首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using EPR spectroscopy to monitor the integrity of the enzyme, conditions have been established which allow specific immunoprecipitation of the succinate dehydrogenase complex of Escherichia coli. The enzyme complex precipitated from Lubrol PX-solubilized membranes by monospecific antiserum in the presence of a cocktail of protease inhibitors contains four polypeptides of apparent MrS 71,000, 26,000, 17,000, and 15,000. The 71-kDa flavopeptide is readily susceptible to proteolysis, and the enzyme complex shows unusual facile dissociation. Spectroscopic measurements indicate the presence of a [2Fe-2S] cluster (Center 1), a [3Fe-xS] cluster (Center 3), and a b-type cytochrome. In addition, a change in relaxation of Center 1 at low potentials is indicative of Center 2. Midpoint redox potentials of Centers 1-3 for both the membrane-bound and detergent-solubilized enzyme were estimated to be +10 mV, -175 mV, and +65 mV, respectively.  相似文献   

2.
In previous work with membranes of Bacillus subtilis, the succinate dehydrogenase complex was isolated by immunoprecipitation of Triton X-100-solubilized membranes. The complex included a polypeptide with an apparent molecular weight of 19,000, probably attributable to apocytochrome. This paper reports the further characterization of this cytochrome and its relation to the respiratory chain of B. subtilis. The cytochrome was identified as cytochrome b, and its difference absorption spectra showed maxima at 426, 529, and 558 nm at room temperature. The oxidized cytochrome had an absorption maximum at 413 nm. The cytochrome was reduced by succinate in the isolated succinate dehydrogenase complex and in Triton X-100-solubilized membranes. In whole membranes cytochromes b, c, and a were reduced by succinate. In membranes from a mutant containing normal cytochromes but lacking succinate dehydrogenase no reduction of cytochrome was seen with succinate. It was concluded that the isolated succinate dehydrogenase-cytochrome b complex is a functional unit in the intact B. subtilis membrane. An accompanying paper describes cytochrome b as a structural unit involved in the membrane binding of succinate dehydrogenase.  相似文献   

3.
A succinate dehydrogenase complex was isolated in a three-step purification from plasma membranes of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. It consists of four subunits: a, 66 kDa; b, 31 kDa; c, 28 kDa and d, 12.8 kDa. In the 141-kDa native protein, the four subunits are present in an equimolar stoichiometry. The complex contains acid-non-extractable flavin, iron and acid-labile sulphide. Maximal succinate dehydrogenase activities were recorded at pH 6.5, which coincides with the internal pH of Sulfolobus cells. The temperature optimum of 81 degrees C defines the Sulfolobus succinate dehydrogenase as a thermophilic enzyme complex. The Km for succinate was found to be 1.42 mM (55 degrees C). Similar to the mitochondrial soluble succinate dehydrogenase, this enzyme is capable of transferring electrons to artificial electron acceptors, for instance phenazine methosulfate, N,N,N',N'-tetramethyl-p-phenylenediamine and ferricyanide. In contrast to the mitochondrial succinate dehydrogenase, the archaebacterial enzyme reduces 1,4-dichloroindophenol also in the absence of phenazine methosulfate. Caldariella quinone, the physiological electron mediator in the Sulfolobus respiratory chain, was only slowly reduced under adjusted conditions. The succinate--phenazine methosulfate-(1,4-dichloroindophenol) oxidoreductase of the isolated complex was strongly inhibited by tetrachlorobenzoquinone. In plasma membranes the complex reduces molecular oxygen in a cyanide-sensitive reaction. Polyclonal Sulfolobus anti-a antibodies crossreacted with 66-67-kDa polypeptides from membranes of Thermoplasma acidophilium, Sulfolobus solfataricus and beef heart submitochondrial particles.  相似文献   

4.
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex). An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinae dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into chtochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate. The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 anbd 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 mumol succinate oxidized per min per mg protein at 38 degrees C. Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation. When these three components were mixed in a proper ratio, a thenoyltrifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

