首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed to inspect the hierarchically structured spherical-like hematite (α-Fe2O3) nanoparticles synthesize by simple, low temperature solution combustion process. The uniformly distributed α-Fe2O3/carbon nanocomposite (α-Fe2O3/C nanocomposite) was prepared by incorporating carbon nanoplates into sphere-like α-Fe2O3 nanoparticles. The synthesized nanomaterials were characterized using various techniques such as XRD, FESEM, and EDS. The cytotoxicity of the material was evaluated by MTT assay and nuclear imaging based on the cell morphological changes on both human lung cancerous cell line A549 and chang liver as non cancerous cell line. The results demonstrated that the pure and composite material exhibited above 70% viability on non-cancerous cell line and around 60% inhibition on A549 lung cancer cell line indicates the α-Fe2O3/C nanocomposite is biocompatible and can be used for biological applications and anticancer therapy. Cell death induced by α-Fe2O3, carbon nanoplates and α-Fe2O3/C nanocomposites was further evidenced with DAPI.  相似文献   

2.
Incorporating plasmonic nanoparticles (NPs) in an organic solar cell (OSC) can improve device performance. In our simulation studies, at NP resonance, absorption in poly(3-hexythiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) can be increased by encapsulating 50 nm Ag NPs with Al2O3, HfO2, MoO3, and SiO2. At Ag NP resonance, when the oxide thickness is significant enough, oxides with high relative permittivity induces a higher electric field enhancement at the metal/dielectric interface. This is translated to improved absorption in the polymer layer. By integrating against AM1.5G, overall absorption in P3HT/PCBM is improved when incorporating Ag NPs encapsulated with a thin oxide shell into the polymer film. However, polymeric absorption loss is induced for oxide-encapsulated Ag NPs if MoO3 and SiO2 shells are more than 5 nm. For Al2O3 and HfO2, Ag NPs should not be encapsulated with shells thicker than 10 nm. Modeling studies are also extended to absorption in a CH3NH3PbI3 perovskite layer. It is revealed that both Al2O3 and HfO2 have an optimal shell thickness of about 20 nm to ensure maximum absorption in CH3NH3PbI3. The results can be utilized as a useful guideline when designing photovoltaics from an optical point of view.  相似文献   

3.
Due to their high chemical stability, lithium titanate (Li2TiO3) nanoparticles (LTT NPs) now are projected to be transferred into different nanotechnology areas like nano pharmacology and nano medicine. With the increased applications of LTT NPs for numerous purposes, the concerns about their potential human toxicity effects and their environmental impact are also increased. However, toxicity data for LTT NPs related to human health are very limited. Therefore we aimed to investigate toxicity potentials of various concentrations (0–1,000 ppm) of LTT NPs (<100 nm) in cultured primary rat hepatocytes. Cell viability was detected by [3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide] (MTT) assay and lactate dehydrogenase (LDH) release, while total antioxidant capacity (TAC) and total oxidative stress (TOS) levels were determined to evaluate the oxidative injury. DNA damage was analyzed by scoring liver micronuclei rates and by determining 8-oxo-2-deoxyguanosine (8-OH-dG) levels. The results of MTT and LDH assays showed that higher concentrations of dispersed LTT NPs (500 and 1,000 ppm) decreased cell viability. Also, LTT NPs increased TOS (300, 500 and 1,000 ppm) levels and decreased TAC (300, 500 and 1,000 ppm) levels in cultured hepatocytes. The results of genotoxicity tests revealed that LTT NPs did not cause significant increases of micronucleated hepatocytes and 8-OH-dG as compared to control culture. In conclusion, the obtained results showed for the first time that LTT NPs had dose dependent effects on oxidative damage and cytotoxicity but not genotoxicity in cultured primary rat hepatocytes for the first time.  相似文献   

4.

Objectives

To demonstrate biotransformation of toxic Cr(VI) ions into Cr2O3 nanoparticles by the yeast Schwanniomyces occidentalis.

