首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sympathetic neuronal death induced by nerve growth factor (NGF) deprivation requires the macromolecular synthesis-dependent translocation of BAX from the cytosol to mitochondria and its subsequent integration into the mitochondrial outer membrane, followed by BAX-mediated cytochrome c (cyt c) release. The gene products triggering this process remain unknown. Here, we report that BIM, a member of the BH3-only proapoptotic subfamily of the BCL-2 protein family, is one such molecule. NGF withdrawal induced expression of BIM(EL), an integral mitochondrial membrane protein that functions upstream of (or in parallel with) the BAX/BCL-2 and caspase checkpoints. Bim deletion conferred protection against developmental and induced neuronal apoptosis in both central and peripheral populations, but only transiently, suggesting that BIM--and perhaps other BH3-only proteins--serve partially redundant functions upstream of BAX-mediated cyt c release.  相似文献   

3.
4.
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro- and anti-apoptotic proteins belonging to the BCL-2 family, each characteristically possessing a BCL-2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL-X(L) and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain-dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress-induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking YBH3 display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.  相似文献   

5.
Osteoclasts (OCs) undergo rapid apoptosis without trophic factors, such as macrophage colony-stimulating factor (M-CSF). Their apoptosis was associated with a rapid and sustained increase in the pro-apoptotic BH3-only Bcl-2 family member Bim. This was caused by the reduced ubiquitylation and proteasomal degradation of Bim that is mediated by c-Cbl. Although the number of OCs was increased in the skeletal tissues of bim-/- mice, the mice exhibited mild osteosclerosis due to reduced bone resorption. OCs differentiated from bone marrow cells of bim-/- animals showed a marked prolongation of survival in the absence of M-CSF, compared with bim+/+ OCs, but the bone-resorbing activity of bim-/- OCs was significantly reduced. Overexpression of a degradation-resistant lysine-free Bim mutant in bim-/- cells abrogated the anti-apoptotic effect of M-CSF, while wild-type Bim did not. These results demonstrate that ubiquitylation-dependent regulation of Bim levels is critical for controlling apoptosis and activation of OCs.  相似文献   

6.
7.
To identify the mechanisms of ultraviolet radiation (UVR)-induced cell death, for which the tumor suppressor p53 is essential, we have analyzed mouse embryonic fibroblasts (MEFs) and keratinocytes in mouse skin that have specific apoptotic pathways blocked genetically. Blocking the death receptor pathway provided no protection to MEFs, whereas UVR-induced apoptosis was potently inhibited by Bcl-2 overexpression, implicating the mitochondrial pathway. Indeed, Bcl-2 overexpression boosted cell survival more than p53 loss, revealing a p53-independent pathway controlled by the Bcl-2 family. Analysis of primary MEFs lacking individual members of its BH3-only subfamily identified major initiating roles for the p53 targets Noxa and Puma. In the transformed derivatives, where Puma, unexpectedly, was not induced by UVR, Noxa had the dominant role and Bim a minor role. Furthermore, loss of Noxa suppressed the formation of apoptotic keratinocytes in the skin of UV-irradiated mice. Collectively, these results demonstrate that UVR activates the Bcl-2-regulated apoptotic pathway predominantly through activation of Noxa and, depending on cellular context, Puma.  相似文献   

8.
The proapoptotic Bcl2 homology domain 3(BH3)-only protein Bim is controlled by stringent post-translational regulation, predominantly through alterations in phosphorylation status. To identify new kinases involved in its regulation, we carried out a yeast two-hybrid screen using a non-spliceable variant of the predominant isoform--Bim(EL)--as the bait and identified the regulatory subunit of cyclic-AMP-dependent protein kinase A--PRKAR1A--as an interacting partner. We also show that protein kinase A (PKA) is a Bim(EL) isoform-specific kinase that promotes its stabilization. Inhibition of PKA or mutation of the PKA phosphorylation site within Bim(EL) resulted in its accelerated proteasome-dependent degradation. These results might have implications for human diseases that are characterized by abnormally increased PKA activity, such as the Carney complex and dilated cardiomyopathy.  相似文献   