5.
The cell membrane of Micrococcus luteus (lysodeikticus) contains a respiratory chain composed of hemes a, b, and c, which contain 171, 457, and 407 pmol/mg protein, respectively. Cytochrome c oxidase, the heme a containing component, has been purified after solubilization in Triton X-100, by gel filtration on Sepharose 4B-CL ammonium sulfate precipitation and ion-exchange and affinity chromatographies on a yeast cytochrome c-Sepharose 4B column. The purified complex, which contains three polypeptides of apparent Mr 47,000, 31,000, and 19,000, has CN-sensitive ferrocytochrome c oxidase activity (Ki = 0.35 microM) and a characteristic absorption spectrum with maxima in the oxidized form at 595 and 426 nm and in the reduced form at 601 and 444 nm. The purified enzyme contains 17.4 nmol/mg protein and its copper content is 23.2 nmol/mg protein. The enzyme was purified about 100-fold with respect to its content in crude membranes. The total heme a yield, also with respect to crude membranes content, was 6.8%.  相似文献   

6.
A succinate-coenzyme Q reductase (complex II) was isolated in highly purified form from Ascaris muscle mitochondria by detergent solubilization, ammonium sulfate fractionation and gel filtration on a Sephadex G-200 column. The enzyme preparation catalyzes electron transfer from succinate to coenzyme Q1 with a specific activity of 1.2 mumol coenzyme Q1 reduced per min per mg protein at 25 degrees C. The isolated complex II is essentially free of NADH-ferricyanide reductase, reduced CoQ2-cytochrome c reductase and cytochrome c oxidase and consists of four major polypeptides with apparent molecular weights of 66 000, 27 000, 12 000 and 11 000 and two minor ones with Mr of 36 000 and 16 000. The complex II contained cytochrome b-558, a major constituent cytochrome of Ascaris mitochondria, at a concentration of 3.6 nmol per mg protein, but neither other cytochromes nor quinone. The cytochrome b-558 in the complex II was reduced with succinate. In the presence of Ascaris NADH-cytochrome c reductase (complex I-III) (Takamiya, S., Furushima, R. and Oya, H. (1984) Mol. Biochem. Parasitol. 13, 121-134), the cytochrome b-558 in complex II was also reduced with NADH and reoxidized with fumarate. These results suggest the cytochrome b-558 to function as an electron carrier between NADH dehydrogenase and succinate dehydrogenase in the Ascaris NADH-fumarate reductase system.  相似文献   

7.
Membrane-bound antigens of the respiratory chain of Micrococcus luteus were analyzed by crossed immunoelectrophoresis after growth of the organism in the presence of 59Fe, the flavin adenine dinucleotide-flavin mononucleotide precursor D-[2-14C]riboflavin, or the heme precursor 5-amino-[4-(14)C]levulinic acid. Using zymograms and procedures of selective extraction in conjunction with autoradiography, it was possible to resolve and partially characterize a number of antigens. Succinate dehydrogenase (EC 1.3.99.1) was shown to possess covalently bound flavin and nonheme iron and was possibly present as a complex with cytochrome. Three other dehydrogenases, namely, NADH dehydrogenase, NAD(P)H dehydrogenase (EC 1.6.99.3), and malate dehydrogenase (EC 1.1.1.37), contained flavin in noncovalent linkage, the NAD(P)H dehydrogenase also possessing nonheme iron. Four other discrete antigens (or antigen complexes) containing both iron and heme centers also resolved, as were two minor immunogens possessing iron as the sole detectable prosthetic group.  相似文献   

8.
Low-temperature electron spin resonance spectroscopy was used to investigate the redox centres of Micrococcus luteus membranes. Three different types of iron-sulphur centres were distinguished. Two of these, a [4Fe-4S]3+-type cluster giving rise to a signal at g = 2.01 in the oxidized state and a [2Fe-2S] cluster with a spectrum at g = 2.03 and 1.93 in the reduced state, were attributable to succinate dehydrogenase. Another, generating signals in the reduced state at g = 2.027, 1.90 and 1.78 was identified as a 'Rieske' iron-sulphur centre. This latter cluster had a mid-point potential (pH 7.0) of +130 mV. In addition, signals characteristic of high-spin ferric haem (g = 6.20), low-spin ferric haem (g = 3.67, 3.36 and 3.01) and Cu2+ (g = 2.18 and 2.02) were also detected. The ferric-haem features, together with the Cu2+ and 'Rieske' centres, were enriched in membrane residues insoluble in Triton X-100, which are known from difference spectroscopy to contain cytochromes b-560, c-550 and a-601 (aa3 oxidase). The signals demonstrated by electron spin resonance for M. luteus membranes showed marked similarities to those documented for the complexes II, III, and IV of mitochondria. However, signals analogous to complex I (NADH-ubiquinone reductase) could not be demonstrated for M. luteus membranes.  相似文献   

