首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RuBPcarboxylase activity was measured in extracts of barley (Hordeum Vulgare L., cv. HOP) seedlings both with the standard radiometric method and by measuring D-3-phosphoglyceric acid formed enzymically in a two stage assay. In the different conditions used, characterized by different NaHCO3 concentrations, different pH and the presence and absence of oxygen, essentially the same ratio of D-3-PGA formed per 14CO2 fixed was obtained. This ratio respected the known stoichiometry of two molecules of D-3-PGA formed per CO2 fixed. It is suggested that measurement of D-3-PGA enzymically in a two stage assay can be routinely used for the determination of RuBP case activity instead of the radiometric method. The advantages and the validity of the method are discussed.  相似文献   

2.
A rapid method to determine the CO2/O2 specificity factor of ribulose 1,5-bisphosphate carboxylase/oxygenase is presented. The assay measures the amount of CO2 and O2 fixation at varying CO2/O2 ratios to determine the relative rates of each reaction. CO2 fixation is measured by the incorporation of the moles of14CO2 into 3-phosphoglycerate, while O2 fixation is determined by subtraction of the moles of CO2 fixed from the moles of RuBP consumed in each reaction. By analyzing the inorganic phosphate specifically hydrolyzed from RuBP under alkaline conditions, the amount of RuBP present before and after catalysis by rubisco can be determined.  相似文献   

3.
Carefully isolated intact spinach chloroplasts virtually free of contamination of other organelles effectively form β-carotene from NaH14CO3 or [U-14C]-3-phosphoglycerate (PGA) under photosynthetic conditions. The photosynthate pool formed in chloroplasts from 1 to 2 millimolar [U-14C]-3-PGA or 3 to 6 millimolar NaH14CO3 was fully sufficient to supply β-carotene synthesis with intermediates for about 1 hour at maximal rates of about 20 nanomoles 14C incorporated per milligram chlorophyll per hour. Fatty acid synthesis remains, under these circumstances, in linear dependence to substrate concentrations with far lower activity. Isotopic dilution of the β-carotene synthesis by adding unlabeled glyceraldehyde 3-phosphate, dihydroxyacetone-P, 3-PGA, 2-PGA, phosphoenolpyruvate, pyruvate, respectively, may be interpreted as a direct substrate flow from photosynthetically fixed CO2 to isopentenyl pyrophosphate synthesizing system. Unlabeled acetate did not dilute β-carotene synthesis. Fatty acid synthesis acted similarly with unlabeled substrates; but it also was diluted by unlabeled acetate. These results indicate a tight linkage of photosynthetic carbon fixation and plastid isoprenoid synthesis.  相似文献   

4.
A non-radioisotopic anion-exchange ion chromatographic method for measuring the carboxylation/ oxygenation specificity (τ) of ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO) is presented. The assay measures the amounts of fixation products at varying [CO2]/[O2] ratios to measure the relative rates of CO2 and O2 fixation reactions. The amount of 3-phosphoglycerate (3-PGA) and phosphoglycolate (PG) in the reaction mixture were measured with a conductivity detector and the specific factor was calculated using the following equations: νc = ([3-PGA] – [PG])/2 and νo = [PG]. By this method, specificity factors for RubisCOs were measured without using radioactive reagents.  相似文献   

5.
Ribulose bisphosphate carboxylase (rubisco) is the first enzyme in photosynthetic CO2 assimilation. It is also the single largest sink for nitrogen in plants. Several parameters of rubisco activity are often measured including initial activity upon extraction, degree of carbamylation, catalytic constant of the enzyme (kcat), and the total amount of enzyme present in a leaf. We report here improvements of the photometric assay of rubisco in which rubisco activity is coupled to NADH oxidation which is continuously monitored in a photometer. The initial lag usually found in this assay was eliminated by assaying rubisco activity at pH 8.0 instead of 8.2, using a large amount of phosphoglycerate kinase, and adding monovalent cations to the assay buffer. We found that when using the photometric assay, the ratio of activity found initially upon extraction divided by the activity after incubating with CO2 and Mg2+ reflects the degree of carbamylation as determined by 14carboxyarabinitol bisphosphate/12carboxyarabinitol bisphosphate competition. We developed methods for measuring the catalytic constant of rubisco as well as the total amount of enzyme present using the photometric assay and carboxyarabinitol 1,5-bisphosphate. We believe that the photometric assay for activity will prove more useful than the 14CO2 assay in many studies.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - GAP glyceraldehyde 3-phosphate - OD optical density - PGA 3-phosphoglycerate - rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate  相似文献   