Results

Reaction mixtures containing S. occidentalis NCIM 3459 and Cr(VI) ions that were initially yellow turned green after 48 h incubation. The coloration was due to the synthesis of chromium (III) oxide nanoparticles (Cr2O3NPs). UV–Visible spectra of the reaction mixtures showed peaks at 445 and 600 nm indicating 4A2g → 4T1g and 4A2g → 4T2g transitions in Cr2O3, respectively. FTIR profiles suggested the involvement of carboxyl and amide groups in nanoparticle synthesis and stabilization. The Cr2O3NPs ranged between 10 and 60 nm. Their crystalline nature was evident from the selective area electron diffraction and X-ray diffraction patterns. Energy dispersive spectra confirmed the chemical composition of the nanoparticles. These biogenic nanoparticles could find applications in different fields.

Conclusions

S. occidentalis mediated biotransformation of toxic Cr(VI) ions into crystalline extracellular Cr2O3NPs under benign conditions.
  相似文献   

5.
This article reports simple, green and efficient synthesis of γ-Fe2O3 nanoparticles (NPs) (maghemite) through single-source precursor approach for colorimetric estimation of human glucose level. The γ-Fe2O3 NPs, having cubic morphology with an average particle size of 30 nm, exhibited effective peroxidase-like activity through the catalytic oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 producing a blue-colored solution. On the basis of this colored-reaction, we have developed a simple, cheap, highly sensitive and selective colorimetric method for estimation of glucose using γ-Fe2O3/TMB/glucose–glucose oxidase (GOx) system in the linear range from 1 to 80 μM with detection limit of 0.21 μM. The proposed glucose sensor displays faster response, good stability, reproducibility and anti-interference ability. Based on this simple reaction process, human blood and urine glucose level can be monitored conveniently.  相似文献   

6.

Objective

Thialkalivibrio versutus D301 cells were immobilized on Fe3O4 nanoparticles (NPs) synthesized by an improved chemical coprecipitation method and modified with 3-aminopropyltriethoxysilane (APTES), then the immobilized cells were used in sulfur oxidation.

Results

The prepared Fe3O4–APTES NPs had a narrow size distribution (10 ± 2 nm) and were superparamagnetic, with a saturation magnetization of 60.69 emu/g. Immobilized cells had a saturation magnetization of 34.95 emu/g and retained superparamagnetism. The optimum conditions for cell immobilization were obtained at pH 9.5 and 1 M Na+. The immobilization capacity of Fe3O4–APTES NPs was 7.15 g DCW/g-NPs that was 2.3-fold higher than that of Fe3O4 NPs. The desulfurization efficiency of the immobilized cells was close to 100%, having the same sulfur oxidation capacity as free cells. Further, the immobilized cells could be reused at least eight times, retaining more than 85% of their desulfurization efficiency.

Conclusion

Immobilization of cells with the modified magnetic NPs efficiently increased cell controllability, have no effect on their desulfurization activity and could be effectively used in large-scale industrial applications.
  相似文献   

7.
Abstract

Acinetobacter baumannii is a biofilm forming multidrug resistant (MDR) pathogen responsible for respiratory tract infections. In this study, aluminium oxide nanoparticles (Al2O3 NPs) were synthesized and characterized by TEM and EDX and shown to be spherical shaped nanoparticles with a diameter < 10?nm. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) for the Al2O3 NPs ranged between 125 and 1,000?µg ml?1. Exposure to NPs caused cellular membrane disruption, indicated by an increase in cellular leakage of the contents. Biofilm inhibition was 11.64 to 70.2%, whereas attachment of bacteria to polystyrene surfaces was reduced to 48.8 to 51.9% in the presence of NPs. Nanoparticles also reduced extracellular polymeric substance production and the biomass of established biofilms. The data revealed the non-toxic nature of Al2O3 NPs up to a concentrations of 120?µg ml?1 in HeLa cell lines. These results demonstrate an effective and safer use of Al2O3 NPs against the MDR A. baumannii by targeting biofilm formation, adhesion and EPS production.  相似文献   

