首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Using tools to act on non-food objects—for example, to make other tools—is considered to be a hallmark of human intelligence, and may have been a crucial step in our evolution. One form of this behaviour, ‘sequential tool use’, has been observed in a number of non-human primates and even in one bird, the New Caledonian crow (Corvus moneduloides). While sequential tool use has often been interpreted as evidence for advanced cognitive abilities, such as planning and analogical reasoning, the behaviour itself can be underpinned by a range of different cognitive mechanisms, which have never been explicitly examined. Here, we present experiments that not only demonstrate new tool-using capabilities in New Caledonian crows, but allow examination of the extent to which crows understand the physical interactions involved.

Methodology/Principal Findings

In two experiments, we tested seven captive New Caledonian crows in six tasks requiring the use of up to three different tools in a sequence to retrieve food. Our study incorporated several novel features: (i) we tested crows on a three-tool problem (subjects were required to use a tool to retrieve a second tool, then use the second tool to retrieve a third one, and finally use the third one to reach for food); (ii) we presented tasks of different complexity in random rather than progressive order; (iii) we included a number of control conditions to test whether tool retrieval was goal-directed; and (iv) we manipulated the subjects'' pre-testing experience. Five subjects successfully used tools in a sequence (four from their first trial), and four subjects repeatedly solved the three-tool condition. Sequential tool use did not require, but was enhanced by, pre-training on each element in the sequence (‘chaining’), an explanation that could not be ruled out in earlier studies. By analyzing tool choice, tool swapping and improvement over time, we show that successful subjects did not use a random probing strategy. However, we find no firm evidence to support previous claims that sequential tool use demonstrates analogical reasoning or human-like planning.

Conclusions/Significance

While the ability of subjects to use three tools in sequence reveals a competence beyond that observed in any other species, our study also emphasises the importance of parsimony in comparative cognitive science: seemingly intelligent behaviour can be achieved without the involvement of high-level mental faculties, and detailed analyses are necessary before accepting claims for complex cognitive abilities.  相似文献   

2.
3.
Homo faber was once proposed as a label for humans specifically to highlight their unique propensity for tool use. However, new observations on complex tool use by the chimpanzees of Loango National Park, Gabon, expand our knowledge about tool-using abilities in Pan troglodytes. Chimpanzees in Loango, when using tools to extract honey from three types of bee nests, were observed to regularly use three- to five-element tool sets. In other words, different types of tools were used sequentially to access a single food source. Such tool sets included multi-function tools that present typical wear for two distinct uses. In addition, chimpanzees exploited underground bee nests and used ground-perforating tools to locate nest chambers that were not visible from the ground surface. These new observations concur with others from Central African chimpanzees to highlight the importance of honey extraction in arguments favoring the emergence of complex tool use in hominoids, including different tool types, expanded tool sets, multifunction tools, and the exploitation of underground resources. This last technique requires sophisticated cognitive abilities concerning unseen objects. A sequential analysis reveals a higher level of complexity in honey extraction than previously proposed for nut cracking or hunting tools, and compares with some technologies attributed to early hominins from the Early and Middle Stone Age. A better understanding of similarities in human and chimpanzee tool use will allow for a greater understanding of tool-using skills that are uniquely human.  相似文献   

4.
使用工具曾被认为是人类独有的能力,然而,在过去的50年中,学界逐渐认识到工具的使用普遍存在于整个动物界。其中,使用工具最多的类群是哺乳类、鸟类和昆虫。动物使用工具有一定目标性,然而大多数动物仅考虑当前的目标,而非长远目标。动物使用工具的行为受到环境因素和动物自身认知能力、生理特点与进化历史的影响,并可能表现出一定的个体差异。有些动物使用工具的行为是与生俱来的,然而大部分高等动物通过试错学习获得使用工具的能力。通过模仿学习,一些使用工具的行为可以传播和演化,从而在种群中广泛分布。工具的使用是动物认知领域的核心概念之一,开展动物使用工具的研究,能够加深对动物认知能力和行为进化的理解。  相似文献   

5.
6.
One of the greatest difficulties with evolutionary approaches in the study of stone tools (lithics) has been finding a mechanism for tying culture and biology in a way that preserves human agency and operates at scales that are visible in the archaeological record. The concept of niche construction, whereby organisms actively construct their environments and change the conditions for selection, could provide a solution to this problem. In this review, we evaluate the utility of niche construction theory (NCT) for stone tool archaeology. We apply NCT to lithics both as part of the “extended phenotype” and as residuals or precipitates of other niche‐constructing activities, suggesting ways in which archaeologists can employ niche construction feedbacks to generate testable hypotheses about stone tool use. Finally, we conclude that, as far as its applicability to lithic archaeology, NCT compares favorably to other prominent evolutionary approaches, such as human behavioral ecology and dual‐inheritance theory.  相似文献   

