首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many genes regulating adult neurogenesis have been identified and are known to play similar roles during early neuronal development. We recently identified apolipoprotein E (ApoE) as a gene the expression of which is essentially absent in early brain progenitors but becomes markedly upregulated in adult dentate gyrus stem/progenitor cells. Here, we demonstrate that ApoE deficiency impairs adult dentate gyrus development by affecting the neural progenitor pool over time. We utilized ApoE-deficient mice crossed to a nestin-GFP reporter to demonstrate that dentate gyrus progenitor cells proliferate more rapidly at early ages, which is subsequently accompanied by an overall decrease in neural progenitor cell number at later time points. This appears to be secondary to over-proliferation early in life and ultimate depletion of the Type 1 nestin- and GFAP-expressing neural stem cells. We also rescue the proliferation phenotype with an ApoE-expressing retrovirus, demonstrating that ApoE works directly in this regard. These data provide novel insight into late hippocampal development and suggest a possible role for ApoE in neurodegenerative diseases.  相似文献   

2.
Although obesity contributes to the onset and pathogenesis of metabolic diseases, it has been repeatedly demonstrated that being overweight or mildly obese carries a survival advantage compared with being thin or normal-weight. This relationship is called the obesity paradox. Hence, it is necessary to clarify the underlying mechanism of obesity onset for the prevention and treatment of these diseases. Catalase is distributed in peroxisomes under normal redox conditions and catalase activity is increased during the differentiation of 3T3-L1 preadipocytes to adipocytes. Although peroxisomes are responsible for lipid metabolism, the role of peroxisomal catalase in the process of lipid accumulation remains unclear. The present study aimed to investigate the relationships among catalase activity, peroxisome content, and lipid accumulation during the differentiation of 3T3-L1 preadipocytes to adipocytes. Increased catalase activity and lipid accumulation were observed during the differentiation of preadipocytes. Silencing of catalase by small interfering RNA or treatment with 3-amino-1,2,4-triazole (3-AT), a catalase inhibitor, resulted in reduced lipid accumulation. Inhibition of catalase activity in peroxisomes increases hydrogen peroxide (H2O2) levels, which results in a reduction of peroxisome content. Extracellular H2O2 had no influence on lipid accumulation during differentiation. The occurrence of autophagy was clearly enhanced in cells treated with 3-AT. Spautin-1, an inhibitor of autophagy flux, protected against a reduction in lipid accumulation by treatment with 3-AT. Our data provide evidence that catalase protects against the degradation of peroxisomes via the occurrence of autophagy triggered by the generation of H2O2 in peroxisomes. These results suggest that catalase in peroxisomes is crucial to adipogenesis.  相似文献   

3.
The vacuole of Saccharomyces cerevisiae projects a stream of tubules a and vesicles (a segregation structure) into the bud in early S phase. We have described an in vitro reaction, requiring physiological temperature, ATP, and cytosol, in which isolated vacuoles form segregation structures and fuse. This in vitro reaction is defective when reaction components are prepared from vac mutants that are defective in this process in vivo, Fractionation of the cytosol reveals at least three components, each of which can support the vacuole fusion reaction, and two stimulatory fractions. Purification of one low molecular weight activity (LMA1) yields a heterodimeric protein with a thioredoxin subunit. Most of the thioredoxin of yeast is in this complex rather than the well-studied monomer. A deletion of both S. cerevisiae thioredoxin genes causes a striking vacuole inheritance defect in vivo, establishing a role for thioredoxin as a novel factor in this trafficking reaction.  相似文献   