6.
We have examined the effect of mild water stress on photosynthetic chloroplast reactions of intact Phaseolus vulgaris leaves by measuring two parameters of ribulose bisphosphate (RuBP) carboxylase activity and the pool sizes of RuBP, 3-phosphoglycerate (PGA), triose phosphates, hexose monophosphates, and ATP. We also tested for patchy stomatal closure by feeding 14CO2. The kcat of RuBP carboxylase (moles CO2 fixed per mole enzyme per second) which could be measured after incubating the enzyme with CO2 and Mg2+ was unchanged by water stress. The ratio of activity before and after incubation with CO2 and Mg2+ (the carbamylation state) was slightly reduced by severe stress but not by mild stress. Likewise, the concentration of RuBP was slightly reduced by severe stress but not by mild stress. The concentration of PGA was markedly reduced by both mild and severe water stress. The concentration of triose phosphates did not decline as much as PGA. We found that photosynthesis in water stressed leaves occurred in patches. The patchiness of photosynthesis during water stress may lead to an underestimation of the effect of stomatal closure. We conclude that reductions in whole leaf photosynthesis caused by mild water stress are primarily the result of stomatal closure and that there is no indication of damage to chloroplast reactions.  相似文献   

7.
A simple approach to determine CO2/O2 specificity factor () of ribulose 1,5-bisphosphate carboxylase/oxygenase is described. The assay measures the amount of CO2 fixation at varying [CO2]/[O2] ratios after complete consumption of ribulose 1,5-bisphosphate (RuBP). Carbon dioxide fixation catalyzed by the carboxylase was monitored by directly measuring the moles of 14CO2 incorporated into 3-phosphoglycerate (PGA). This measurement at different [CO2]/[O2] ratios is used to determine graphically by several different linear plots the total RuBP consumed by the two activities and the CO2/O2 specificity factor. The assay can be used to measure the amounts of products of the carboxylase and oxygenase reactions and to determine the concentration of the substrate RuBP converted to an endpoint amount of PGA and phosphoglycolate. The assay was found to be suitable for all [CO2]/[O2] ratios examined, ranging from 14 to 215 micromolar CO2 (provided as 1–16 mM NaHCO3) and 614 micromolar O2 provided as 50% O2. The procedure described is extremely rapid and sensitive. Specificity factors for enzymes of highly divergent values are in good agreement with previously published data.Abbreviations HEPPS N-(2-hydroxyethyl)piperazine-N-(3-propanesulfonic acid) - L large subunit of rubisco - PGA 3-phosphoglyceric acid - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - S small subunit of rubisco - XuBP d-xylulose 1,5-bisphosphate  相似文献   

