognized as key modulators of angiogenesis. In this study, we tested whether TNF-related activation-induced cytokine (TRANCE), a new member of the TNF superfamily, possesses angiogenic activity in vitro and in vivo. TRANCE stimulated DNA synthesis, chemotactic motility, and capillary-like tube formation in primary cultured human umbilical vein endothelial cells (HUVECs). Both Matrigel plug assay in mice and chick chorioallantoic membrane assay revealed that TRANCE potently induced neovascularization in vivo. TRANCE had no effect on vascular endothelial growth factor (VEGF) expression in HUVECs and TRANCE-induced angiogenic activity was not suppressed by VEGF-neutralizing antibody, implying that TRANCE-induced angiogenesis may be the result of its direct action on endothelial cells. TRANCE evoked a time- and dose-dependent activation of the mitogen-activated protein kinases ERK1/2 and focal adhesion kinase p125(FAK) in HUVECs, which are closely linked to angiogenesis. These signaling events were blocked by the Src inhibitor PP1 or the phospholipase C (PLC) inhibitor. Furthermore, these inhibitors and the Ca(2+) chelator BAPTA-AM suppressed TRANCE-induced HUVEC migration. These results indicate that the angiogenic activity of TRANCE is mediated through the Src-PLC-Ca(2+) signaling cascade upon receptor engagement in endothelial cells, suggesting the role of TRANCE in neovessel formation under physiological and pathological conditions. 相似文献
13.
Hyun-Joo Park Su-Ryun Kim Soo-Kyung Bae Yun-Hee Bae Woo Jean Kim Il Yun Moon-Kyoung Bae 《Experimental cell research》2009,315(19):3359-127
Neuromedin B (NMB) is one of the bombesin-like peptides in mammals. Recently, bombesin-like peptides have been characterized as growth factors in highly vascularized tumors. In this study, we report that NMB potently stimulates in vivo neovascularization in a mouse Matrigel plug and the sprouting of endothelial cells ex vivo in rat aortic rings. In addition, NMB increases the migration and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with NMB activates the extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS) and increases the level of NO production in a dose- and time-dependent manner. Furthermore, ERK activation and angiogenic sprouting in response to NMB are significantly blocked by the MEK inhibitor. Inhibition of phosphatidylinositol 3-kinase (PI3K) suppresses the NMB-stimulated tubular formation of HUVECs, along with reduction in the phosphorylation of Akt and eNOS. Taken together, these results indicate that NMB is a novel angiogenic peptide, and its angiogenic activity is mediated by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent pathways. This study suggests that NMB may play important roles in mediating a variety of pathophysiological angiogenesis. 相似文献
14.
Sato K Ogawa K Tokmakov AA Iwasaki T Fukami Y 《Development, growth & differentiation》2001,43(1):55-72
Fertilization is accompanied by a rapid and transient calcium release in eggs, which is required for the onset of zygotic developmental program or 'egg activation'. Recently, it was found that Src family tyrosine kinase (SFK)-dependent phospholipase C (PLC) activity is necessary for the calcium transience in fertilized Xenopus eggs. The present study demonstrates that hydrogen peroxide (H2O2) stimulates protein-tyrosine phosphorylation in Xenopus eggs, which occurs primarily in the egg cortex of the animal hemisphere as revealed by indirect immunofluorescence study. Egg SFK was found to be upregulated by H2O2 while the SFK-specific inhibitor PP1 effectively blocked H2O2-induced tyrosine phosphorylation. As in fertilized eggs, PLCgamma, but not Shc, was tyrosine-phosphorylated in H2O2-treated eggs. H2O2 also caused inositol 1,4,5-trisphosphate (IP3) production and sustained calcium release. After limited application of H2O2, elevated SFK activity and tyrosine phosphorylation were quickly reversed. Under such conditions, eggs showed cortical contraction and dephosphorylation of p42 MAP kinase, both of which are indicative of egg activation. These egg activation events, as well as H2O2-induced IP3 production and calcium release, were sensitive to PP1 and PLC inhibitor U-73122. Together, the present study demonstrated that H2O2 can mimic, at least in part, early events of Xenopus egg activation that require an SFK-dependent PLC pathway. 相似文献
15.