7.
高星 《人类学学报》2018,37(3):331-340
制作工具曾经被视作人类独有的行为能力,"人类"曾经据此而定义。但目前学术界将直立行走作为人类区别于其他灵长类最重要的体质与行为特征。少量其他动物种类,尤其是非人高等灵长类,也能使用工具乃至简单制作工具。如何认识制作工具在人类演化中的作用?人类制作工具的能力与其他动物有何区别?考古学是否有能力分辨人类的工具和其他灵长类的产品?本文通过对现代巴西猴群敲砸石头的行为及其产品、4300年前黑猩猩的"石制品"和早期人类石制品的比较研究,指出人类的工具与其他动物制作和使用的工具存在根本的区别;工具制作和使用对确定人类的演化方向,增强人类的适应生存能力,塑造人类的大脑与心智及行为方式,提升语言和交流能力,形成现代人类的身心和社会,至关重要,不可或缺。考古工作者一方面需要谨慎分辨、研究人类工具制作初期的产品,不使其与自然的产物和其他动作的作品相混淆,另一方面应该认识到人类工具制作在计划性、目的性、预见性、规范性和精美度上具有唯一性,有内在的智能控制、思维逻辑和规律可循。学科发展的积累和现代科技的支撑使考古学者具有多方面的利器,能够把人类工具制作的历史挖掘、复原出来,能够破译特定的石器技术和功能,进而将人类演化的历史画卷描绘得更加精细,更加完整。  相似文献   

8.
Although neither the genome nor the environment can be manipulated in research on human behaviour, some of the new tools of molecular genetics can be brought to bear on human behavioural disorders (e.g. cognitive disabilities) and quantitative traits (e.g. cognitive abilities). The inability to manipulate the human genome experimentally has had the positive effect of focusing attention on naturally occuring genetic variation responsible for behavioural differences among individuals in all their complex multifactorial splendour. Genes in such complex multiple-gene systems are called quantitative trait loci (QTLs), which merge the two worlds of genetic research, quantitative genetics and molecular genetics. Although most genetic research on complex human behaviour has focused on severe mental disorders, cognitive abilities and disabilities may be even more immediately relevant to neuroscience. For example, verbal ability and spatial ability are two of the most heritable cognitive abilities, and reading disability is the first behavioural disability for which replicated QTL linkage has been found. The purpose of this essay is to provide an overview of the genetics of cognitive abilities and disabilities as an example of the impending merger of quantitative genetics and molecular genetics in QTL analysis of complex traits.  相似文献   

9.
We report our recent findings on the use of tool sets by chimpanzees in Moukalaba-Doudou National Park, Gabon. Direct observations and evidences left by chimpanzees showed that chimpanzees used sticks as pounders, enlargers, and collectors to extract honey from beehives of stingless bees (Meliponula sp.), which may correspond to those previously found in the same site for fishing termites and to those found in Loango National Park, Gabon. However, we observed chimpanzees using a similar set of tools for hunting a medium-sized mammal (possibly mongoose) that hid inside a log. This is the first report of hunting with tools by a chimpanzee population in Central Africa. Chimpanzees may recognize the multiple functions and applicability of tools (extracting honey and driving prey), although it is still a preliminary speculation. Our findings may provide us a new insight on the chimpanzee’s flexibility of tool use and cognitive abilities of complex food gathering.  相似文献   

10.
General intelligence has been a topic of high interest for over a century. Traditionally, research on general intelligence was based on principal component analyses and other dimensionality reduction approaches. The advent of high-speed computing has provided alternative statistical tools that have been used to test predictions of human general intelligence. In comparison, research on general intelligence in non-human animals is in its infancy and still relies mostly on factor-analytical procedures. Here, we argue that dimensionality reduction, when incorrectly applied, can lead to spurious results and limit our understanding of ecological and evolutionary causes of variation in animal cognition. Using a meta-analytical approach, we show, based on 555 bivariate correlations, that the average correlation among cognitive abilities is low (r = 0.185; 95% CI: 0.087–0.287), suggesting relatively weak support for general intelligence in animals. We then use a case study with relatedness (genetic) data to demonstrate how analysing traits using mixed models, without dimensionality reduction, provides new insights into the structure of phenotypic variance among cognitive traits, and uncovers genetic associations that would be hidden otherwise. We hope this article will stimulate the use of alternative tools in the study of cognition and its evolution in animals.  相似文献   

11.
12.

