首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent theoretical studies have shown contrasting effects of temporal correlation of environmental fluctuations (red noise) on the risk of population extinction. It is still debated whether and under which conditions red noise increases or decreases extinction risk compared with uncorrelated (white) noise. Here, we explain the opposing effects by introducing two features of red noise time series. On the one hand, positive autocorrelation increases the probability of series of poor environmental conditions, implying increasing extinction risk. On the other hand, for a given time period, the probability of at least one extremely bad year ("catastrophe") is reduced compared with white noise, implying decreasing extinction risk. Which of these two features determines extinction risk depends on the strength of environmental fluctuations and the sensitivity of population dynamics to these fluctuations. If extreme (catastrophic) events can occur (strong noise) or sensitivity is high (overcompensatory density dependence), then temporal correlation decreases extinction risk; otherwise, it increases it. Thus, our results provide a simple explanation for the contrasting previous findings and are a crucial step toward a general understanding of the effect of noise color on extinction risk.  相似文献   

2.
Understanding the relationships between environmental fluctuations, population dynamics and species interactions in natural communities is of vital theoretical and practical importance. This knowledge is essential in assessing extinction risks in communities that are, for example, pressed by changing environmental conditions and increasing exploitation. We developed a model of density dependent population renewal, in a Lotka–Volterra competitive community context, to explore the significance of interspecific interactions, demographic stochasticity, population growth rate and species abundance on extinction risk in populations under various autocorrelation (colour) regimes of environmental forcing. These factors were evaluated in two cases, where either a single species or the whole community was affected by the external forcing. Species' susceptibility to environmental noise with different autocorrelation structure depended markedly on population dynamics, species' position in the abundance hierarchy and how similarly community members responded to external forcing. We also found interactions between demographic stochasticity and environmental noise leading to a reversal in extinction probabilities from under- to overcompensatory dynamics. We compare our results with studies of single species populations and contrast possible mechanisms leading to extinctions. Our findings indicate that abundance rank, the form of population dynamics, and the colour of environmental variation interact in affecting species extinction risk. These interactions are further modified by interspecific interactions within competitive communities as the interactions filter and modulate the environmental noise.  相似文献   

3.
4.
It is accepted that accurate estimation of risk of population extinction, or persistence time, requires prediction of the effect of fluctuations in the environment on population dynamics. Generally, the greater the magnitude, or variance, of environmental stochasticity, the greater the risk of population extinction. Another characteristic of environmental stochasticity, its colour, has been found to affect population persistence. This is important because real environmental variables, such as temperature, are reddened or positively temporally autocorrelated. However, recent work has disagreed about the effect of reddening environmental stochasticity. Ripa and Lundberg (1996) found increasing temporal autocorrelation (reddening) decreased the risk of extinction, whereas a simple and powerful intuitive argument (Lawton 1988) predicts increased risk of extinction with reddening. This study resolves the apparent contradiction, in two ways, first, by altering the dynamic behaviour of the population models. Overcompensatory dynamics result in persistence times increasing with increased temporal autocorrelation; undercompensatory dynamics result in persistence times decreasing with increased temporal autocorrelation. Secondly, in a spatially subdivided population, with a reasonable degree of spatial heterogeneity in patch quality, increasing temporal autocorrelation in the environment results in decreasing persistence time for both types of competition. Thus, the inclusion of coloured noise into ecological models can have subtle interactions with population dynamics.  相似文献   

5.
Viability in a pink environment: why "white noise" models can be dangerous   总被引:1,自引:0,他引:1  
Morales 《Ecology letters》1999,2(4):228-232
Analysis of long time series suggests that environmental fluctuations may be accurately represented by 1/ f   noise (pink noise), where temporal correlation is found at several scales, and the range of fluctuations increases over time. Previous studies on the effects of coloured noise on population dynamics used first or second order autoregressive noise. I examined the importance of coloured noise for extinction risk using true 1/ f   noise. I also considered the problem of estimating extinction risk with a limited sample of environmental variation. Pink noise environments increased extinction risk in random walk models where environmental variation affected the growth rate. However, pink noise environments decreased extinction risk in the Ricker model where environmental variation modified the carrying capacity. Underestimation of environmental variance almost always yielded underestimation of extinction risk. For either population viability analysis or management, we should carefully consider the long-term behaviour of the environment as well as how we include environmental noise in population models.  相似文献   

