首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An imbalance in free radical production and removal is considered by many to be an important factor in the etiology of many degenerative diseases. Since mitochondria are a major source of free radicals, we have examined mitochondrial free radical production in relation to oxidative phosphorylation in PrP-null mice. Quantitative electron paramagnetic resonance spectroscopy revealed up to a 70% increase in superoxide production from Complex I of submitochondrial particles prepared from PrP-null mice. This was accompanied by elevated respiratory capacity through Complex I without any discernible alteration in respiratory efficiency. These differences are associated with changes in superoxide dismutase levels and defects in mitochondrial morphology, confirming previously reported results. Our results demonstrate a clear difference in free radical production and oxygen consumption by mitochondrial Complex I between PrP-null mice and wild-type controls, pointing to Complex I as a potential target for pathological change, suggesting similarities between prion-related and other neurodegenerative diseases.  相似文献   

2.
1. Binding of aurovertin to submitochondrial particles deficient in ATPase inhibitor is accompanied by an enhancement of the fluorescence by at least 100-fold.2. This change in fluorescence proceeds in three phases. The slowest change may be due to a conformational change in F1, induced by the antibiotic bound during the rapid phases, giving rise to an increase in the quantum yield of the bound fluorochrome.3. Phosphate and ATP quench the fluorescence of the particle-aurovertin complex and ADP enhances it; the rate and extent of these changes are dependent on the availability of free Mg2+.4. There is at least one binding site on the submitochondrial particles, where ATP, ADP and phosphate can bind reversibly and for which these ligands compete. These interactions are dependent on the availability of free Mg2+ and are partly sensitive to oligomycin.5. Binding studies reveal two binding sites for aurovertin on inhibitor-free particles, one with high affinity and one with a lower affinity. Ligands such as phosphate and ATP decrease both the quantum yield and the affinity of the particles for aurovertin. They also increase the total concentration of binding sites, and affect the relative contribution of weak and strong binding sites.6. A model is presented in which changes of the aurovertin fluorescence reflect conformational changes of the ATPase induced by its ligands.  相似文献   

3.
The effect in vivo of hexavalent chromium (Cr6+) on the respiratory electron transport activity and production of superoxide (O2) radicals, was studied in submitochondrial particles (SMPs) prepared from mitochondria isolated from roots of 15‐day‐old pea (Pisum sativum L. cv. Azad) plants exposed to environmentally relevant (20 µm ) and acute (200 µm ) concentrations of chromium for 7 d. A concentration ‐dependent inactivation of electron transport activity from both NADH to O2 (NADH oxidase) and succinate to O2 (succinate oxidase) was observed. The electron transport activity was more sensitive to Cr6+ with NADH as the substrate than with succinate as the substrate. Although NADH dehydrogenase and succinate dehydrogenase were less affected, NADH: cytochrome c oxidoreductase and succinate: cytochrome c oxidoreductase activities were prominently affected by Cr6+. Cytochrome oxidase was the most susceptible complex of mitochondrial membranes to Cr6+, exhibiting maximal inactivation of activity both at 20 and 200 µm chromium concentrations. Cr6+ increased the generation of O2 radicals. This effect was more evident at 200 than at 20 µm . A significant increase in lipid peroxidation of mitochondrial membranes at 200 µm Cr6+ was the physiological impact of the metal‐induced enhanced generation of O2 radicals. An increase in superoxide dismutase (SOD) activity at 20 µm Cr6+ towards enhanced production of O2 radicals appeared to be a defence response in pea root mitochondria that, however, could not be sustained at 200 µm Cr6+. The results obtained concerning inactivation of mitochondrial electron transport and subsequent enhancement in the generation of O2 radicals suggest that root mitochondria are an important target of Cr6+‐induced oxidative stress in pea.  相似文献   

4.
Dennis R. Lang  Efraim Racker 《BBA》1974,333(2):180-186
Quercetin (3,3′,4′,5,7-pentahydroxyflavone) shares certain properties with the mitochondrial ATPase inhibitor protein. At low concentrations it inhibits both soluble and particulate mitochondrial ATPase and has no effect on oxidative phosphorylation in submitochondrial particles. Unlike the mitochondrial inhibitor protein quercetin inhibits the ATP-dependent reduction of NAD+ by succinate in fully reconstituted submitochondrial particles. A comparison of various flavones indicates that the hydroxyl groups at the 3′ and perhaps 3 position are important for the inhibition of ATPase activity.  相似文献   