9.
Cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex was studied by electron-paramagnetic-resonance (EPR) spectroscopy. The cytochrome amplified in Escherichia coli membranes by expression of the cloned cytochrome gene and in the succinate dehydrogenase complex immunoprecipitated from solubilized B. subtilis membranes, respectively, is shown to be low spin with a highly anisotropic (gmax approximately equal to 3.5) EPR signal. The amino acid residues most likely forming fifth and sixth axial ligands to heme in cytochrome b558 are discussed on the basis of the EPR signal and the recently determined gene sequence (K. Magnusson, M. Philips, J.R. Guest, and L. Rutberg, J. Bacteriol. 166:1067-1071, 1986) and in comparison with other b-type cytochromes.  相似文献   

10.
Triton X-100-insoluble residues from Micrococcus lysodeikticus membranes were analyzed by crossed immunoelectrophoresis after dispersal of the residues in sodium dodecyl sulfate (SDS). Conditions which produce no obvious distortion of the immunoprecipitate profile and which allow qualitative and quantitative analyses of the antigens present in the extracts are described. Two main antigens were detected; these were identified as succinate dehydrogenase (EC 1.3.99.1) and adenosine triphosphatase (EC 3.6.1.3). As determined by peak area estimations, the maximal release of succinate dehydrogenase and of adenosine triphosphatase from Triton X-100-insoluble membrane residues occurred at protein/SDS ratios of about 4.3:1 (0.2% SDS) and 6.8:1 (0.13% SDS), respectively. A comparison of enzyme activities of SDS extracts with those of untreated, control Triton X-100-insoluble membrane residues indicated that both the succinate dehydrogenase and the adenosine triphosphatase antigens were released with a full (or enhanced) catalytic potential at or below concentrations of SDS required to effect maximal solubilization of the enzyme in question. Evidence is also presented to suggest that the more acidic of the two components detected by crossed immunoelectrophoresis for the heterogeneous adenosine triphosphatase antigen is more sensitive to SDS than is the other. Both succinate dehydrogenase and adenosine triphosphatase lost catalytic activity and were denatured at protein/SDS ratios lower than 3.4:1.  相似文献   

11.
Cell suspensions of Campylobacter fetus subsp. intestinalis grown microaerophilically in complex media consumed oxygen in the presence of formate, succinate, and DL-lactate, and membranes had the corresponding dehydrogenase activities. The cells and membranes also had ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity which was cyanide sensitive. The fumarate reductase activity in the membranes was inhibited by p-chloromercuriphenylsulfonate, and this enzyme was probably responsible for the succinate dehydrogenase activity. Cytochrome c was predominant in the membranes, and a major proportion of this pigment exhibited a carbon monoxide-binding spectrum. Approximately 60% of the total membrane cytochrome c, measured with dithionite as the reductant, was also reduced by ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine. A similar proportion of the membrane cytochrome c was reduced by succinate under anaerobic conditions, whereas formate reduced more than 90% of the total cytochrome under these conditions. 2-Heptyl-4-hydroxyquinoline-N-oxide inhibited reduction of cytochrome c with succinate, and the reduced spectrum of cytochrome b became evident. The inhibitor delayed reduction of cytochrome c with formate, but the final level of reduction was unaffected. We conclude that the respiratory chain includes low- and high-potential forms of cytochromes c and b; the carbon monoxide-binding form of cytochrome c might function as a terminal oxidase.  相似文献   