6.
Phenotypic plasticity plays a key role in modulating how environmental variation influences population dynamics, but we have only rudimentary understanding of how plasticity interacts with the magnitude and predictability of environmental variation to affect population dynamics and persistence. We developed a stochastic individual-based model, in which phenotypes could respond to a temporally fluctuating environmental cue and fitness depended on the match between the phenotype and a randomly fluctuating trait optimum, to assess the absolute fitness and population dynamic consequences of plasticity under different levels of environmental stochasticity and cue reliability. When cue and optimum were tightly correlated, plasticity buffered absolute fitness from environmental variability, and population size remained high and relatively invariant. In contrast, when this correlation weakened and environmental variability was high, strong plasticity reduced population size, and populations with excessively strong plasticity had substantially greater extinction probability. Given that environments might become more variable and unpredictable in the future owing to anthropogenic influences, reaction norms that evolved under historic selective regimes could imperil populations in novel or changing environmental contexts. We suggest that demographic models (e.g. population viability analyses) would benefit from a more explicit consideration of how phenotypic plasticity influences population responses to environmental change.  相似文献   

7.
The outcome of species interactions in a variable environment is expected to depend on how similarly different species react to variation in environmental conditions. We study community stability (evenness and species diversity) in competitive communities that are either closed or subjected to random migration, under different regimes of environmental forcing. Community members respond to environmental variation: (i) independently (IR), (ii) in a positively correlated way (CR), or (iii) hierarchically, according to niche differences (HR). Increasing the amplitude of environmental variation and environmental reddening both reduce species evenness in closed communities through a reduction in species richness and increased skew in species abundances, under all three environmental response scenarios, although autocorrelation only has a minor effect with HR. Open communities show important qualitative differences, according to changes in the correlation structure of species’ environmental responses. There is an intermediate minimum in evenness for HR communities with increasing environmental amplitude, explained by the interaction of changes in species richness and changes in the variance of within-species environmental responses across the community. Changes in autocorrelation also lead to qualitative differences between IR, CR and HR communities. Our results highlight the importance of considering mechanistically derived, hierarchical environmental correlations between species when addressing the influence of environmental variation on ecological communities, not only uniform environmental correlation across all species within a community.  相似文献   

8.
Kim Cuddington  Alan Hastings 《Oikos》2016,125(7):1027-1034
Environmental parameters such as temperature and rainfall have a positively autocorrelated variance structure which makes it likely that runs of good or bad conditions will occur. It has previously been demonstrated that such autocorrelated environmental variance can increase the probability of extinction in small populations, in much the same way that increased variance without autocorrelation can increase extinction risk. As a result, it has also been suggested that positive autocorrelation will decrease the probability that a species will establish in a novel location. We suggest that describing the probability of invasion success as the probability of indefinite persistence may be an inappropriate definition of risk. Economic or ecological damage may be associated with a population that initially reaches high densities before going extinct in the new location. In addition, such populations may spread to new locations before extirpation. We use a modeling approach to examine the effect of positively autocorrelated conditions on the probability that small populations will reach large size before extinction. We find that where variance is high and the geometric mean of the population growth rate is low, autocorrelation increases the risk that a population will pass a an upper threshold density, even when extinction probability is unaffected. Therefore species classified as having low probability of invasion risk on the basis of population growth rates measured in low variance environments may actually have quite a substantial probability of establishing a large population for a period of time. The mechanism behind the effect is the disproportionate influence of short runs of good conditions initially following introduction.  相似文献   

9.
Extinction risk under coloured environmental noise   总被引:1,自引:0,他引:1  
Positively autocorrelated red environmental noise is characterized by a strong dependence of expected sample variance on sample length. This dependence has to be taken into account when assessing extinction risk under red and white uncorrelated environmental noise. To facilitate a comparison between red and white noise, their expected variances can be scaled to be equal, but only at a chosen time scale. We show with a simple one-dimensional population dynamics model that the different but equally reasonable choices of the time scale yield qualitatively different results on the dependence of extinction risk on the colour of environmental noise: extinction risk might increase as well as decrease when the temporal correlation of noise increases.  相似文献   

10.
Environmental variation is classically expected to affect negatively population growth and to increase extinction risk, and it has been identified as a major determinant of establishment failures in the field. Yet, recent theoretical investigations have shown that the structure of environmental variation and more precisely the presence of positive temporal autocorrelation might alter this prediction. This is particularly likely to affect the establishment dynamics of biological control agents in the field, as host–parasitoid interactions are expected to induce temporal autocorrelation in host abundance. In the case where parasitoid populations display overcompensatory dynamics, the presence of such positive temporal autocorrelation should increase their establishment success in a variable environment. We tested this prediction in laboratory microcosms by introducing parasitoids to hosts whose abundances were manipulated to simulate uncorrelated or positively autocorrelated variations in carrying capacity. We found that environmental variability decreased population size and increased parasitoid population variance, which is classically expected to extinction risk. However, although exposed to significant environmental variation, we found that parasitoid populations experiencing positive temporal autocorrelation in host abundance were more likely to persist than populations exposed to uncorrelated variation. These results confirm that environmental variation is a key determinant of extinction dynamics that can have counterintuitive effects depending on its autocorrelation structure.  相似文献   