8.
PurposeTitanium dioxide nanoparticles (TiO2 NPs) have been investigated for their role as radiosensitisers for radiation therapy. The study aims to increase the efficiency of these NPs by synthesising them with samarium.MethodsSamarium-doped TiO2 NPs (Ti(Sm)O2 NPs) were synthesised using a solvothermal method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS) were performed for characterising of the Ti(Sm)O2 NPs. The intracellular uptake and cytotoxicity were assessed in vitro using A549 and DU145 cancer cell lines. Furthermore, the effect of dose enhancement and generation of reactive oxygen species (ROS) in response to 6 MV X-rays was evaluated. Additionally, the image contrast properties were investigated using computed tomography (CT) images.ResultsThe synthesised Ti(Sm)O2 NPs were about 13 nm in diameter as determined by TEM. The XRD pattern of Ti(Sm)O2 NPs was consistent with that of anatase-type TiO2. EDS confirmed the presence of samarium in the nanoparticles. At 200 μg/ml concentration, no differences in cellular uptake and cytotoxicity were observed between TiO2 NPs and Ti(Sm)O2 NPs in both A549 and DU145 cells. However, the combination of Ti(Sm)O2 NPs and X-rays elicited higher cytotoxic effect and ROS generation in the cells than that with TiO2 NPs and X-rays. The CT numbers of Ti(Sm)O2 NPs were systematically higher than that of TiO2 NPs.ConclusionsThe Ti(Sm)O2 NPs increased the dose enhancement of MV X-ray beams than that elicited by TiO2 NPs. Samarium improved the efficiency of TiO2 NPs as potential radiosensitising agent.  相似文献   

9.
Titanium dioxide nanoparticles (TiO2‐NPs) are one of the most widely engineered nanoparticles used. The study has been focused on TiO 2‐NPs genotoxic effects on human spermatozoa in vitro. TiO 2‐NPs are able to cross the blood–testis barrier induced inflammation, cytotoxicity, and gene expression changes that lead to impairment of the male reproductive system. This study presents new data about DNA damage in human sperms exposed in vitro to two n‐TiO 2 concentrations (1 µg/L and 10 µg/L) for different times and the putative role of reactive oxygen species (ROS) as mediators of n‐TiO 2 genotoxicity. Primary n‐TiO 2 characterization was performed by transmission electron microscopy. The dispersed state of the n‐TiO 2 in media was spectrophotometrically determined at 0, 24, 48, and 72 hr from the initial exposure. The genotoxicity has been highlighted by different experimental approaches (comet assay, terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL] test, DCF assay, random amplification of polymorphic DNA polymerase chain reaction [RAPD‐PCR]). The comet assay showed a statistically significant loss of sperm DNA integrity after 30 min of exposure. Increased threshold of sperm DNA fragmentation was highlighted after 30 min of exposure by the TUNEL Test. Also, the RAPD‐PCR analysis showed a variation in the polymorphic profiles of the sperm DNA exposed to n‐TiO 2. The evidence from the DCF assay showed a statistically significant increase in intracellular ROS linked to n‐TiO 2 exposure. This research provides the evaluation of n‐TiO 2 potential genotoxicity on human sperm that probably occurs through the production of intracellular ROS.  相似文献   

10.
We evaluated the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) preilluminated with ultraviolet light on Escherichia coli and Bacillus subtilis. The experiments were conducted using three different types of light: visible, Ultraviolet A (UVA, 315–400 nm), and Ultraviolet B (UVB, 280–315 nm). The bacteria were exposed to NPs, either as liquid suspensions for growth inhibition assays or on agar plates for colony forming unit (CFU) assays. We found that the ZnO NPs were more toxic when preilluminated with UVA or UVB light than with visible light in both growth inhibition and CFU assays. TiO2 NPs were not toxic to the bacteria under UVA or UVB preillumination conditions. The photo-dissolution of ZnO NPs increased with UV preillumination, which could explain the observed toxicity of ZnO NPs. We detected oxidative stress elicited by photoactive nanoparticles by measuring superoxide dismutase activity. The results of this study show that the toxicity of photoactive nanoparticles can be increased by UV preillumination by dissolution of toxic ions, which suggests the potential for preillumination-dependent toxicity of nanoparticles on soil environments in low light or darkness.  相似文献   

