首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding geometry of a heterocyclic compound, 4-(2-diethylamino-ethylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (A1) to CT DNA was studied by molecular spectroscopy. Deduced from SYBR Green-DNA melt curve, UV-vis spectroscopy, and fluorescence studies, there were two different interaction mechanisms involved in the whole interaction process depending on the R-value (R, the molar ratio of A1 to CT DNA base pairs). The value R = 0.20 was the turning point. The induced circular dichroism (ICD) spectra of A1 complexed with CT DNA, poly[(G-C)2] and poly[(A-T)2] showed when R < or = 0.20, A1 intercalated into CT DNA and the intercalation orientation of A1 to the dyad axis of DNA double-helix was heterogeneous. When R > 0.20, stacking of A1 on surface helix of DNA occurred driven by the protonation of amidogen group in the N,N-diethyldiamine substitution of A1, which was illustrated by the changes of A1-DNA geometry in different pH solutions. The intrinsic circular dichroism (CD) spectra showed the conformation of DNA converted from the B-form to A-like conformation due to the A1 intercalation.  相似文献   

2.
DNA binding properties of 9-substituted harmine derivatives   总被引:3,自引:0,他引:3  
The beta-carboline alkaloids have been characterized as a group of potential antitumor agents. The underlying mechanisms of harmine and its derivatives were investigated by DNA binding assay and Topoisomerase (Topo) inhibition assay. Meanwhile, the DNA photocleavage potential of these compounds and their cytotoxicity were also examined by DNA photocleavage assay and cytotoxicity assay in vitro. Harmine and its derivatives exhibited remarkable DNA intercalation capacity and significant Topo I inhibition activity but no effect with Topo II. Introducing an appropriate substituent into position-9 of beta-carboline nucleus enhanced the affinity of the drug to DNA resulting in remarkable Topo I inhibition effects. These results suggested that the ability of these compounds to act as intercalating agents and Topo I inhibitors was related to the antitumor activity. Moreover, these data showing a correlation between cytotoxicity and Topo I inhibition or DNA binding capacity are very important as they strongly suggested that the Topo I-mediated DNA cleavage assay and DNA binding assay could be used as a guide to design and develop superior analogues for antitumor activities.  相似文献   

3.
4.
The well-reported, but moderate antitumor activity of the acronycine alkaloid led us to synthesize a novel series of thioacridone compounds related to acronycine, as potential anticancer agents. Compounds were designed either as DNA intercalating agents, or as DNA intercalating agents with covalent bond forming potential. Bathochromic shifts of the compounds upon complexation with salmon testis DNA suggested intercalation as the mode of DNA binding. The binding interaction of the compounds was found to be approximately 10(2) M(-1), with that of the most potent compound 1-(2-dimethylaminoethylamino)-9(10H)-thioacridone, 10(4) M(-1). In vitro cytotoxic activity (IC50) against HL-60 cells was found to range between 3.5 and 22 microg/mL. QSAR analyses yielded a multiple linear regression equation with an r2 of 0.847 for DNA binding and an r2 of 0.575 for cytotoxicity. The physicochemical parameters used in the QSAR analyses were logP, polar surface area, and calculated molar refractivity. Docking studies were also performed to compare the binding of the most potent and least potent compounds in the study in order to predict desirable chemical characteristics for further exploitation in drug design efforts. The thioacridone compounds in this series demonstrate cytotoxic activity in vitro that merit future in vivo evaluation.  相似文献   

5.
DNA-complexes with actinomine and its analogues containing omega-dialkylaminoalkyl groups at 1,9 positions of the phenoxazone moiety were studied by technique of spectrophotometry, viscometry and flow birefringence. In the process of spectrophotometry titration two groups of spectra corresponding to different DNA--ligand ratio in a complex were observed. According to the experimental data the investigated compounds are bounded to DNA by means of intercalation and external binding. There within a region of low degrees of binding the intercalation type of the ligand--DNA interaction prevails. In virtue of the spectrophotometry data the intercalation binding share was calculated. The intrinsic viscosity of a complex increases in the case of ligand intercalation and does not change as it joins to the DNA double-helix from outside. Optical anisotropy of DNA molecule increases linearly irrespective of the way of ligand binding. Data on the flow birefringence permits to conclude that under external binding the angle between the normal to the ligand chromophore plane and the axis of DNA double-helix is about zero. During ligand intercalation the equilibrium rigidity of DNA molecules increases.  相似文献   