Hirshman CA Zhu D Pertel T Panettieri RA Emala CW 《American journal of physiology. Lung cellular and molecular physiology》2005,288(5):L924-L931
In a previous study, we showed that isoproterenol induced actin depolymerization in human airway smooth muscle cells by both protein kinase A (PKA)-dependent and -independent signaling pathways. We now investigate the signaling pathway of PKA-independent actin depolymerization induced by isoproterenol in these cells. Cells were briefly exposed to isoproterenol or PGE(1) in the presence and absence of specific inhibitors of Src-family tyrosine kinases, phosphatidylinositol-3-kinase (PI3 kinase), or MAP kinase, and actin depolymerization was measured by concomitant staining of filamentous actin with FITC-phalloidin and globular actin with Texas red DNase I. Isoproterenol, cholera toxin, and PGE(1) induced actin depolymerization, indicated by a decrease in the intensity of filamentous/globular fluorescent staining. Pretreatment with the Src kinase inhibitors 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyriimidine (PP2) or geldanamycin or the PKA inhibitor Rp-cAMPS only partly inhibited isoproterenol- or PGE(1)-induced actin depolymerization. In contrast, PP2 and geldanamycin did not inhibit forskolin-induced actin depolymerization, and AG-213 (an EGF receptor tyrosine kinase inhibitor) did not inhibit isoproterenol- or PGE(1)-induced actin depolymerization. PI3 kinase or MAP kinase inhibition did not inhibit isoproterenol-induced actin depolymerization. Moreover, isoproterenol but not forskolin induced tyrosine phosphorylation of an Src family member at position 416. These results further confirm that both PKA-dependent and PKA-independent pathways mediate actin depolymerization in human airway smooth muscle cells and that the PKA-independent pathway by which isoproterenol induces actin depolymerization in human airway smooth muscle cells involves Src protein tyrosine kinases and the G(s) protein. 相似文献
16.
Sphingosylphosphorylcholine (SPC) produces reactive oxygen species (ROS) in MS1 pancreatic islet endothelial cells. In the present study, we explored the physiological significance of the SPC-induced ROS generation in endothelial cells. SPC induced cell death of MS1 cells at higher than 10 microM concentration through a caspase-3-dependent pathway. SPC treatment induced sustained activation of an extracellular signal-regulated kinase (ERK), in contrast to transient activation of ERK in response to platelet-derived growth factor (PDGF)-BB, which stimulated proliferation of MS1 cells. Both the SPC-induced cell death and ERK activation were abolished by pretreatment of the cells with the MEK inhibitor U0126 or by overexpression of a dominant negative mutant of MEK1 (DN-MEK1). Pretreatment of the cells with N-acetylcysteine, an antioxidant, completely prevented the SPC-induced ROS generation, apoptosis, and ERK activation, whereas the ROS generation was not abrogated by treatment with U0126. Consistent with these results, SPC induced cell death of human umbilical vein endothelial cells (HUVECs) through ROS-mediated activation of ERK. These results suggest that the SPC-induced generation of ROS plays a crucial role in the cell death of endothelial cells through ERK-dependent pathway. 相似文献
17.
Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway 总被引:1,自引:0,他引:1
Fu YC Yin SC Chi CS Hwang B Hsu SL 《Apoptosis : an international journal on programmed cell death》2006,11(11):2053-2063
Our previous study demonstrated that norepinephrine (NE) induces endothelial apoptosis mainly through down-regulation of Bcl-2
protein and activation of the β-adrenergic and caspase-2 pathways. However, whether reactive oxygen species (ROS) and mitogen-activated
protein kinases (MAPKs) are involved in this signal transduction remains unknown. Endothelial cells cultured from neonatal
rat heart were treated with 100 μM NE. Proteins of MAPKs and Bcl-2 family were assayed by Western blotting. Apoptosis was
determined by terminal deoxynucleotidyl transferase-mediated nick end-labeling assay. ROS was analyzed with flow cytometry.
Caspase activity was measured using specific fluorogenic substrates. Treatment with NE increased intracellular ROS level and
extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 phosphorylation. Whereas the phosphorylated
form of Akt was decreased. The NE-induced apoptosis was abrogated by SP600125 (a specific inhibitor of JNK). Antioxidants
such as vitamin C and N-acetyl cysteine inhibited NE-induced ROS production, JNK phosphorylation, caspase activation and apoptosis.
Exogenously added superoxide dismutase or catalase markedly diminished NE-induced ROS production and cell death. In conclusions,
our study is the first report documenting that NE induces apoptosis in neonatal rat endothelial cells via a ROS-dependent
JNK activation pathway. Antioxidants may be useful in the prevention and management of NE-mediated endothelial apoptosis during
heart failure. 相似文献
18.