5.
6.
Regulation of superoxide dismutase synthesis in Candida albicans   总被引:2,自引:0,他引:2  
The synthesis of superoxide dismutase [SOD: EC 1.15.1.1] in response to various cultural conditions was examined in Candida albicans, an opportunistic yeast which causes candidiasis in immunosuppressed patients. SOD plays an important role in protecting cells from the oxidative damage of superoxide radicals. Maximum SOD activity was found after 72 hrs of yeast growth. The optimum pH and temperature for the SOD activity were 7 and 40 °, respectively. The major SOD activity was found in the cytosol fraction and the level of extracellular SOD was very low. The enzyme was stimulated to varying degrees by cholic acid, procaine and tocopherol. On the basis of inhibitor studies and other enzyme properties, the isolated enzyme from C. albicans is identified as copper and zinc superoxide dismutase. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The influence of Adriamycin (doxorubicin) on the rate of superoxide radical formation in isolated rat heart mitochondria was studied by EPR with the Tiron spin trap not penetrating the mitochondrial inner membrane. Adriamycin at 10–150 μM considerably enhanced superoxide generation in the presence of succinate (substrate of the respiratory chain complex II) and glutamate/malate (complex I substrate) when electron transfer was blocked in complex III with antimycin A. Such effects may partly account for the known cardiotoxicity of this antitumor drug.  相似文献   

8.
Paraquat, a widely used herbicide, induced hemolysis of human erythrocytes in hypotonic saline solution. The degree of hemolysis depended on the intracellular superoxide dismutase level. Erythrocytes with higher enzyme activity were more sensitive to paraquat and those depleted of superoxide dismutase by diethyldithiocarbamate were more resistant. This apparent paradox was interpreted to be due to a rapid turnover of the enzymic dismutation reaction with a resultant increase in the generation of the reactive species responsible for hemolysis. Studies with various scavengers suggested that the hemolytic agent is singlet oxygen. No definite evidence for lipid peroxidation could be demonstrated in erythrocytes exposed to paraquat.  相似文献   

9.
A Photosystem I submembrane fraction isolated from spinach was used to study the mechanism of heat-stress stimulation of oxygen uptake by the photosystem. Various artificial electron donors were shown to generate electron transport reactions with various degrees of thermally induced stimulation. A strong stimulation was observed with durohydroquinone as electron donor with a maximal effect at 50 °C. The degree of stimulation obtained was independent from the redox potential of the electron donors and from their oxidation site because the enzyme superoxide dismutase fully inhibited the stimulation. Instead, it is proposed that thermal stress causes the release of membrane bound superoxide dismutase from the thylakoids thus allowing the reduced form of electron donors with specific properties to reduce O2 radicals to H2O2 besides the usual disproportionation of O2 into O2 and H2O2.Abbreviations: PS photosystem - DCIP 2,6-dichlorophenolindophenol - MV methylviologen - TMPD N,N,N,N-tetramethylphenylenediamine - SOD superoxide dismutase - Chl chlorophyll - DQ duroquinone - DAD N,N,N,N-tetramethyl-1,4-benzenediamine - PMS 5-methylphenazium methyl sulfate - PC plastocyanin  相似文献   

10.
R.J. Van de Stadt  K. Van Dam 《BBA》1974,347(2):240-252
1. The reversible equilibrium between the mitochondrial ATPase (F1) and its naturally occurring inhibitor in Mg-ATP submitochondrial particles has been studied under different conditions.2. High ionic strength favours dissociation of the ATPase inhibitor as tested by ATPase and ATP-driven transhydrogenase activities.3. Dissociation of the ATPase inhibitor results in an increased maximal velocity of the ATPase activity measured in the presence of uncoupler and an increased affinity for adenine nucleotides, in particular for ATP.4. Association of the ATPase inhibitor with inhibitor-depleted Mg-ATP particles causes a slowing of the initial rate of succinate oxidation.5. The antibiotic aurovertin stimulates the ATPase activity of Mg-ATP particles preinculbated in the presence of a supply of oxidative energy. Bound aurovertin impedes the association of inhibitor-deficient particles with ATPase inhibitor.6. The fluorescence of aurovertin bound to inhibitor-containing particles is much less than that of aurovertin bound to inhibitor-depleted particles.7. The oligomycin-sensitivity-conferring protein, added either alone or in the presence or absence of membranous components of the ATPase complex, has little or no effect on the fluorescence of the F1-aurovertin complex.8. It is suggested that the ATPase inhibitor brings F1 in a conformation denoted 1F1 that binds aurovertin with a low quantum yield, a decreased affinity and an increased binding capacity.  相似文献   

11.
Particles prepared from spinach chloroplast membranes with Triton X-100 inhibited the superoxide-mediated reduction of nitro-blue tetrazolium by riboflavin. This superoxide dismutase-like activity was of two kinds, one inactivated by heating and inhibited by H2O2 and the other insensitive to both of these treatments; both activities were destroyed by washing with concentrated Tris buffer or with EDTA. Attempts at reconstitution with transition metal ions suggested that two different forms of bound manganese may be responsible and it is proposed that the inhibition by H2O2 is indicative of three different oxidation states of particle-bound manganese. The possibility that the photosynthetic water-splitting system and superoxide dismutase have evolved from a single precursor is discussed.  相似文献   