12.
A method has been developed for purification of highly active ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes from wild-type Rhodobacter sphaeroides, Rhodobacter capsulatus MT1131, bovine heart and yeast mitochondria. This is the first report of the isolation of cytochrome bc1 complex from a wild-type strain of Rb. sphaeroides and from any strain of Rb. capsulatus. The purification involves extraction of membranes with dodecyl maltoside and two successive DEAE column chromatography steps. All of the resulting bc1 complexes are free of succinate dehydrogenase and cytochrome c oxidase activities. The purified bc1 complexes from both photosynthetic bacteria contain four polypeptide subunits, although the molecular weights of some of their subunits differ. They are also free of reaction center and light-harvesting pigments and polypeptides. The turnover number of the Rb. sphaeroides complex is 128 s-1, and that of the Rb. capsulatus complex is 64 s-1. The bc1 complex from bovine heart contains eight polypeptides and has a turnover number of 1152 s-1, while the yeast complex contains nine polypeptides and has a turnover number of 219 s-1. The activities of these complexes are equal to or better than those commonly obtained by previously reported methods. This method of purification is relatively simple, reproducible, and yields cytochrome bc1 complexes which largely retain the turnover number of the starting material and are pure on the basis of optical spectra, enzymatic activities and polypeptide composition. The purification of cytochrome bc1 complexes from energy-transducing membranes which differ markedly in their lipid and protein composition makes it likely that with minor modifications this method could be applied to species other than those described here.  相似文献   

13.
Chang-An Yu  Linda Yu 《BBA》1980,591(2):409-420
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex).An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinate dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into cytochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate.The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 and 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 μmol succinate oxidized per min per mg protein at 38°C.Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation.When these three components were mixed in a proper ratio, a thenoyl-trifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

14.
During the methanogenic fermentation of acetate by Methanosarcina thermophila, the CO dehydrogenase complex cleaves acetyl coenzyme A and oxidizes the carbonyl group (or CO) to CO2, followed by electron transfer to coenzyme M (CoM)-S-S-coenzyme B (CoB) and reduction of this heterodisulfide to HS-CoM and HS-CoB (A. P. Clements, R. H. White, and J. G. Ferry, Arch. Microbiol. 159:296-300, 1993). The majority of heterodisulfide reductase activity was present in the soluble protein fraction after French pressure cell lysis. A CO:CoM-S-S-CoB oxidoreductase system from acetate-grown cells was reconstituted with purified CO dehydrogenase enzyme complex, ferredoxin, membranes, and partially purified heterodisulfide reductase. Coenzyme F420 (F420) was not required, and CO:F420 oxidoreductase activity was not detected in cell extracts. The membranes contained cytochrome b that was reduced with CO and oxidized with CoM-S-S-CoB. The results suggest that a novel CoM-S-S-CoB reducing system operates during acetate conversion to CH4 and CO2. In this system, ferredoxin transfers electrons from the CO dehydrogenase complex to membrane-bound electron carriers, including cytochrome b, that are required for electron transfer to the heterodisulfide reductase. The cytochrome b was purified from solubilized membrane proteins in a complex with six other polypeptides. The cytochrome was not reduced when the complex was incubated with H2 or CO, and H2 uptake hydrogenase activity was not detected; however, the addition of CO dehydrogenase enzyme complex and ferredoxin enabled the CO-dependent reduction of cytochrome b.  相似文献   

15.
In roots of the lupine ( Lupinus luteus L. cv. Ventus) glutamate dehydrogenase (EC 1.4.1.2–4) was present in a single, electrophoretically homogeneous form (GDHR), while in root nodules eight forms of the enzyme (GDHN) were detected. Highly purified fractions of glutamate dehydrogenase from roots and nodules were used to prepare antisera in rabbits. The two antisera recognized extracts of glutamate dehydrogenase from both roots and nodules. Low concentrations of the antiserum raised against nodule glutamate dehydrogenase precipitated GDH from the nodule extract (the homologous antigen) effectively but decreased the activity of GDH from the root extract only slightly. At high concentrations, however, the antiserum totally precipitated both enzyme extracts. Ouchterlony's double diffusion test showed that seven forms of root nodule glutamate dehydrogenase arose as the result of random association of two subunits in a hexameric complex, while the eighth form probably consisted of totally distinct subunits. The question of whether the new glutamate dehydrogenase forms, present exclusively in root nodules, can be classified as nodulins, is discussed.  相似文献   