6.
Imidazoacridinones (IAs) are a new group of highly active antitumor compounds. The intercalation of the IA molecule into DNA is the preliminary step in the mode of action of these compounds. There are no experimental data about the structure of an intercalation complex formed by imidazoacridinones. Therefore the design of new potentially better compounds of this group should employ the molecular modelling techniques. The results of molecular dynamics simulations performed for four IA analogues are presented. Each of the compounds was studied in two systems: i) in water, and ii) in the intercalation complex with dodecamer duplex d(GCGCGCGCGCGC)2. Significant differences in the conformation of the side chain in the two environments were observed for all studied IAs. These changes were induced by electrostatic as well as van der Waals interactions between the intercalator and DNA. Moreover, the results showed that the geometry of the intercalation complex depends on: i) the chemical constitution of the side chain, and ii) the substituent in position 8 of the ring system.  相似文献   

7.
Zhao P  Xu LC  Huang JW  Zheng KC  Liu J  Yu HC  Ji LN 《Biophysical chemistry》2008,134(1-2):72-83
A novel cationic porphyrin-anthraquinone (Por-AQ) hybrid has been synthesized and characterized. Using the combination of absorption titration, fluorescence spectra, circular dichroism (CD) as well as viscosity measurements, the binding properties of the hybrid to calf thymus (CT) DNA have been investigated compared with its parent porphyrin. The experimental results show that at low [Por]/[DNA] ratios, the parent porphyrin binds to DNA in an intercalative mode while the hybrid binds in a combined mode of outside binding (for porphyrin moiety) and partial intercalation (for anthraquinone). Ethidium bromide (EB) competition experiment determined the binding affinity constants (K(app)) of the compounds for CT DNA. Theoretical calculational results applying the density functional theory (DFT) can explain the different DNA binding behaviors reasonably. (1)O(2) was suggested to be the reactive species responsible for the DNA photocleavage of porphyrin moieties in both two compounds. The wavelength-depending cleavage activities of the compounds were also investigated.  相似文献   

8.
trans-[PtCl(2)NH(3)(4-Hydroxymethylpyridine)] (trans-PtHMP) is an analogue of clinically ineffective transplatin, which is cytotoxic in the human leukemia cancer cell line. As DNA is a major pharmacological target of antitumor platinum compounds, modifications of DNA by trans-PtHMP and recognition of these modifications by active tumor suppressor protein p53 were studied in cell-free media using the methods of molecular biology and biophysics. Our results demonstrate that the replacement of the NH(3) group in transplatin by the 4-hydroxymethylpyridine ligand affects the character of DNA adducts of parent transplatin. The binding of trans-PtHMP is slower, although equally sequence-specific. This platinum complex also forms on double-stranded DNA stable intrastrand and interstrand cross-links, which distort DNA conformation in a unique way. The most pronounced conformational alterations are associated with a local DNA unwinding, which was considerably higher than those produced by other bifunctional platinum compounds. DNA adducts of trans-PtHMP also reduce the affinity of the p53 protein to its consensus DNA sequence. Thus, downstream effects modulated by recognition and binding of p53 protein to DNA distorted by trans-PtHMP and transplatin are not likely to be the same. It has been suggested that these different effects may contribute to different antitumor effects of these two transplatinum compounds.  相似文献   

9.
The synthesis of alcyopterosin A and a series of new derivatives possessing an illudalane skeleton is described. The DNA binding properties of these compounds have been examined and compared to those of reference drugs using a UV spectroscopy technique. The antitumor activity of selected compounds against a panel of 60 human tumor cell lines was tested in the in vitro anticancer screening of the National Cancer Institute. Redox properties were also evaluated. Tested compounds showed significant DNA affinity, derivatives 6 and 15 exhibited remarkable antiproliferative activity and have been identified as new leads in the antitumor strategies.  相似文献   