8.
Usuda H 《Plant physiology》1987,84(2):549-554
The rate of CO2 assimilation and levels of metabolites of the C4 cycle and reductive pentose phosphate pathway in attached leaves of maize (Zea mays L.) were measured over a range of light intensity from 0 to 1,900 microEinsteins per square meter per second under a saturated CO2 concentration of 350 microliters per liter and a limiting CO2 concentration of 133 microliters per liter. The level of ribulose 1,5-bisphosphate (RuBP) stayed almost constant (around 60 nanomoles per milligram chlorophyll [Chl]) from low to high light intensities under 350 microliters per liter. Levels of 3-phosphoglycerate (PGA) increased from 100 to 650 nanomoles per milligram Chl under 350 microliters per liter CO2 with increasing light intensity. The calculated RuBP concentration of 6 millimolar (corresponded to 60 nanomoles per milligram Chl) was about two times above the estimated RuBP binding-site concentration on ribulose bisphosphate carboxylase-oxygenase (Rubisco) of ~2.6 millimolar in maize bundle sheath chloroplasts in the light. The ratio of RuBP/PGA increased with decreasing light intensity under 350 microliters per liter CO2. These results suggest that RuBP carboxylation is under control of light intensity possibly due to a limited supply of CO2 to Rubisco through the C4 cycle whose activity is highly dependent on light intensity. Pyruvate level increased with increasing light intensity as long as photosynthesis rate increased. A positive relationship between levels of PGA and those of pyruvate during steady-state photosynthesis under various conditions suggests that an elevated concentration of PGA increases the carbon input into the C4 cycle through the conversion of PGA to PEP and consequently the level of total intermediates of the C4 cycle can be raised to mediate higher photosynthesis rate.  相似文献   

9.
Ribulose-1,5-bisphosphate (RuBP) pool size was determined at regular intervals during the growing season to understand the effects of tropospheric ozone concentrations, elevated atmospheric carbon dioxide concentrations and their interactions on the photosynthetic limitation by RuBP regeneration. Soybean (Glycine max [L.] Merr. cv. Essex) was grown from seed to maturity in open-top field chambers in charcoal-filtered air (CF) either without (22 nmol O3 mol?1) or with added O3 (83 nmol mol?1) at ambient (AA, 369 μmol CO2 mol?1) or elevated CO2 (710 μmol mol?1). The RuBP pool size generally declined with plant age in all treatments when expressed on a unit leaf area and in all treatments but CF-AA when expressed per unit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) binding site. Although O3 in ambient CO2 generally reduced the RuBP pool per unit leaf area, it did not change the RuBP pool per unit Rubisco binding site. Elevated CO2, in CF or O3-fumigated air, generally had no significant effect on RuBP pool size, thus mitigating the negative O3 effect. The RuBP pools were below 2 mol mol?1 binding site in all treatments for most of the season, indicating limiting RuBP regeneration capacity. These low RuBP pools resulted in increased RuBP regeneration via faster RuBP turnover, but only in CF air and during vegetative and flowering stages at elevated CO2. Also, the low RuBP pool sizes did not always reflect RuBP consumption rates or the RuBP regeneration limitation relative to potential carboxylation (%RuBP). Rather, %RuBP increased linearly with decrease in the RuBP pool turnover time. These data suggest that amelioration of damage from O3 by elevated atmospheric CO2 to the RuBP regeneration may be in response to changes in the Rubisco carboxylation.  相似文献   

10.
Kent SS  Young JD 《Plant physiology》1980,65(3):465-468
An assay was developed for simultaneous kinetic analysis of the activities of the bifunctional plant enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39]. [1-14C,5-3H]Ribulose 1,5-bisphosphate (RuBP) was used as the labeled substrate. Tritium enrichment of the doubly labeled 3-phosphoglycerate (3-PGA) product, common to both enzyme activities, may be used to calculate Vc/Vo ratios from the expression A/(B-A) where A and B represent the 3H/14C isotope ratios of doubly labeled RuBP and 3-PGA, and Vc and Vo represent the activities of carboxylase and oxygenase, respectively. Doubly labeled substrate was synthesized from [2-14C]glucose and [6-3H]glucose using the enzymes of the pentose phosphate pathway coupled with phosphoribulokinase.  相似文献   

11.
Makino A  Mae T  Ohira K 《Plant physiology》1983,73(4):1002-1007
Changes in photosynthesis and the ribulose 1,5-bisphosphate (RuBP) carboxylase level were examined in the 12th leaf blades of rice (Oryza sativa L.) grown under different N levels. Photosynthesis was determined using an open infrared gas analysis system. The level of RuBP carboxylase was measured by rocket immunoelectrophoresis. These changes were followed with respect to changes in the activities of RuBP carboxylase, ribulose 5-phosphate kinase, NADP-glyceraldehyde 3-phosphate dehydrogenase, and 3-phosphoglyceric acid kinase.