4.
Previous reports have shown that the N terminus of Cdt1 is required for its degradation during S phase (Li, X., Zhao, Q., Liao, R., Sun, P., and Wu, X. (2003) J. Biol. Chem. 278, 30854-30858; Nishitani, H., Lygerou, Z., and Nishimoto, T. (2004) J. Biol. Chem. 279, 30807-30816). The stabilization was attributed to deletion of the cyclin binding motif (Cy motif), which is required for its phosphorylation by cyclin-dependent kinases. Phosphorylated Cdt1 is subsequently recognized by the F-box protein Skp2 and targeted for proteasomal mediated degradation. Using phosphopeptide mapping and mutagenesis studies, we found that threonine 29 within the N terminus of Cdt1 is phosphorylated by Cdk2 and required for interaction with Skp2. However, threonine 29 and the Cy motif are not necessary for proteolysis of Cdt1 during S phase. Mutants of Cdt1 that do not stably associate with Skp2 or cyclins are still degraded in S phase to the same extent as wild type Cdt1, indicating that other determinants within the N terminus of Cdt1 are required for degrading Cdt1. We localized the region necessary for Cdt1 degradation to the first 32 residues. Overexpression of stable forms of Cdt1 significantly delayed entry into and completion of S phase, suggesting that failure to degrade Cdt1 prevents normal progression through S phase. In contrast, Cdt1 mutants that fail to interact with Skp2 and cyclins progress through S phase with similar kinetics as wild type Cdt1 but stimulate the re-replication caused by overexpressing Cdt1. Therefore, a Skp2-independent pathway that requires the N-terminal 32 residues of Cdt1 is critical for the degradation of Cdt1 in S phase, and this degradation is necessary for the optimum progression of cells through S phase.  相似文献   

5.
Sister chromatid cohesion is essential for cell viability. We have isolated a novel temperature-sensitive lethal mutant named eso1-H17 that displays spindle assembly checkpoint-dependent mitotic delay and abnormal chromosome segregation. At the permissive temperature, the eso1-H17 mutant shows mild sensitivity to UV irradiation and DNA-damaging chemicals. At the nonpermissive temperature, the mutant is arrested in M phase with a viability loss due to a failure to establish sister chromatid cohesion during S phase. The lethal M-phase arrest phenotype, however, is suppressed by inactivation of a spindle checkpoint. The eso1(+) gene is not essential for the onset and progression of DNA replication but has remarkable genetic interactions with those genes regulating the G(1)-S transition and DNA replication. The N-terminal two-thirds of Eso1p is highly homologous to DNA polymerase eta of budding yeast and humans, and the C-terminal one-third is homologous to budding yeast Eco1p (also called Ctf7p), which is required for the establishment of sister chromatid cohesion. Deletion analysis and determination of the mutation site reveal that the function of the Eco1p/Ctf7p-homologous domain is necessary and sufficient for sister chromatid cohesion. On the other hand, deletion of the DNA polymerase eta domain in Eso1p increases sensitivity to UV irradiation. These results indicate that Eso1p plays a dual role during DNA replication. The C-terminal region acts to establish sister chromatid cohesion, and the N-terminal region presumably catalyzes translesion DNA synthesis when template DNA contains lesions that block regular DNA replication.  相似文献   

6.
M Russel  P Model    A Holmgren 《Journal of bacteriology》1990,172(4):1923-1929
We have shown previously that Escherichia coli cells constructed to lack both thioredoxin and glutaredoxin are not viable unless they also acquire an additional mutation, which we called X. Here we show that X is a cysA mutation. Our data suggest that the inviability of a trxA grx double mutant is due to the accumulation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), an intermediate in the sulfate assimilation pathway. The presence of excess cystine at a concentration sufficient to repress the sulfate assimilation pathway obviates the need for an X mutation and prevents the lethality of a novel cys+ trxA grx double mutant designated strain A522. Mutations in genes required for PAPS synthesis (cysA or cysC) protect cells from the otherwise lethal effect of elimination of both thioredoxin and glutaredoxin even in the absence of excess cystine. Both thioredoxin and glutaredoxin have been shown to be hydrogen donors for PAPS reductase (cysH) in vitro (M. L.-S. Tsang, J. Bacteriol. 146:1059-1066, 1981), and one or the other of these compounds is presumably essential in vivo for growth on minimal medium containing sulfate as the sulfur source. The cells which lack both thioredoxin and glutaredoxin require cystine or glutathione for growth on minimal medium but maintain an active ribonucleotide reduction system. Thus, E. coli must contain a third hydrogen donor active with ribonucleotide reductase.  相似文献   