Background

Tool use is defined as the manipulation of an inanimate object to change the position or form of a separate object. The expansion of cognitive niches and tool-use capabilities probably stimulated each other in hominid evolution. To understand the causes of cognitive expansion in humans, we need to know the behavioral and neural basis of tool use. Although a wide range of animals exhibit tool use in nature, most studies have focused on primates and birds on behavioral or psychological levels and did not directly address questions of which neural modifications contributed to the emergence of tool use. To investigate such questions, an animal model suitable for cellular and molecular manipulations is needed.

Methodology/Principal Findings

We demonstrated for the first time that rodents can be trained to use tools. Through a step-by-step training procedure, we trained degus (Octodon degus) to use a rake-like tool with their forelimbs to retrieve otherwise out-of-reach rewards. Eventually, they mastered effective use of the tool, moving it in an elegant trajectory. After the degus were well trained, probe tests that examined whether they showed functional understanding of the tool were performed. Degus did not hesitate to use tools of different size, colors, and shapes, but were reluctant to use the tool with a raised nonfunctional blade. Thus, degus understood the functional and physical properties of the tool after extensive training.

Conclusions/Significance

Our findings suggest that tool use is not a specific faculty resulting from higher intelligence, but is a specific combination of more general cognitive faculties. Studying the brains and behaviors of trained rodents can provide insights into how higher cognitive functions might be broken down into more general faculties, and also what cellular and molecular mechanisms are involved in the emergence of such cognitive functions.  相似文献   

13.
Although tool use is known to occur in species ranging from naked mole rats [1] to owls [2], chimpanzees are the most accomplished tool users [3-5]. The modification and use of tools during hunting, however, is still considered to be a uniquely human trait among primates. Here, we report the first account of habitual tool use during vertebrate hunting by nonhumans. At the Fongoli site in Senegal, we observed ten different chimpanzees use tools to hunt prosimian prey in 22 bouts. This includes immature chimpanzees and females, members of age-sex classes not normally characterized by extensive hunting behavior. Chimpanzees made 26 different tools, and we were able to recover and analyze 12 of these. Tool construction entailed up to five steps, including trimming the tool tip to a point. Tools were used in the manner of a spear, rather than a probe or rousing tool. This new information on chimpanzee tool use has important implications for the evolution of tool use and construction for hunting in the earliest hominids, especially given our observations that females and immature chimpanzees exhibited this behavior more frequently than adult males.  相似文献   

14.
Woodpecker finches are famous for their spontaneous tool use behaviour in the wild. They use twigs or cactus spines to pry arthropods out of crevices and use this ability more than any other tool-using species known. We experimentally investigated the cognitive abilities related to tool use. We chose three experimental designs that have been used to test several primate species (trap tube task and modification task) and New Caledonian crows (tool length task). One of six woodpecker finches was able to solve the trap tube task, and several individuals modified tools and chose twigs of appropriate length. Most subjects mastered these new tasks quickly, but we found no evidence that they were able to assess the problems in advance. These findings resemble those obtained for primates in these tasks.  相似文献   

15.
Investigation of tool use is an effective way to determine cognitive abilities of animals. This approach raises hypotheses, which delineate limits of animal's competence in understanding of objects properties and interrelations and the influence of individual and social experience on their behaviour. On the basis of brief review of different models of manipulation with objects and tools manufacturing (detaching, subtracting and reshaping) by various animals (from elephants to ants) in natural conditions the experimental data concerning tool usage was considered. Tool behaviour of anumals could be observed rarely and its distribution among different taxons is rather odd. Recent studies have revealed that some species (for instance, bonobos and tamarins) which didn't manipulate tools in wild life appears to be an advanced tool users and even manufacturers in laboratory. Experimental studies of animals tool use include investigation of their ability to use objects physical properties, to categorize objects involved in tool activity by its functional properties, to take forces affecting objects into account, as well as their capacity of planning their actions. The crucial question is whether animals can abstract general principles of relations between objects regardless of the exact circumstances, or they develop specific associations between concerete things and situations. Effectiveness of laboratory methods is estimated in the review basing on comparative studies of tool behaviour, such as "support problem", "stick problem", "tube- and tube-trap problem", and "reserve tube problem". Levels of social learning, the role of imprinting, and species-specific predisposition to formation of specific domains are discussed. Experimental investigation of tool use allows estimation of the individuals' intelligence in populations. A hypothesis suggesting that strong predisposition to formation of specific associations can serve as a driving force and at the same time as obstacle to animals' activity is discussed. In several "technically gifted" species (such as woodpecker finches, New Caledonian crows, and chimpanzees) tool use seems to be guided by a rapid process of trial and error learning. Individuals that are predisposed to learn specific connections do this too quickly and thus become enslaved by stereotypic solutions of raising problems.  相似文献   