12.
Mutations in the human SBDS gene is the most common cause of Shwachman-Diamond syndrome (SDS). The SBDS protein participates in ribosome biogenesis; however, effects beyond reduced translation efficiency are thought to be involved in SDS progression. Impaired mitochondrial function has been reported for cells lacking either SBDS or Sdo1p, the Saccharomyces cerevisiae SBDS ortholog. To better understand how the loss of SBDS/Sdo1p leads to mitochondria damage, we utilized the S. cerevisiae model of SDS. Yeast deleted for SDO1 show increased oxidative damage to mitochondrial proteins and a marked decrease in protein levels and activity of mitochondrial superoxide dismutase 2 (Sod2p), a key enzyme involved in defense against oxidants. Immature forms of Sod2p are observed in sdo1∆ cells suggesting a defect in proteolysis of the presequence. Yeast deleted for CYM1, encoding a presequence protease, display a similar reduction in Sod2p activity as sdo1∆ cells, as well as elevated oxidative damage, to mitochondrial proteins. Sod2p protein levels and activity are largely restored in a por1sdo1∆ strain, lacking the major mitochondrial voltage-dependent anion channel. Together these results indicate that mitochondrial insufficiency in sdo1∆ cells may be linked to the accumulation of immature presequence containing proteins and this effect is a consequence, at least in part, from loss of counter-regulation of Por1p by Sdo1p.  相似文献   

13.
The processes that control aging remain poorly understood. We have exploited mutants in the nematode, Caenorhabditis elegans, that compromise mitochondrial function and scavenging of reactive oxygen species (ROS) to understand their relation to lifespan. We discovered unanticipated roles and interactions of the mitochondrial superoxide dismutases (mtSODs): SOD‐2 and SOD‐3. Both SODs localize to mitochondrial supercomplex I:III:IV. Loss of SOD‐2 specifically (i) decreases the activities of complexes I and II, complexes III and IV remain normal; (ii) increases the lifespan of animals with a complex I defect, but not the lifespan of animals with a complex II defect, and kills an animal with a complex III defect; (iii) induces a presumed pro‐inflammatory response. Knockdown of a molecule that may be a pro‐inflammatory mediator very markedly extends lifespan and health of certain mitochondrial mutants. The relationship between the electron transport chain, ROS, and lifespan is complex, and defects in mitochondrial function have specific interactions with ROS scavenging mechanisms. We conclude that mtSODs are embedded within the supercomplex I:III:IV and stabilize or locally protect it from reactive oxygen species (ROS) damage. The results call for a change in the usual paradigm for the interaction of electron transport chain function, ROS release, scavenging, and compensatory responses.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of motor function and eventual death as a result of degeneration of motor neurons in the spinal cord and brain. The discovery of mutations in SOD1, the gene encoding the antioxidant enzyme Cu/Zn-superoxide dismutase (CuZnSOD), in a subset of ALS patients has led to new insight into the pathophysiology of ALS. Utilizing a novel adenovirus gene delivery system, our laboratory has developed a human cell culture model using chemically differentiated neuroblastoma cells to investigate how mutations in SOD1 lead to neuronal death. Expression of mutant SOD1 (G37R) resulted in a time and dose-related death of differentiated neuroblastoma cells. This cell death was inhibited by overexpression of the antioxidant enzyme manganese superoxide dismutase (MnSOD). These observations support the hypothesis that mutant SOD1-associated neuronal death is associated with alterations in oxidative stress, and since MnSOD is a mitochondrial enzyme, suggest that mitochondria play a key role in disease pathogenesis. Our findings in this model of inhibition of mutant SOD1-associated death by MnSOD represent an unique approach to explore the underlying mechanisms of mutant SOD1 cytotoxicity and can be used to identify potential therapeutic agents for further testing.  相似文献   

15.
Plant mitochondria are proposed to act as signaling organelles in the orchestration of defense responses to biotic stress and acclimation responses to abiotic stress. However, the primary signal(s) being generated by mitochondria and then interpreted by the cell are largely unknown. Recently, we showed that mitochondria generate a sustained burst of superoxide (O2-) during particular plant-pathogen interactions. This O2- burst appears to be controlled by mitochondrial components that influence rates of O2- generation and scavenging within the organelle. The O2- burst appears to influence downstream processes such as the hypersensitive response, indicating that it could represent an important mitochondrial signal in support of plant stress responses. The findings generate many interesting questions regarding the upstream factors required to generate the O2- burst, the mitochondrial events that occur in support of and in parallel with this burst and the downstream events that respond to this burst.  相似文献   