9.
10.
11.
细胞凋亡在神经细胞的生理性和病理性死亡中起着重要作用。唯BH3域蛋白是Bcl-2家族中的一类仅含有BH3同源结构域的促凋亡分子,它们通过抑制Bcl-2抗凋亡成员的活性或激活Bax/Bak样促凋亡成员的活性来调节细胞凋亡。最近研究表明,唯BH3域蛋白在凋亡的启动及凋亡通路的沟通中发挥着极其重要的作用。  相似文献   

12.
Nucleostemin (NS) is a nucleolar-nucleoplasmic shuttle protein that regulates cell proliferation, binds p53 and Mdm2, and is highly expressed in tumor cells. We have identified NS as a target of oxidative regulation in transformed hematopoietic cells. NS oligomerization occurs in HL-60 leukemic cells and Raji B lymphoblasts that express high levels of c-Myc and have high intrinsic levels of reactive oxygen species (ROS); reducing agents dissociate NS into monomers and dimers. Exposure of U2OS osteosarcoma cells with low levels of intrinsic ROS to hydrogen peroxide (H(2)O(2)) induces thiol-reversible disulfide bond-mediated oligomerization of NS. Increased exposure to H(2)O(2) impairs NS degradation, immobilizes the protein within the nucleolus, and results in detergent-insoluble NS. The regulation of NS by ROS was validated in a murine lymphoma tumor model in which c-Myc is overexpressed and in CD34+ cells from patients with chronic myelogenous leukemia in blast crisis. In both instances, increased ROS levels were associated with markedly increased expression of NS protein and thiol-reversible oligomerization. Site-directed mutagenesis of critical cysteine-containing regions of nucleostemin altered both its intracellular localization and its stability. MG132, a potent proteasome inhibitor and activator of ROS, markedly decreased degradation and increased nucleolar retention of NS mutants, whereas N-acetyl-L-cysteine largely prevented the effects of MG132. These results indicate that NS is a highly redox-sensitive protein. Increased intracellular ROS levels, such as those that result from oncogenic transformation in hematopoietic malignancies, regulate the ability of NS to oligomerize, prevent its degradation, and may alter its ability to regulate cell proliferation.  相似文献   

13.
A significant variation in susceptibility to paclitaxel-mediated killing was observed among a panel of short-term cultured non-small-cell lung cancer (NSCLC) cell lines. Susceptibility to killing by paclitaxel correlated with expression of the BH3-only protein, Bim, but not with other members of Bcl-2 family. NSCLC cell lines with the highest level of Bim expression are most susceptible to apoptosis induction after paclitaxel treatment. Forced expression of Bim increased paclitaxel-mediated killing of cells expressing an undetectable level of Bim. Conversely, knock down of Bim, but not Bcl-2 expression, decreased the susceptibility of tumor cells to paclitaxel-mediated killing. Similar observations were made using a panel of breast and prostate cancer cell lines. Paclitaxel impairs microtubule function, causes G2/M cell cycle blockade, mitochondria damage, and p53-independent apoptosis. These results established Bim as a critical molecular link between the microtubule poison, paclitaxel, and apoptosis.  相似文献   

14.
15.
The BH3-only protein BAD binds to Bcl-2 family proteins through its BH3 domain. Recent studies suggest that BAD binds to both Bcl-2 and Bcl-X(L), however mediates its pro-apoptotic functions through inhibition of Bcl-X(L), but not Bcl-2. In this paper we addressed this issue using a BAD mutant within the BH3 domain, by substitution of Asp 119 with Gly (BAD(D119G)), which selectively abrogates an ability to interact with Bcl-2. Confocal microscopy revealed that mutation of BAD at D119 does not affect BAD targeting to the mitochondrial membrane in serum-starved COS-7 cells. However, co-precipitation assays indicated that, whereas wild-type BAD (BADwt) directly interacts with Bcl-2 and Bcl-X(L), BAD(D119G) interacts only with Bcl-X(L). Nevertheless both BADwt and BAD(D119G) could introduce apoptosis and diminish the anti-apoptotic effect of Bcl-2 and Bcl-X(L) in a similar manner in a co-transfection assay. These data thus suggest that Asp119 is a crucial site within the BH3 domain of BAD for interaction of BAD with Bcl-2, but is dispensable for the interaction of BAD with Bcl-X(L), for its targeting to mitochondria, and most importantly, for its pro-apoptotic functions. Thus, we confirm that neutralization of Bcl-2 function is marginal for BAD-mediated apoptosis.  相似文献   