16.
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.  相似文献   

17.
A succinic dehydrogenase (SDH) complex has been purified from Triton X-100-solubilized membranes from Bacillus subtilis by precipitation with specific antibody. Radioactively labeled precipitated complex was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography of the gels. The complex contained equimolar amounts of three polypeptides with approximate molecular weights of 65,000, 28,000, and 19,000. Five succinic dehydrogenase-negative mutants, belonging to the citF group, contained the 65,000-dalton polypeptide in a soluble form in the cytoplasm. Each 65,000-dalton polypeptide had about one molecule of flavin bound. Another citF mutant, citF11, which lacks the 65,000-dalton polypeptide, contained a membrane-bound 28,000-dalton polypeptide. The wild-type succinic dehydrogenase complex contained cytochrome, probably a cytochrome b. The 19,000-dalton polypeptide is suggested to represent the apoprotein of this cytochrome. The 65,000-dalton and the 28,000-dalton polypeptides are thought to constitute succinic dehydrogenase and to correspond to the flavoprotein and the ironprotein, respectively, as described for succinic dehydrogenase isolated from beef heart mitochondria or Rhodospirillum rubrum chromatophores. The results presented suggest that in B. subtilis succinic dehydrogenase is attached to a cytochrome b in the membrane via the 28,000-dalton (ironprotein) polypeptide.  相似文献   

18.
A procedure was developed for the partial purification of succinate dehydrogenase from mung bean (Vigna radiata L.) hypocotyls and soybean (Glycine max [L] Merr. v. Ransom) cotyledons. The procedure utilized a Triton X-100 extraction followed by ammonium sulfate precipitation. The final fraction was enriched in two polypeptides with approximate molecular weights of 67,000 and 30,000 daltons, exhibited a pH optima of 7.0 to 7.5, contained a b-type cytochrome, and exhibited the characteristic ferredoxin-type and high potential iron-sulfur protein-type electron paramagnetic resonance signals reported for the iron-sulfur centers of mammalian succinate dehydrogenase. Inhibition constants of 1.15 and 24.6 micromolar for oxaloacetate and malonate, respectively, were obtained.  相似文献   

19.
The effect of white light on the malate oxidase of Sarcina lutea (Micrococcus luteus) membranes has been examined using a carotenoid-containing and a carotenoidless mutant. At least three photosensitive sites have been detected. Two of these are associated with the malate dehydrogenase complex (malate-menaquinone reductase) and are unaffected by membrane carotenoid. A third site which has been detected beyond the dehydrogenase complex, is protected by carotenoid since it can only be demonstrated in carotenoidless systems. A repair mechanism has been found for one of the two sites in the dehydrogenase complex.  相似文献   

20.
Reconstitution of escherichia coli succinoxidase from soluble components.   总被引:4,自引:0,他引:4  
1. The membrane-bound succinoxidase of Escherichia coli was fractionated with deoxycholate into three soluble components, viz. succinate dehydrogenase.cytochrome b1 complex, cytochrome oxidase complex, and a factor identified as a phospholipid-containing component. 2. The dehydrogenase and cytochrome oxidase complexes were partially purified by filtration on Amicon membranes, Sepharose 4B chromatography, and sucrose gradient centrifugation. 3. Reconstitution of membranous succinoxidase, which catalyzes the oxidation of succinate by molecular oxygen by an integrated CN(-)-sensitive pathway, was achieved by mixing the soluble succinate dehydrogenase.cytochrome b1 complex with the soluble cytochrome oxidase complex in the presence of deoxycholate and then removing the detergent by gel filtration on Sephadex G-75. The phospholipid-containing factor stimulated the formation of succinoxidase by about 100% over that observed with the two complexes. 4. Isopycnic sucrose gradient centrifugation of succinate dehydrogenase.cytochrome b1 complex, cytochrome oxidase, and the reconstituted succinoxidase gave buoyant densities (p value) as 1.167, 1.229, and 1.194, respectively. 5. Electron microscopic evidence is presented for the vesicular nature of the reconstituted succinoxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号