7.
The relationship between bromodeoxyuridine (BrdUrd) mutagenesis in mammalian cells and the effects of BrdUrd on deoxyribonucleoside triphosphate pools was analyzed. It was found that the exposure of Syrian hamster melanoma cells to mutagenic concentrations of BrdUrd resulted in the formation of a large bromodeoxyuridine triphosphate (BrdUTP) pool, which remained at a high level for several days. In contrast, the size of the deoxycytidine triphosphate (dCTP) pool dropped rapidly after the addition of BrdUrd, reached a minimum at about 6 h, and then expanded gradually to nearly its original level over the next 3 days. The addition of lower concentrations of BrdUrd, which had less of a mutagenic effect, resulted in the formation of a smaller BrdUTP pool and a slightly smaller drop in the dCTP pool. When a high concentration of deoxycytidine was added at the same time as a normally mutagenic concentration of BrdUrd, the drop in the dCTP pool was prevented, as was BrdUrd mutagenesis. In all of these experiments, mutagenesis was related to the ratio of BrdUTP to dCTP in the cells. In addition, it was shown that mutagenesis occurred primarily during the first 24 h of BrdUrd exposure, when the BrdUTP/dCTP ratio was at its highest level. It appears that there is a critical ratio of BrdUTP to dCTP that must be attained for high levels of mutagenesis to occur and that the extent of mutagenesis is related to the ratio of the BrdUrd and dCTP pools.  相似文献   

8.
ATM is a large, multifunctional protein kinase that regulates responses required for surviving DNA damage: including DNA repair, apoptosis, and cell cycle checkpoints. Here, we show that Drosophila ATM function is essential for normal adult development. Extensive, inappropriate apoptosis occurs in proliferating atm mutant tissues, and in clonally derived atm mutant embryos, frequent mitotic defects were seen. At a cellular level, spontaneous telomere fusions and other chromosomal abnormalities are common in atm larval neuroblasts, suggesting a conserved and essential role for dATM in the maintenance of normal telomeres and chromosome stability. Evidence from other systems supports the idea that DNA double-strand break (DSB) repair functions of ATM kinases promote telomere maintenance by inhibition of illegitimate recombination or fusion events between the legitimate ends of chromosomes and spontaneous DSBs. Drosophila will be an excellent model system for investigating how these ATM-dependent chromosome structural maintenance functions are deployed during development. Because neurons appear to be particularly sensitive to loss of ATM in both flies and humans, this system should be particularly useful for identifying cell-specific factors that influence sensitivity to loss of dATM and are relevant for understanding the human disease, ataxia-telangiectasia.  相似文献   

9.
The spindle checkpoint prevents activation of the anaphase-promoting complex (APC/C) until all chromosomes are correctly attached to the mitotic spindle. Early in mitosis, the mitotic checkpoint complex (MCC) inactivates the APC/C by binding the APC/C activating protein CDC20 until the chromosomes are properly aligned and attached to the mitotic spindle, at which point MCC disassembly releases CDC20 to activate the APC/C. Once the APC/C is activated, it targets cyclin B and securin for degradation, and the cell progresses into anaphase. While phosphorylation is known to drive many of the events during the checkpoint, the precise molecular mechanisms regulating spindle checkpoint maintenance and inactivation are still poorly understood. We sought to determine the role of mitotic phosphatases during the spindle checkpoint. To address this question, we treated spindle checkpoint-arrested cells with various phosphatase inhibitors and examined the effect on the MCC and APC/C activation. Using this approach we found that 2 phosphatase inhibitors, calyculin A and okadaic acid (1 μM), caused MCC dissociation and APC/C activation leading to cyclin A and B degradation in spindle checkpoint-arrested cells. Although the cells were able to degrade cyclin B, they did not exit mitosis as evidenced by high levels of Cdk1 substrate phosphorylation and chromosome condensation. Our results provide the first evidence that phosphatases are essential for maintenance of the MCC during operation of the spindle checkpoint.  相似文献   

10.
11.
Polycomb group (PcG) proteins form two distinct complexes, PRC1 and PRC2, to regulate developmental target genes by maintaining the epigenetic state in cells. PRC2 methylates histone H3 at lysine 27 (H3K27), and PRC1 then recognizes methyl-H3K27 to form repressive chromatin. However, it remains unknown how PcG proteins maintain stable and plastic chromatin during cell division. Here we report that PcG-associated chromatin is reproduced in the G(1) phase in post-mitotic cells and is required for subsequent S phase progression. In dividing cells, H3K27 trimethylation (H3K27Me(3)) marked mitotic chromosome arms where PRC2 (Suz12 and Ezh2) co-existed, whereas PRC1 (Bmi1 and Pc2) appeared in distinct foci in the pericentromeric regions. As each PRC complex was increasingly assembled from mitosis to G(1) phase, PRC1 formed H3K27Me(3)-based chromatin intensively during middle and late G(1) phase; this chromatin was highly resistant to in situ nuclease treatment. Thus, the transition from mitosis to G(1) phase is crucial for PcG-mediated chromatin inheritance. Knockdown of Suz12 markedly reduced the amount of H3K27Me(3) on mitotic chromosomes, and as a consequence, PRC1 foci were not fully transmitted to post-mitotic daughter cells. S phase progression was markedly delayed in these Suz12-knockdown cells. The fact that PcG-associated chromatin is reproduced during post-mitotic G(1) phase suggests the possibility that PcG proteins enable their target chromatin to be remodeled in response to stimuli in the G(1) phase.  相似文献   