RuBP carboxylase activity was highly correlated with the net rate of photosynthesis (r = 0.968). Although high correlations between the activities of other enzymes and photosynthesis were also found, the activity per leaf of RuBP carboxylase was much lower than those of other enzymes throughout the leaf life. The specific activity of RuBP carboxylase on a milligram of the enzyme protein basis remained fairly constant (1.16 ± 0.07 micromoles of CO2 per minute per milligram at 25°C) throughout the experimental period.

Kinetic parameters related to CO2 fixation were examined using the purified carboxylase. The Km(CO2) and Vmax values were 12 micromolar and 1.45 micromoles of CO2 per minute per milligram, respectively (pH 8.2 and 25°C). The in vitro specific activity calculated at the atomospheric CO2 level from the parameters was comparable to the in situ true photosynthetic rate per milligram of the carboxylase throughout the leaf life.

The results indicated that the level of RuBP carboxylase protein can be a limiting factor in photosynthesis throughout the life span of the leaf.

  相似文献   

12.
The reduction of 3-phosphoglycerate (PGA) to triose phosphate is a key step in photosynthesis linking the photochemical events of the thylakoid membranes with the carbon metabolism of the photosynthetic carbon-reduction (PCR) cycle in the stroma. Glyceraldehyde-3-phosphate dehydrogenase: NADP oxidoreductase (GAPDH) is one of the two chloroplast enzymes which catalyse this reversible conversion. We report on the engineering of an antisense RNA construct directed against the tobacco (Nicotiana tabacum L.) chloroplastlocated GAPDH (A subunit). The construct was integrated into the tobacco genome by Agrobacterium-mediated transformation of leaf discs. Of the resulting transformants, five plants were recovered with reduced GAPDH activities ranging from 11 to 24% of wild-type (WT) activities. Segregation analysis of the kanamycin-resistance character in self-pollinated T1 seed from each of the five transformants revealed that one plant (GAP-R) had two active DNA inserts and the others had one insert. T1 progeny from GAP-R was used to generate plants with GAPDH activities ranging from WT levels to around 7% of WT levels. These were used to study the effect of variable GAPDH activities on metabolite pools for ribulose1,5-bisphosphate (RuBP) and PGA, and the accompanying effects on the rate of CO2 assimilation and other gasexchange parameters. The RuBP pool size was linearly related to GAPDH activity once GAPDH activity dropped below the range for WT plants, but the rate of CO2 assimilation was not affected until RuBP levels dropped to 30–40% of WT levels. That is, the CO2 assimilation rate fell when RuBP per ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) site fell below 2 mol·(mol site)–1 while the ratio for WT plants was 4–5 mol·m(mol site)–1. Leaf conductance was not reduced in leaves with reduced GAPDH activities, resulting in an increase in the ratio of intercellular to ambient CO2 partial pressure. Conductance in plants with reduced GAPDH activities was still sensitive to CO2 and showed a normal decline with increases in CO2 partial pressure. Although PGA levels did not fluctuate greatly, the effect of reduced GAPDH activity on RuBP-pool size and assimilation rate can be interpreted as being due to a blockage in the regeneration of RuBP. Concomitant gas-ex change and chlorophyll a fluorescence measurements indicated that photosynthesis changed from being Rubisco-limited to being RuBP-regeneration-limited at a lower CO2 partial pressure in the antisense plants than in WT plants. Photosynthetic electron transport was down-regulated by the build-up of a large proton gradient and the electron-transport chain did not become over-reduced due to a shortage of NADP. Plants with severely reduced GAPDH activity were not photoinhibited despite the continuous presence of a large thylakoid proton gradient in the light. Along with plant size, Rubisco activity, leaf soluble protein and chlorophyll content were reduced in plants with the lowest GAPDH activities. We conclude that chloroplastic GAPDH activity does not appear to limit steady-state photosynthetic CO2 assimilation at ambient CO2. This is because WT leaves maintain the ratio of RuBP per Rubisco site about twofold higher than the level required to achieve a maximal rate of CO2 assimilation.Abbreviations and Symbols bp base pairs - DHAP dihydroxy-acetone phosphate - GAPDH glyceraldehyde-3-phosphate dehy-drogenase - PCR photosynthetic carbon reduction - PGA 3-phosphoglycerate - pi intercellular CO2 partial pressure - qNP non-photochemical fluorescence quenching - qQ photochemicalfluorescence quenching - PSII quantum efficiency of electronflow through PSII - Rubisco ribulose-1,5-bisphosphate carboxy-lase-oxygenase - RuBP ribulose-1,5-bisphosphate - WT wild type We thank Karin Harrison, Prue Kell, Anne Gallagher and Barbara Setchell for excellent technical assistance. G.D.P. and S.V.C. acknowledge support from QE II Research Fellowships (Australian Research Council).  相似文献   