11.
The potential toxicity of nanoparticles in plants is scarce and contradictory. Despite the diversity of research efforts, a detailed explanation of the TiO2NPS effects in plant photosynthesis is still missing. The present work gives a new approach to examine the impact of the TiO2NPs on crop production (development and photosynthesis) and plant protection (tolerance and defense systems) in fenugreek (Trigonella foenum graecum L.). Seedlings were assessed in greenhouse trials to estimate the influence of TiO2NPs on physiological characters for 16 days. They were treated with TiO2NPs at a size less than 20 nm. The results revealed that there were no significant effects on seedlings growth and biomass of stem, but a decrease in the fresh weight of leaves after TiO2NPs treatment. Plants treated with 100 mg·L?1 of TiO2NPs presented a reduction and chlorosis in leaf area due to a significant decrease in the chlorophyll a and b contents. The highest value of the photosynthetic pigments was recorded at 50 mg·L?1 of TiO2NPs. However, the treatment with 100 mg·L?1 of TiO2NPs caused a decrease in the levels of chlorophyll a, b and of carotenoids. Both doses of TiO2NPs induced an accumulation of anthocyanins compared to the control after 16 days of seedling development. A nano-stress significantly decreased the flavonoids level, but increased that of polyphenols compared to control after 16 days of exposure. The decrease in the translocation ratio of flavonoids suggests that many of them contain an enediol group, which suggests that they may act as bidentate ligands for anatase TiO2NPs. Accordingly, nano-stressed leaves exhibited significantly enhanced GPOX, CAT and APX activity levels. On the contrary, GPOX and CAT activities were reduced substantially in stems treated with 100 mg·L?1 TiO2NPs. The accumulation of MDA was found to be higher in stems than in leaves. This could be explained by the accumulation of nanoparticles in different organs; it could be that the stems are the favored targets of nanoparticles. These results underline the necessity for a deeper estimation of nanoparticle ecotoxicity and particularly concerning their interaction with plants.  相似文献   

12.
This work was aimed to provide further information about toxicology of TiO2 nanoparticles (NPs) on Vicia narbonensis L., considering different endpoints. After exposure to TiO2 nanoparticle suspension (mixture of rutile and anatase, size <100 nm) at four different concentrations (0.2, 1.0, 2.0 and 4.0 ‰), the seeds of V. narbonensis were let to germinate in controlled environmental conditions. After 72 h, the extent of the success of the whole process (seed germination plus root elongation) was recorded as the vigour index, an indicator of possible phytotoxicity. After the characterisation of the hydric state of different materials, oxidative stress and enzymatic and nonenzymatic antioxidant responses were considered as indicators of possible cytotoxicity and to assess if damage induced by TiO2 NPs was oxidative stress-dependent. Cytohistochemical detection of in situ DNA fragmentation as genotoxicity endpoint was monitored by TUNEL reaction. The treatments with TiO2 NPs in our system induced phytotoxic effects, ROS production and DNA fragmentation. The nonenzymatic and enzymatic antioxidant responses were gradually and differentially activated and were able to maintain the oxidative damage to levels not significantly different from the control. On the other hand, the results of DNA fragmentation suggested that the mechanisms of DNA repair were not effective enough to eliminate early genotoxicity effects.  相似文献   

13.
Zinc oxide nanoparticles (ZnO NPs) can be ingested directly when used in food, food packaging, drug delivery, and cosmetics. This study evaluated the cellular effects of ZnO NPs (50 and 100 nm diameter particle sizes) on the function of osteoblastic MC3T3-E1 cells. ZnO NPs showed cytotoxicity at concentrations of above 50 μg/ml, and there was no significant effect of the size on the cytotoxicity of ZnO NPs. Within the testing concentrations of 0.01~1 μg/ml, which did not cause a marked drop in cell viability, ZnO NPs (0.1 μg/ml) caused a significant elevation of alkaline phosphatase activity, collagen synthesis, mineralization, and osteocalcin content in the cells (P?<?0.05). Moreover, pretreatment with ZnO NPs (0.01~1 μg/ml) significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, complex IV inactivation, and ATP loss. Measurement of reactive oxygen species (ROS) indicated decrease in ROS level upon exposure to ZnO nanoparticles (0.01 μg/ml). Hence, our study indicated that ZnO nanoparticles can have protective effects on osteoblasts at low concentrations where there are little or no observable cytotoxic effects.  相似文献   