16.
The number and type of isoforms of superoxide dismutase (SOD) and their activities were compared in mitochondria and peroxisomes isolated from cotyledons of three different oilseed seedlings. Mitochondrial and peroxisomal isoforms of SOD could be distinguished in nondenaturing polyacrylamide gels by their differential sensitivities to KCN and/or H2O2. The type of SOD was not the same for each organelle in each of the three oilseed species. For example, a single Mn–SOD was found in cotton and cucumber mitochondria, whereas four CuZn–SODs were present in mitochondria from sunflower. At least one CuZn–SOD isoform was found in the peroxisomes of all three species. Cucumber peroxisomes contained both a CuZn–SOD and a Mn–SOD, cotton peroxisomes contained a single CuZn–SOD, whilst four separate CuZn–SODs, but no Mn–SOD were found in sunflower peroxisomes. Using antibodies against CuZn–SOD from watermelon peroxisomes or from chloroplasts of Equisetum , a single polypeptide of c . 16·5 kDa was detected on immunoblots of peroxisomal fractions from the three species. Post-embedment, electron-microscopic double immunogold-labelling showed that CuZn–SOD, with malate synthase used as marker enzyme of peroxisomes, was localized in the matrix of these organelles of all three species. These results suggest that CuZn–SOD is a characteristic matrix enzyme of peroxisomes in oilseed cotyledons.  相似文献   

17.
Addition of OH? to air saturated dimethyl sulfoxide leads to the formation of the superoxide radical anion, as shown directly by electron paramagnetic resonance and ultra violet spectroscopy, and indirectly by superoxide dismutase inhibitable cytochrome c reduction. Superoxide production is related inversely to the water concentration of the dimethyl sulfoxide and solutions obtained are stable for up to three days. Reaction mechanisms are suggested and results are discussed in the light of the many uses of dimethyl sulfoxide as a solvent in both chemistry and biology.  相似文献   

18.
Extended x-ray absorption fine structure (EXAFS) spectra have been recorded at the Cu edge and Zn edge in native yeast superoxide dismutase and at the Cu edge and Cd edge in the yeast superoxide dismutase derivative, where Zn has been substituted with Cd. Two different metal ligand distances in the range 1.9-2.0 A and 2.3-2.4 are determined for the Cu and Zn metals. For Cd in the Zn site two different metal ligand distances about 2.2 A and 2.6 A, respectively, were found. The striking feature is the similarity between the amplitude and radii determined for both the Cu and Zn sites. The increased distances for Cd can be explained by the increased ionic radius of Cd relative to Cu and Zn. Based on these EXAFS results and other relevant knowledge about the metal geometries, we propose that histidine 61 (63) positioned between the Cu and Zn metals are in one subunit bound to Zn and in the other to Cu. This model explains the recently observed difference between the two metal sites in each subunit.  相似文献   

19.
重金属污染已经对生物产生强大的选择压力。为了探索麦长管蚜Sitobion avenae经重金属镉长期胁迫后超氧化物歧化酶(SOD)和乙酰胆碱酯酶(AchE)基因表达的变化规律, 本研究模拟自然环境条件, 用Cd2+溶液浇灌土壤, 通过土壤-小麦-麦长管蚜体系连续处理麦长管蚜20代, 通过PCR扩增得到SOD和AchE基因cDNA片段, 并用Real-time PCR的方法对连续处理5, 10, 15和20代的蚜虫进行基因表达水平的研究。结果表明: 麦长管蚜SOD和AchE基因的表达水平会受Cd的浓度和连续处理世代数的影响。与对照相比, 在5 代和10 代时呈现上调模式, 而在处理20代后, 其表达则受到了抑制。40 mg/kg是关键的浓度, 高于此浓度时, 基因的表达会出现下调模式。由此可见, 低剂量的毒性胁迫会促使超氧化物歧化酶和乙酰胆碱酯酶的表达量增加, 而高剂量胁迫则会限制两种酶的防御作用。  相似文献   

20.
Sporidesmin (SDMS2), the mycotoxin responsible for 'facial eczema' in ruminants, contains a disulphide group which appears to be intimately involved in its toxic action. The reduced (dithiol) form of sporidesmin has been shown readily to undergo autoxidation in vitro in a reaction which generates superoxide radical (O2-). The autoxidation reaction, which takes place over a wide pH range, is strongly catalysed by trace amounts of copper, although the reaction was inhibited at high concentrations of this metal. Inhibition of the autooxidation of reduced sporidesmin (SDM(SH)2) was also observed in the presence of nickel, cobalt and manganese. Superoxide radical is also generated from SDMS2 itself in a cyclic reduction/autoxidation reaction with glutathione and other thiols; in view of the known toxicity of superoxide and its derivatives, it is suggested that oxygen-free-radicals may be involved in the initiation of the deleterious effects of the mycotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号