16.
动物认知能力高低及认知在动物中的进化是动物研究领域面对的难题之一。鸦科鸟类在工具使用、情景记忆、抑制控制等方面有着与类人猿媲美的优异表现。本文对过去三四十年间主要的鸦科鸟类认知研究进行了分类与汇总,并将上述认知研究划分为一般认知、物理认知、社会认知等三类。一般认知能力或者称为认知基础,是指具有普遍性的能力因素,是在解决不同问题时都能表现出来的相同的心理特质;物理认知指个体对自然规律的认知,主要包括客体永久性、数能力、工具的使用等;社会认知主要指个体对其他个体的心理状态、行为动机和意向作出推测与判断的过程。本文介绍了上述三类认知能力的主要研究范式,旨在为国内动物认知研究提供理论依据。目前的研究更多地集中于鸦属的鸟类,对于鸦科中其他鸟类或是雀形目中其他鸟类的认知研究尚不充足。此外,鸦科鸟类的社会性、分布范围、觅食策略等生态因素具有显著差异,在后续的研究中,我们应该关注生态因素对鸦科鸟类认知能力的影响,或是结合鸦科鸟类的生境及习性设计出更加合理的研究范式。  相似文献   

17.
The scatter hoarding of food, or caching, is a widespread and well-studied behaviour. Recent experiments with caching corvids have provided evidence for episodic-like memory, future planning and possibly mental attribution, all cognitive abilities that were thought to be unique to humans. In addition to the complexity of making flexible, informed decisions about caching and recovering, this behaviour is underpinned by a motivationally controlled compulsion to cache. In this review, we shall first discuss the compulsive side of caching both during ontogeny and in the caching behaviour of adult corvids. We then consider some of the problems that these birds face and review the evidence for the cognitive abilities they use to solve them. Thus, the emergence of episodic-like memory is viewed as a solution for coping with food perishability, while the various cache-protection and pilfering strategies may be sophisticated tools to deprive competitors of information, either by reducing the quality of information they can gather, or invalidating the information they already have. Finally, we shall examine whether such future-oriented behaviour involves future planning and ask why this and other cognitive abilities might have evolved in corvids.  相似文献   

18.
Behavioural ecology assumes that cognitive traits and their underlying neural substrates are shaped by natural selection in much the same way as morphological traits are, resulting in adaptation to the natural environment of the species concerned. Recently, however, the 'neuroecology' approach of attempting to gain insight into brain structure and function by testing predictions about variation in brain structure based on knowledge of the lifestyle of the animal has been criticized on the grounds that such an adaptationist view cannot provide insight into the underlying mechanisms. Furthermore, the criticism has focussed on attempts to use variation in demand for spatial memory and in hippocampal size as a basis for predicting variation in cognitive abilities. Here, we revisit this critique against the field of so-called 'neuroecology' and argue that using knowledge of the natural history of animals has lead to a better understanding of the interspecific variation in spatial abilities and hippocampal size, and to the generation of novel hypotheses and predictions.  相似文献   

19.
We trained Japanese macaque monkeys to use tools, an advanced cognitive function monkeys do not exhibit in the wild, and then examined their brains for signs of modification. Following tool-use training, we observed neurophysiological, molecular genetic and morphological changes within the monkey brain. Despite being 'artificially' induced, these novel behaviours and neural connectivity patterns reveal overlap with those of humans. Thus, they may provide us with a novel experimental platform for studying the mechanisms of human intelligence, for revealing the evolutionary path that created these mechanisms from the 'raw material' of the non-human primate brain, and for deepening our understanding of what cognitive abilities are and of those that are not uniquely human. On these bases, we propose a theory of 'intentional niche construction' as an extension of natural selection in order to reveal the evolutionary mechanisms that forged the uniquely intelligent human brain.  相似文献   

20.
Some corvids have demonstrated cognitive abilities that rival or exceed those of the great apes; for example, tool use in New Caledonian crows, and social cognition, episodic-like memory and future planning in Western scrub-jays. Rooks appear to be able to solve novel tasks through causal reasoning rather than simple trial-and-error learning. Animals with certain expectations about how objects interact would be able to narrow the field of candidate causes substantially, because some causes are simply ‘impossible’. Here we present evidence that rooks hold such expectations and appear to possess perceptual understanding of support relations similar to that demonstrated by human babies, which is more comprehensive than that of chimpanzees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号