11.
We consider establishment success (and extinction risk of small populations) in fluctuating environments, by means of an inhomogeneous branching process model. In this model it is assumed that individuals reproduce asexually during discrete reproduction periods. Within each period individuals reproduce independently and have random numbers of offspring. Expected numbers of offspring vary over reproduction periods due to random environmental changes. Previous simulation results indicated that there is a positive autocorrelation between the establishment probabilities of invaders in successive reproduction periods when environmental states are independently distributed. This result was never formally proved. In this paper we prove that this is indeed true, regardless of the form of the distribution of environmental states or the offspring distribution (under a monotonicity condition, which holds for biologically realistic models). Furthermore, we prove that it is also true for positively autocorrelated environmental states. We show by a counterexample that in environments with a strong negative autocorrelation establishment probabilities can be negatively autocorrelated. This was further examined through simulations. Our results imply that in independent, positively autocorrelated and weakly negatively autocorrelated environments the probability of success of invasion in different independently varying sites is the highest, followed by sequential invasion. For environments with a strong negative autocorrelation, sequential invasion has the highest probability of success. Effects of autocorrelation were further examined with simulations. From the results it appears that the expected length of 'runs of bad luck' is the most crucial factor for establishment success.  相似文献   

12.
It is well known that for an isolated population, the probability of extinction is positively related to population size variation: more variation is associated with more extinction. What, then, is the relation of extinction to population size variation for a population embedded in a metapopulation and subjected to repeated extinction and recolonization? In this case, the extinction risk can be measured by the extinction rate, the frequency at which local extinction occurs. Using several population dynamics models with immigration, we find, in general, a negative correlation between extinction and variation. More precisely, with increasing length of the time series, an initially negative regression coefficient first becomes more negative, then becomes less negative, and eventually attains positive values before decreasing again to 0. This pattern holds under substantial variation in values of parameters representing species and environmental properties. It is also rather robust to census interval length and the fraction of missed individuals but fails to hold for high thresholds (population size values below which extinction is deemed to occur) when quasi extinction rather than true extinction is represented. The few departures from the initial negative correlation correspond to populations at risk: low growth rate or frequent catastrophes.  相似文献   

13.
Theoretical ecologists have long sought to understand how the persistence of populations depends on the interactions between exogenous (biotic and abiotic) and endogenous (e.g., demographic and genetic) drivers of population dynamics. Recent work focuses on the autocorrelation structure of environmental perturbations and its effects on the persistence of populations. Accurate estimation of extinction times and especially determination of the mechanisms affecting extinction times is important for biodiversity conservation. Here we examine the interaction between environmental fluctuations and the scaling effect of the mean population size with its variance. We investigate how interactions between environmental and demographic stochasticity can affect the mean time to extinction, change optimal patch size dynamics, and how it can alter the often-assumed linear relationship between the census size and the effective population size. The importance of the correlation between environmental and demographic variation depends on the relative importance of the two types of variation. We found the correlation to be important when the two types of variation were approximately equal; however, the importance of the correlation diminishes as one source of variation dominates. The implications of these findings are discussed from a conservation and eco-evolutionary point of view.  相似文献   

14.
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms-which probably act in many species-can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought.  相似文献   

15.
Effects of environmental variation on extinction and establishment   总被引:2,自引:1,他引:1  
Theoretical models predict that increasing environmental variation increases the probability of extinction, decreases the probability of establishment, and influences the distribution of times to extinction or establishment. We conducted an experiment with 281 independent populations of Daphnia magna under controlled laboratory conditions to test these predictions. Consistent with the theory, the fraction of populations going extinct increased and the fraction of populations establishing self‐sustaining populations decreased under higher levels of environmental variation compared with controls. Time to extinction decreased under higher levels of environmental variation, but we found no effect on time to establishment. These results are consistent with theoretical predictions from models of extinction. They therefore support the use of stochastic population models to predict the fates of introductions of non‐indigenous species or native endangered species based on historic fluctuations and/or expected future conditions.  相似文献   