13.
A sensitive assay procedure is described for the simultaneous determination of ribulose-1,5-bisphosphate (RuBP) carboxylase and oxygenase activities. In this assay, [1-3H]RuBP is incubated with 14CO2 and O2. Carboxylation rate is determined from 14CO2 incorporation and oxygenation rate is determined from [2-3H]glycolate-phosphate production. The assay was found to be suitable at all CO2 and O2 concentrations examined, which ranged from 0 to 300 micromolar CO2 (20 millimolar NaHCO3) and 0 to 1.15 millimolar (100%) O2. In combination with a polarographic assay, the stoichiometry of the RuBP oxygenase reaction was found to be RuBP-O2-glycolate phosphate-glycerate phosphate (1:1:1:1).  相似文献   

14.
Ward, D. A. and Drake, B. G. 1987. Photoinhibition under atmosphericO2, the activation state of RuBP carboxylase and the contentof photosynthetic intermediates in soybean and wheat.—J.exp. Bot. 38: 1937–1948. Associations between photosynthesis, the activation state ofRuBP carboxylase and the contents of photosynthetic intermediateswere compared in soybean and wheat leaves before and after exposureto photoinhibitory treatments in the presence of atmosphericO2. Exposing attached leaves to a supra-saturating irradiance(3 800 µmol quanta m– 2 s–1) for 2 h in CO2-freeair decreased carboxylation efficiency and the light-saturatedphotosynthetic rate in air by approximately 50%. Exposure tothe photoinhibitory treatment for periods in excess of 2 h didnot cause a further decrease of photosynthesis in soybean. Althoughphotosynthesis was reduced, the initial and total (fully-activated)activities of ribulose 1,5-bisphosphate carboxylase (RuBPCase)in leaf extracts were unaltered in each species by the photoinhibitorytreatment. This was true for leaves sampled under both air andat a rate-limiting intercellular CO2 partial pressure (Ci) of75 µPa Pa–1. The contents of ribulose l,5-bisphosphate(RuBP) and 3-phosphoglyceric acid (3-PGA) were reduced by thephotoinhibitory treatment in soybean leaves sampled in air andat a rate-limiting Ci, although the RuBP/3-PGA ratio was unaffected.The relative reduction of RuBP content in soybean leaves atrate-limiting C1 was similar to the corresponding reductionof carboxylation efficiency. For wheat,the relative reductionof RuBP content at rate-limiting Ci (–19%) caused by thephotoinhibitory treatment was considerably less than the correspondingdecrease of carboxylation efficiency (–49%).The RuBP/3-PGAratio of wheat was also increased significantly by the photoinhibitorytreatment The significance of these observations to the regulationof CO2-limited photosynthesis in leaves experiencing photoinhibitionunder atmospheric oxygen is discussed. Consideration is alsogiven to the previous contention that contemporary measurementsof initial activity in crude extracts may provide a spuriousindication of the amount of the enzyme-CO2-Mg2 + form of RuBPcarboxylase present in the leaf. Key words: Carboxylation efficiency, RuBP carboxylase, photoinhibition, RuBP, 3-PGA  相似文献   