14.
Bulk- and nano-scale titanium dioxide (TiO2) has found use in human food products for controlling color, texture, and moisture. Once ingested, and because of their small size, nano-scale TiO2 can interact with a number of epithelia that line the human gastrointestinal tract. One such epithelium responsible for nutrient absorption is the small intestine, whose constituent cells contain microvilli to increase the total surface area of the gut. Using a combination of scanning and transmission electron microscopy it was found that food grade TiO2 (E171 food additive coded) included ~25 % of the TiO2 as nanoparticles (NPs; <100 nm), and disrupted the normal organization of the microvilli as a consequence of TiO2 sedimentation. It was found that TiO2 isolated from the candy coating of chewing gum and a commercially available TiO2 food grade additive samples were of the anatase crystal structure. Exposure to food grade TiO2 additives, containing nanoparticles, at the lowest concentration tested within this experimental paradigm to date at 350 ng/mL (i.e., 100 ng/cm2 cell surface area) resulted in disruption of the brush border. Through the use of two independent techniques to remove the effects of gravity, and subsequent TiO2 sedimentation, it was found that disruption of the microvilli was independent of sedimentation. These data indicate that food grade TiO2 exposure resulted in the loss of microvilli from the Caco-2BBe1 cell system due to a biological response, and not simply a physical artifact of in vitro exposure.  相似文献   

15.
Understanding and controlling the interaction between the polymer methyldopa (2‐amino‐3‐(3,4‐dihydroxyphenyl)‐2‐methyl‐propanoic acid) (PMDP)–γ‐Fe2O3 nanoparticles and biological fluids is important if the potential of nanoparticles (NPs) in biomedicine is to be realized. Physicochemical studies on the interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of the NP surface, interactions between human serum albumin (HSA) and PMDP–γ‐Fe2O3 NPs were investigated. Here, the adsorption of HSA onto small (10–30 nm diameter) PMDP–γ‐Fe2O3 NPs was quantitatively analyzed using spectroscopic methods. The fluorescence quenching data were checked for the inner‐filter effect, the main confounding factor in the observed quenching. The binding constants, Ka, were calculated at different temperatures, using a nonlinear fit to the experimental data, and the thermodynamic parameters ?H, ?S and ?G were given. The obtained thermodynamic signature suggests that hydrophobic interactions at least are present. This result indicates that the structure of the protein turns from a structureless denatured state at pH 3 into an ordered biologically active native state on addition of PMDP–γ‐Fe2O3 NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The rare earth metal oxide nanoparticles such as gadolinium oxide nanoparticles (Gd2O3 NPs) have been synthesized by green synthesis process using methanolic extract of Moringa oleifera (M oleifera) peel. In this process, the Gd2O3 NPs formation was observed at 280–300 nm in UV–Vis spectroscopy. The XRD pattern of the synthesized Gd2O3 NPs was exactly matched with JCPDS No 3-065-3181which confirms the crystalline nature of Gd2O3 NPs. In addition, Energy-dispersive X-ray spectroscopy (EDX) analysis was stated that Gd and O elements were present as 70.31 and 29.69%, respectively in Gd2O3 NPs. The SEM and TEM analysis were said Gd2O3 NPs are in rod shape and 26 ± 2 nm in size. Further the synthesized Gd2O3 NPs were confirmed by X-ray photoemission spectroscopy (XPS). The synthesized Gd2O3 NPs were further examined for anti-fungal activity against Alternaria saloni (A saloni) and Sclerrotium rolfsii (S rolfsii) and it showed moderate activity. Also, Gd2O3 NPs evaluated as good antibacterial agent against different Gram +ve and Gram −ve bacteria. Moreover, the toxicity of the Gd2O3 NPs on red blood cells (RBCs) of the human blood was determined using hemolytic assay, the obtained results were stated the synthesized Gd2O3 NPs are nontoxic to the human erythrocytes. The photocatalytic activity against malachite green (MG) dye was tested and confirmed as 92% of dye was degraded within 2 hr by Gd2O3 NPs. The results were stated the green synthesized Gd2O3 NPs are good anti-fungal agents, nontoxic and we can use as a photocatalyst. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.  相似文献   