16.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

17.
This paper addresses effects of trophic complexity on basal species, in a Lotka–Volterra model with stochasticity. We use simple food web modules, with three trophic levels, and expose every species to random environmental stochasticity and analyze (1) the effect of the position of strong trophic interactions on temporal fluctuations in basal species’ abundances and (2) the relationship between fluctuation patterns and extinction risk. First, the numerical simulations showed that basal species do not simply track the environment, i.e. species dynamics do not simply mirror the characteristics of the applied environmental stochasticity. Second, the extinction risk of species was related to the fluctuation patterns of the species.More specifically, we show (i) that despite being forced by random stochasticity without temporal autocorrelation (i.e. white noise), there is significant temporal autocorrelation in the time series of all basal species’ abundances (i.e. the spectra of basal species are red-shifted), (ii) the degree of temporal autocorrelation in basal species time series is affected by food web structure and (iii) the degree of temporal autocorrelation tend to be correlated to the extinction risks of basal species.Our results emphasize the role of food web structure and species interactions in modifying the response of species to environmental variability. To shed some light on the mechanisms we compare the observed pattern in abundances of basal species with analytically predicted patterns and show that the change in the predicted pattern due to the addition of strong trophic interactions is correlated to the extinction risk of the basal species. We conclude that much remain to be understood about the mechanisms behind the interaction among environmental variability, species interactions, population dynamics and vulnerability before we quantitatively can predict, for example, effects of climate change on species and ecological communities. Here, however, we point out a new possible approach for identifying species that are vulnerable to environmental stochasticity by checking the degree of temporal autocorrelation in the time series of species. Increased autocorrelation in population fluctuations can be an indication of increased extinction risk.  相似文献   

18.
Stochastic variability of key abiotic factors including temperature, precipitation and the availability of light and nutrients greatly influences species’ ecological function and evolutionary fate. Despite such influence, ecologists have typically ignored the effect of abiotic stochasticity on the structure and dynamics of ecological networks. Here we help to fill that gap by advancing the theory of how abiotic stochasticity, in the form of environmental noise, affects the population dynamics of species within food webs. We do this by analysing an allometric trophic network model of Lake Constance subjected to positive (red), negative (blue), and non‐autocorrelated (white) abiotic temporal variability (noise) introduced into the carrying capacity of basal species. We found that, irrespective of the colour of the introduced noise, the temporal variability of the species biomass within the network both reddens (i.e. its positive autocorrelation increases) and dampens (i.e. the magnitude of variation decreases) as the environmental noise is propagated through the food web by its feeding interactions from the bottom to the top. The reddening reflects a buffering of the noise‐induced population variability by complex food web dynamics such that non‐autocorrelated oscillations of noise‐free deterministic dynamics become positively autocorrelated. Our research helps explain frequently observed red variability of natural populations by suggesting that ecological processing of environmental noise through food webs with a range of species’ body sizes reddens population variability in nature.  相似文献   

19.
In spatially heterogeneous landscapes, some habitats may be persistent sources, providing immigrants to sustain populations in unfavorable sink habitats (where extinction is inevitable without immigration). Recent theoretical and empirical studies of source-sink systems demonstrate that temporally variable local growth rates in sinks can substantially increase average abundance of a persisting population, provided that the variation is positively autocorrelated--in effect, temporal variation inflates average abundance. Here we extend these results to a metapopulation in which all habitat patches are sinks. Using numerical studies of a population with discrete generations (buttressed by analytic results), we show that temporal variation and moderate dispersal can jointly permit indefinite persistence of the metapopulation and that positive autocorrelation both lowers the magnitude of variation required for persistence and increases the average abundance of persisting metapopulations. These effects are weakened--but not destroyed--if variation in local growth rates is spatially synchronized and dispersal is localized. We show that the inflationary effect is robust to a number of extensions of the basic model, including demographic stochasticity and density dependence. Because ecological and environmental processes contributing to temporally variable growth rates in natural populations are typically autocorrelated, these observations may have important implications for species persistence.  相似文献   

20.
The influence of randomly varying environments on unrestricted population growth and extinction is analyzed by means of branching processes with random environments (BPRE). A main theme is the interplay between environmental and sampling (or “demographic”) variability. If the two sources of variationg are of comparable magnitude, the environmental variation will dominate except as regards the event of extinction.A diffusion approximation of BPRE is proposed to study the situation of a large population with small environmental variance and mean offspring size near one.Comments on the ecological literature as well as on the relation of the results to previous work involving stochastic differential equations are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号