Label-fracture immunochemistry and pre-embedding indirect immunocytochemistry were applied to investigate insulin uptake by endothelial cells. Freeze fracture replicas showed that a small percentage of native insulin receptors are associated with non-coated pits (4%) and coated pits (2%). After warming, receptor bound insulin became increasingly associated with such endocytotic vesicles. After 2 min the percentage of detectable insulin associated with non-coated and coated pits increased to 16% and 8%, respectively. Pre-embedding immunocytochemical localization of insulin gave results consistent with those obtained from the label-fracture studies. Both non-coated and coated vesicles appeared labelled after 5 min of warming. Non-coated vesicles contained 25% of the cell associated insulin while 9% was associated with coated pits and vesicles. After 10 min of warming, 9% of label was located in non-coated vesicles and 7% in coated vesicles. A large proportion (29%) of the label was found in tubular-vesicular endosomes at this time. After 15 min of warming, 30% of the remaining cell-associated gold label was found in multivesicular bodies. These experiments demonstrate that insulin uptake by endothelium is mediated by both coated and non-coated vesicles and that, once internalized, insulin is routed through endosomal pathways that primarily result in transcytosis. 相似文献
19.
Phan QT Fratti RA Prasadarao NV Edwards JE Filler SG 《The Journal of biological chemistry》2005,280(11):10455-10461
Candida albicans is the most common cause of fungal bloodstream infections. To invade the deep tissues, blood-borne organisms must cross the endothelial cell lining of the vasculature. We have found previously that C. albicans hyphae, but not blastospores, invade endothelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the endothelial cell receptor that mediates the endocytosis of C. albicans. We determined that endocytosis of C. albicans was not mediated by bridging molecules in the serum and that it was partially dependent on the presence of extracellular calcium. Using an affinity purification procedure, we discovered that endothelial cell N-cadherin bound to C. albicans hyphae but not blastospores. N-cadherin also co-localized with C. albicans hyphae that were being endocytosed by endothelial cells. Chinese hamster ovary (CHO) cells expressing human N-cadherin endocytosed significantly more C. albicans hyphae than did CHO cells expressing either human VE-cadherin or no human cadherins. The expression of N-cadherin by the CHO cells resulted in enhanced endocytosis of hyphae, but not blastospores, indicating the selectivity of the N-cadherin-mediated endocytosis. Down-regulation of endothelial cell N-cadherin expression with small interfering RNA significantly inhibited the endocytosis of C. albicans hyphae. Therefore, a novel function of N-cadherin is that it serves as an endothelial cell receptor, which mediates the endocytosis of C. albicans. 相似文献
20.
Maki Uraoka Yusuke Nakagawa Masahiro Koide Yoshiki Akakabe Ritsuko Nakano-Kurimoto Tomosaburo Takahashi Satoaki Matoba Hiroyuki Yamada Mitsuhiko Okigaki Hiroaki Matsubara 《Biochemical and biophysical research communications》2009,390(4):1202-1207
Prorenin is an enzymatically inactive precursor of renin, and its biological function in endothelial cells (ECs) is unknown despite its relevance with the incidence of diabetic microvascular complications. Recently, (pro)renin receptor was identified, and the receptor-associated prorenin system has been discovered, whereas its expression as well as function in ECs remain unclear. In the present study, we found that ECs express the (pro)renin receptor, and that prorenin provoked ERK activation through (pro)renin receptor independently of the renin-angiotensin system (RAS). Prorenin stimulated the proliferation, migration and tube-formation of ECs, while it inhibited endothelial apoptosis induced by serum and growth factor depletion. MEK inhibitor abrogated these proangiogenic effects of prorenin, while AT1 receptor antagonist or angiotensin-converting enzyme inhibitor failed to block them. In vivo neovascularization in the Matrigel-plugs implanted into mouse flanks was significantly enhanced by prorenin, in which significant ERK activation was detected in ECs. Furthermore, tumor xenografts stably transfected with prorenin demonstrated the significantly accelerated growth rate concomitantly with enhanced intratumoral neovascularization. Our data demonstrated that the RAS-independent (pro)renin receptor-mediated signal transduction plays a pivotal role in the regulation of ECs function as well as in the neovascularization, and thus prorenin is potentially involved in the pathophysiology of diabetic microvascular complications as well as cancers. 相似文献