18.
Immobilization of biologically important molecules on a myriad of nanosized materials has attracted great attention due to their small size, biocompatibility, higher surface-to-volume ratio, and lower toxicity. These properties make nanoparticles (NPs) a superior matrix over bulk material for the immobilization of enzymes and proteins. In the present study, Bacillus amyloliquefaciens α-amylase was immobilized on SnO2 nanoparticles by a simple adsorption mechanism. Nanoparticle-adsorbed enzyme retained 90% of the original enzyme activity. Thermal stability of nanosupport was investigated by thermogravimetric and differential thermal analysis. Scanning electron microscopic studies showed that NPs have porous structure for the high-yield immobilization of α-amylase. The genotoxicity of SnO2-NPs was analyzed by pUC19 plasmid nicking and comet assay and revealed that no remarkable DNA damage occurred in lymphocytes. The pH-optima was found to be the same for both free and SnO2-NPs bound enzyme, while the temperature-optimum for NPs-adsorbed α-amylase was 5°C higher than its free counterpart. Immobilized enzyme retained more than 70% enzyme activity even after its eight repeated uses.  相似文献   

19.
Photoreceptor (PR) cells are prone to accumulation of reactive oxygen species (ROS) and oxidative stress. An imbalance between the production of ROS and cellular antioxidant defenses contributes to PR degeneration and blindness in many different ocular disease states. Yttrium oxide (Y2O3) nanoparticles (NPs) are excellent free radical scavengers owing to their nonstoichiometric crystal defects. Here we utilize a murine light-stress model to test the efficacy of Y2O3 NPs (~10–14 nm in diameter) in ameliorating retinal oxidative stress-associated degeneration. Our studies demonstrate that intravitreal injections of these NPs at doses ranging from 0.1 to 5.0 µM 2 weeks before acute light stress protect PRs from degeneration. This protection is reflected both structurally (i.e., decreased light-associated thinning of the outer nuclear layer) and functionally (i.e., preservation of scotopic and photopic electroretinogram amplitudes). We also observe preservation of structure and function when NPs are delivered immediately after acute light stress, although the magnitude of the preservation is smaller, and only doses ranging from 1.0 to 5.0 µM were effective. We show that the Y2O3 NPs are nontoxic and well tolerated after intravitreal delivery. Our results suggest that Y2O3 NPs have astonishing antioxidant benefits and, with further exploration, may be an excellent strategy for the treatment of oxidative stress associated with multiple forms of retinal degeneration.  相似文献   

20.
Wide applications and extreme potential of metal oxide nanoparticles (NPs) increase occupational and public exposure and may yield extraordinary hazards for human health. Exposure to NPs has a risk for dysfunction of the vascular endothelial cells. The objective of this study was to assess the cytotoxicity of six metal oxide NPs to human cardiac microvascular endothelial cells (HCMECs) in vitro. Metal oxide NPs used in this study included zinc oxide (ZnO), iron(III) oxide (Fe2O3), iron(II,III) oxide (Fe3O4), magnesium oxide (MgO), aluminum oxide (Al2O3), and copper(II) oxide (CuO). The cell viability, membrane leakage of lactate dehydrogenase, intracellular reactive oxygen species, permeability of plasma membrane, and expression of inflammatory markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, macrophage cationic peptide-1, and interleukin-8 in HCMECs were assessed under controlled and exposed conditions (12–24 h and 0.001–100 μg/ml of exposure). The results indicated that Fe2O3, Fe3O4, and Al2O3 NPs did not have significant effects on cytotoxicity, permeability, and inflammation response in HCMECs at any of the concentrations tested. ZnO, CuO, and MgO NPs produced the cytotoxicity at the concentration-dependent and time-dependent manner, and elicited the permeability and inflammation response in HCMECs. These results demonstrated that cytotoxicity, permeability, and inflammation in vascular endothelial cells following exposure to metal oxide nanoparticles depended on particle composition, concentration, and exposure time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号