15.
Abstract The pattern of photosynthetic carbon fixation by leaves of Amaranthus paniculatus L. (a C4 plant) and Oryza sativa L. (a C3 plant) varied with age. Younger leaves of A. paniculatus incorporated 14CO2 into malate and aspartate while senescent leaves fixed predominantly into phosphoglycerate (PGA) and sugar phosphates. Only developing leaves of O. sativa formed malate/aspartate whereas mature and senescent leaves produced PGA/sugar phosphates as the initial labelled products. Correspondingly the ratio of phosphoenolpyruvate/ribulose bisphosphate (RuBP) carboxylase activities was higher in younger leaves of A. paniculatus and developing leaves of O. sativa than in older leaves. However, pulse chase experiments revealed that the main donors of carbon to end products, irrespective of leaf stage, were C4 acids and PGA in A. paniculatus and O. sativa respectively. The results suggest that although an apparent change from initial β-carboxylation to RuBP carboxylation occurs during leaf ontogeny in both the plants, the overall leaf photosynthesis remains C4 or C3. The high rate of 14CO2 incorporation into PGA/sugar phosphates by senescent leaves of A. paniculatus is suggested to be partly due to the increased intercellular spaces in their mesophyll, allowing greater access of CO2 directly to RuBP carboxylase in the bundle sheath.  相似文献   

16.
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) catalyzes carboxylation of ribulose-1,5-bisphosphate, the first in a series of reactions leading to the incorporation of atmospheric CO2 into biomass. Rubisco requires Rubisco activase (RCA), an AAA+ ATPase that reactivates Rubisco by remodelling the conformation of inhibitor-bound sites. RCA is regulated by the ratio of ADP:ATP, with the precise response potentiated by redox regulation of the alpha-isoform. Measuring the effects of ADP on the activation of Rubisco by RCA using the well-established photometric assay is problematic because of the adenine nucleotide requirement of 3-phosphoglycerate (3-PGA) kinase. Described here is a novel assay for measuring RCA activity in the presence of variable ratios of ADP:ATP. The assay couples the formation of 3-PGA from ribulose 1,5-bisphosphate and CO2 to NADH oxidation through cofactor-dependent phosphoglycerate mutase, enolase, PEP carboxylase and malate dehydrogenase. The assay was used to determine the effects of Rubisco and RCA concentration and ADP:ATP ratio on RCA activity, and to measure the activation of a modified Rubisco by RCA. Variations of the basic assay were used to measure the activation state of Rubisco in leaf extracts and the activity of purified Rubisco. The assay can be automated for high-throughput processing by conducting the reactions in two stages.  相似文献   

17.
Vu CV  Allen LH  Bowes G 《Plant physiology》1983,73(3):729-734
Soybean (Glycine max L. Merr. cv Bragg) was grown throughout its life cycle at 330, 450, and 800 microliters CO2 per liter in outdoor controlled-environment chambers under solar irradiance. Leaf ribulose-1,5-bisphosphate carboxylase (RuBPCase) activities and ribulose-1,5-bisphosphate (RuBP) levels were measured at selected times after planting. Growth under the high CO2 levels reduced the extractable RuBPCase activity by up to 22%, but increased the daytime RuBP levels by up to 20%.

Diurnal measurements of RuBPCase (expressed in micromoles CO2 per milligram chlorophyll per hour) showed that the enzyme values were low (230) when sampled before sunrise, even when activated in vitro with saturating HCO3 and Mg2+, but increased to 590 during the day as the solar quantum irradiance (photosynthetically active radiation or PAR, in micromoles per square meter per second) rose to 600. The nonactivated RuBPCase values, which averaged 20% lower than the corresponding HCO3 and Mg2+-activated values, increased in a similar manner with increasing solar PAR. The per cent RuBPCase activation (the ratio of nonactivated to maximum-activated values) increased from 40% before dawn to 80% during the day. Leaf RuBP levels (expressed in nanomoles per milligram chlorophyll) were close to zero before sunrise but increased to a maximum of 220 as the solar PAR rose beyond 1200. In a chamber kept dark throughout the morning, leaf RuBPCase activities and RuBP levels remained at the predawn values. Upon removal of the cover at noon, the HCO3 and Mg2+-activated RuBPCase values and the RuBP levels rose to 465 and 122, respectively, after only 5 minutes of leaf exposure to solar PAR at 1500.