12.
In humans, holoprosencephaly (HPE) is a common birth defect characterized by the absence of midline cells from brain, facial, and oral structures. To understand the pathoetiology of HPE, we investigated the involvement of mammalian prechordal plate (PrCP) cells in HPE pathogenesis and the requirement of the secreted protein sonic hedgehog (Shh) in PrCP development. We show using rat PrCP lesion experiments and DiI labeling that PrCP cells are essential for midline development of the forebrain, foregut endoderm, and ventral cranial mesoderm in mammals. We demonstrate that PrCP cells do not develop into ventral cranial mesoderm in Shh−/− embryos. Using Shh−/− and chimeric embryos we show that Shh signal is required for the maintenance of PrCP cells in a non-cell autonomous manner. In addition, the hedgehog (HH)-responding cells that normally appear during PrCP development to contribute to midline tissues, do not develop in the absence of Shh signaling. This suggests that Shh protein secreted from PrCP cells induces the differentiation of HH-responding cells into midline cells. In the present study, we show that the maintenance of a viable population of PrCP cells by Shh signal is an essential process in development of the midline of the brain and craniofacial structures. These findings provide new insight into the mechanism underlying HPE pathoetiology during dynamic brain and craniofacial morphogenesis.  相似文献   

13.
Wakida NM  Botvinick EL  Lin J  Berns MW 《PloS one》2010,5(12):e15462

Background

Establishing and maintaining polarization is critical during cell migration. It is known that the centrosome contains numerous proteins whose roles of organizing the microtubule network range include nucleation, stabilization and severing. It is not known whether the centrosome is necessary to maintain polarization. Due to its role as the microtubule organizing center, we hypothesize that the centrosome is necessary to maintain polarization in a migrating cell. Although there have been implications of its role in cell migration, there is no direct study of the centrosome''s role in maintaining polarization. In this study we ablate the centrosome by intracellular laser irradiation to understand the role of the centrosome in two vastly different cell types, human osteosarcoma (U2OS) and rat kangaroo kidney epithelial cells (PtK). The PtK cell line has been extensively used as a model for cytoskeletal dynamics during cell migration. The U2OS cell line serves as a model for a complex, single migrating cell.

Methodology/Principal Findings

In this study we use femtosecond near-infrared laser irradiation to remove the centrosome in migrating U2OS and PtK2 cells. Immunofluorescence staining for centrosomal markers verified successful irradiation with 94% success. A loss of cell polarization is observed between 30 and 90 minutes following removal of the centrosome. Changes in cell shape are correlated with modifications in microtubule and actin organization. Changes in cell morphology and microtubule organization were quantified revealing significant depolarization resulting from centrosome irradiation.

Conclusions/Significance

This study demonstrates that the centrosome is necessary for the maintenance of polarization during directed cell migration in two widely different cell types. Removal of the centrosome from a polarized cell results in the reorganization of the microtubule network into a symmetric non-polarized phenotype. These results demonstrate that the centrosome plays a critical role in the maintenance of cytoskeletal asymmetry during cell migration.  相似文献   