16.
Induction of p53-independent apoptosis by the BH3-only protein ITM2Bs   总被引:2,自引:0,他引:2  
Fleischer A  Rebollo A 《FEBS letters》2004,557(1-3):283-287
  相似文献   

17.
There are two isoforms of sphingosine kinase (SphK) that catalyze the formation of sphingosine 1-phosphate, a potent sphingolipid mediator. Whereas SphK1 stimulates growth and survival, here we show that SphK2 enhanced apoptosis in diverse cell types and also suppressed cellular proliferation. Apoptosis was preceded by cytochrome c release and activation of caspase-3. SphK2-induced apoptosis was independent of activation of sphingosine 1-phosphate receptors. Sequence analysis revealed that SphK2 contains a 9-amino acid motif similar to that present in BH3-only proteins, a pro-apoptotic subgroup of the Bcl-2 family. As with other BH3-only proteins, co-immunoprecipitation demonstrated that SphK2 interacted with Bcl-xL. Moreover, site-directed mutation of Leu-219, the conserved leucine residue present in all BH3 domains, markedly suppressed SphK2-induced apoptosis. Hence, the apoptotic effect of SphK2 might be because of its putative BH3 domain.  相似文献   

18.
Tissue transglutaminase is a multifunctional BH3-only protein   总被引:4,自引:0,他引:4  
Tissue transglutaminase (TG2) protein accumulates to high levels in cells during early stages of apoptosis both in vivo and in vitro. The analysis of the TG2 primary sequence showed the presence of an eight amino acid domain, sharing 70% identity with the Bcl-2 family BH3 domain. Cell-permeable peptides, mimicking the domain sequence, were able to induce Bax conformational change and translocation to mitochondria, mitochondrial depolarization, release of cytochrome c, and cell death. Moreover, we found that the TG2-BH3 peptides as well as TG2 itself were able to interact with the pro-apoptotic Bcl-2 family member Bax, but not with anti-apoptotic members Bcl-2 and Bcl-X(L). Mutants in the TG2-BH3 domain failed to sensitize cells toward apoptosis. In TG2-overexpressing cells about half of the protein is localized on the outer mitochondrial membrane where, upon cell death induction, it cross-links many protein substrates including Bax. TG2 is the first member of a new subgroup of multifunctional BH3-only proteins showing a large mass size (80 kDa) and enzymatic activity.  相似文献   

19.
The BH3-only proapoptotic protein, BAD, was cloned from zebrafish embryos and its properties were characterized. Zebrafish BAD (zBAD) is a protein with 147 amino acids that contains a BH3 domain and a putative 14-3-3 binding site with the sequence of RPRSRS(84)AP, corresponding to S(136) in mouse BAD (mBAD). zBAD shares 34%, 28%, and 29% amino acid sequence identity to the human, mouse, and rat BAD, respectively. RT-PCR analysis revealed that the expression of zBAD gene is found in various parts of zebrafish tissues. The treatment with the z-VAD fmk, a broad-range caspase inhibitor, in COS-1 cells significantly increased the expression of zebrafish BAD fusion proteins (GFP-zBAD and HA-zBAD), indicating that zebrafish BAD fusion proteins may be cleaved by caspase(s). zBAD was shown to induce apoptosis when it was overexpressed in COS-1 cells. In addition, zBAD was also expressed in muscle cells under the muscle-specific promoter from zebrafish alpha-actin gene. Abnormality in the skeletal muscles and the loss of green fluorescence signal in the same region were observed. Taken together, our results indicate that zBAD could induce apoptosis in vitro and in vivo and may have biological implications in apoptosis during zebrafish development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号