These results indicate that, in soybean leaves, light may exert a regulatory effect on extractable RuBPCase in addition to the well-established activation by CO2 and Mg2+.

  相似文献   

18.
Photosynthetic CO2 assimilation, photorespiration and levels of glycollate oxidase and ribulose bisphosphate (RuBP) carboxylase were measured in barley, wheat and maize plants grown on media containing nitrate or ammonium or in plants transferred from nitrate to ammonium. The CO2 compensation point and photorespiratory CO2 release were not altered by the nitrogen growth regime nor by transfer from nitrate to ammonium. In barley and wheat plants grown on ammonium the levels of glycollate oxidase and RuBP carboxylase per unit leaf area were higher than in nitrate grown material. These differences were not evident when the results were expressed on a protein or chlorophyll basis. The ratio of glycollate oxidase activity to RuBP carboxylase activity was not altered by the nitrogen regime.  相似文献   

19.
The limiting step of photosynthesis changes depending on CO2 concentration and, in theory, photosynthetic nitrogen use efficiency at a respective CO2 concentration is maximized if nitrogen is redistributed from non‐limiting to limiting processes. It has been shown that some plants increase the capacity of ribulose‐1,5‐bisphoshate (RuBP) regeneration (evaluated as Jmax) relative to the RuBP carboxylation capacity (evaluated as Vcmax) at elevated CO2, which is in accord with the theory. However, there is no study that tests whether this change is accompanied by redistribution of nitrogen in the photosynthetic apparatus. We raised a perennial plant, Polygonum sachalinense, at two nutrient availabilities under two CO2 concentrations. The Jmax to Vcmax ratio significantly changed with CO2 increment but the nitrogen allocation among the photosynthetic apparatus did not respond to growth CO2. Enzymes involved in RuBP regeneration might be more activated at elevated CO2, leading to the higher Jmax to Vcmax ratio. Our result suggests that nitrogen partitioning is not responsive to elevated CO2 even in species that alters the balance between RuBP regeneration and carboxylation. Nitrogen partitioning seems to be conservative against changes in growth CO2 concentration.  相似文献   

20.
The effects of aminoacetonitrile (a competitive inhibitor of glycine oxidation) on net photosynthesis, glycolate pathway intermediates, and ribulose-1,5-bisphosphate (RuBP) levels have been investigated at different O2 and CO2 concentrations with soybean (Glycine max)[L] Merr. cv Pioneer 1677) leaf discs floated on 25 millimolar aminoacetonitrile (AAN) for 50 minutes prior to assay.

At 2% O2 and 200 or 330 microliters per liter CO2, the inhibitor had no effect on the rate of net photosynthesis and RuBP levels when compared with the control levels. At 11% to 60% O2, AAN caused a decrease in net photosynthesis in addition to the inhibition by O2. This extra inhibition ranged from 22% to 59% depending on the O2 and CO2 concentrations. The levels of RuBP, however, were 1.3 to 2.7 times higher than in the control plants at the same O2 concentrations. At 40% O2 and 200 microliters per liter CO2, the inhibitor caused a 6-fold increase in glycine and more than 2-fold increase in glyoxylate levels, whereas those of glycolate decreased by approximately one-half.

The decrease in net photosynthesis observed with AAN is not the result of the depletion of the RuBP pool due to the lack of recycling of carbon from the glycolate pathway to the Calvin cycle. The higher levels of RuBP caused by AAN in photorespiratory conditions, suggest that RuBP carboxylase was inhibited. Glyoxylate could be a possible candidate for the inhibition of the enzyme but what is known so far about its inhibitory properties in vitro may not fit the existing in vivo conditions. An alternative explanation for the inhibition is proposed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号