14.
ABSTRACT

Macroautophagy/autophagy can enable cancer cells to withstand cellular stress and maintain bioenergetic homeostasis by sequestering cellular components into newly formed double-membrane vesicles destined for lysosomal degradation, potentially affecting the efficacy of anti-cancer treatments. Using 13C-labeled choline and 13C-magnetic resonance spectroscopy and western blotting, we show increased de novo choline phospholipid (ChoPL) production and activation of PCYT1A (phosphate cytidylyltransferase 1, choline, alpha), the rate-limiting enzyme of phosphatidylcholine (PtdCho) synthesis, during autophagy. We also discovered that the loss of PCYT1A activity results in compromised autophagosome formation and maintenance in autophagic cells. Direct tracing of ChoPLs with fluorescence and immunogold labeling imaging revealed the incorporation of newly synthesized ChoPLs into autophagosomal membranes, endoplasmic reticulum (ER) and mitochondria during anticancer drug-induced autophagy. Significant increase in the colocalization of fluorescence signals from the newly synthesized ChoPLs and mCherry-MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) was also found on autophagosomes accumulating in cells treated with autophagy-modulating compounds. Interestingly, cells undergoing active autophagy had an altered ChoPL profile, with longer and more unsaturated fatty acid/alcohol chains detected. Our data suggest that de novo synthesis may be required to increase autophagosomal ChoPL content and alter its composition, together with replacing phospholipids consumed from other organelles during autophagosome formation and turnover. This addiction to de novo ChoPL synthesis and the critical role of PCYT1A may lead to development of agents targeting autophagy-induced drug resistance. In addition, fluorescence imaging of choline phospholipids could provide a useful way to visualize autophagosomes in cells and tissues.  相似文献   

15.
16.
The thioredoxin system, consisting of thioredoxin, thioredoxin reductase and NADPH, has been well established to be critical for the redox regulation of protein function and signalling. To investigate the role of thioredoxin reductase (Trr) in Dictyostelium discoideum, we generated mutant cells that underexpress or overexpress Trr. Trr-underexpressing cells exhibited severe defects in axenic growth and development. Trr-overexpressing (TrrOE) cells formed very tiny plaques on a bacterial lawn and had a lower rate of bacterial uptake. When developed in the dark, TrrOE cells exhibited a slugger phenotype, defined by a prolonged migrating slug stage. Like other slugger mutants, they were hypersensitive to ammonia, which has been known to inhibit culmination by raising the pH of intracellular acidic compartments. Interestingly, TrrOE cells showed defective acidification of intracellular compartments and decreased activity of vacuolar H+-ATPase which functions in the acidification of intracellular compartments. Moreover, biochemical studies revealed that the thioredoxin system can directly reduce the catalytic subunit of vacuolar H+-ATPase whose activity is regulated by reversible disulphide bond formation. Taken together, these results suggest that Dictyostelium Trr may be essential for growth and play a role in regulation of phagocytosis and culmination, possibly through the modulation of vacuolar H+-ATPase activity.  相似文献   

17.
18.
19.
Cyclin A is required in S phase in normal epithelial cells.   总被引:22,自引:0,他引:22  
We have investigated cyclin A expression in a primary culture of normal rat hepatocytes and during rat liver regeneration after partial hepatectomy. In both cases, cyclin A mRNA and protein accumulate as the cells enter S phase. To investigate the potential implication of cyclin A accumulation at S phase, we microinjected anti-sense DNA constructs for cyclin A, resulting in effective inhibition of S phase entry. These effects were specific for cyclin A since anti-sense cyclin B construct had no similar effects. These results therefore, obtained in normal epithelial cells, indicate that cyclin A is involved in S phase and thus should not be only considered as a mitotic cyclin.  相似文献   

20.
The Pescadillo protein was identified via a developmental defect and implicated in cell cycle progression. Here we report that human Pescadillo and its yeast homolog (Yph1p or Nop7p) are localized to the nucleolus. Depletion of Nop7p leads to nuclear accumulation of pre-60S particles, indicating a defect in subunit export, and it interacts genetically with a tagged form of the ribosomal protein Rpl25p, consistent with a role in subunit assembly. Two pre-rRNA processing pathways generate alternative forms of the 5.8S rRNA, designated 5.8S(L) and 5.8Ss. In cells depleted for Nop7p, the 27SA3 pre-rRNA accumulated, whereas later processing intermediates and the mature 5.8Ss rRNA were depleted. Less depletion was seen for the 5.8S(L) pathway. TAP-tagged Nop7p coprecipitated precursors to both 5.8S(L) and 5.8Ss but not the mature rRNAs. We conclude that Nop7p is required for efficient exonucleolytic processing of the 27SA3 pre-rRNA and has additional functions in 60S subunit assembly and transport. Nop7p is a component of at least three different pre-60S particles, and we propose that it carries out distinct functions in each of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号