10.
Hutchins RA  Crenshaw JM  Graves DE  Denny WA 《Biochemistry》2003,42(46):13754-13761
The DNA binding energetics of a series of analogues derived from the anticancer agent N-[2-(dimethylamino)ethyl]-9-aminoacridine-4-carboxamide (AAC) are investigated. The effects of substituent modification at the C5 position of the acridine chromophore on the interaction of AAC with DNA are determined using spectrophotometry and isothermal titration calorimetry (ITC). The binding affinity and binding free energy associated with the interaction of AAC with DNA are significantly enhanced upon substitution at the C5 position. Energetic profiles describing ligand-DNA complex formation obtained from ITC indicate that C5 substitution significantly enhances binding enthalpy relative to the parent AAC. In many cases, the enhanced binding enthalpies of the C5-substituted analogues correlate with anticancer activity. Because of the cationic character of AAC and its analogues, the DNA binding properties of these compounds are dependent on ionic strength. To quantitate the ionic contributions to complex formation, the observed binding free energy of each compound is parsed into its polyelectrolyte and nonelectrostatic components. Enhanced nonelectrostatic contributions to the overall binding free energies observed with C5-substituted analogues relative to the parent AAC suggest that C5 substituents play a critical role in directing both thermodynamic mechanisms associated with complex formation and molecular interactions between the ligand and its DNA binding site. These studies have demonstrated that substitution of AAC at the C5 position results in enhanced DNA binding affinity and energetics.  相似文献   

11.
Three series of indeno[1,2-c]isoquinolin-5,11-dione-amino acid conjugates were designed and synthesized. Amino acids were connected to the tetracycle through linkers with lengths of n=2 and 3 atoms using ester (series I), amide (series II), and secondary amine (series III) functions. DNA binding was evaluated by thermal denaturation and fluorescence measurements. Lysine and arginine substituted derivatives with n=3 provided the highest DNA binding. Arginine derivative 32 (n=2, series II) and glycine derivative 34 (n=2, series III) displayed high topoisomerase II inhibition. Incrementing the length of the N-6 side chain from two to three methylene units provided a significant increase in DNA affinity but a substantial loss in topoisomerase II inhibition. The most cytotoxic compounds toward HL60 leukemia cells were 19, 33, and 34 displaying micromolar IC(50) values. When tested with the topoisomerase II-mutated HL60/MX2 cell line, little variation of IC(50) values was found, suggesting that topoisomerase II might not be the main target of these compounds and that additional targets could be involved.  相似文献   

12.
A series of thio- and selenopyrylium analogues of 2,4-di(4-dimethylaminophen-yl)-6-methylthiopyrylium iodide were prepared in five steps from 4-dimethylaminophenyl-propargyl aldehyde and the corresponding lithium acetylide. When bound to DNA, all of the dyes absorb at wavelengths >600nm, which avoids the hemoglobin band I maximum at 575nm. The binding of the series of dyes to double-stranded DNA was examined spectrophotometrically and by isothermal titration calorimetry to determine binding constants, by a topoisomerase I DNA unwinding assay, by competition dialysis with [poly(dGdC)](2) and [poly(dAdT)](2), and by ethidium bromide displacement studies to examine propensities for intercalation, and by circular dichroism studies. The dyes were found to show mixed binding modes.  相似文献   

13.
14.
Multimodal action of antitumor agents on DNA: the ellipticine series   总被引:2,自引:0,他引:2  
Most cytotoxic anticancer agents interact directly or indirectly with nuclear DNA, the ultimate target for this class of compounds. For a given type of drug both direct and indirect action at the DNA level usually causes various types of interference or damage. This multimodal mechanism of action is well illustrated by antitumor drugs in the ellipticine series which may bind to DNA through intercalation, may undergo covalent binding, may generate oxidizing species, and may interfere with the catalytic activity of topoisomerase II. The antitumor activity of these compounds may, therefore, result from alternative cytotoxic events. The present review summarizes information obtained with ellipticine compounds on the relation between the nature of the drugs' action on DNA and their cytotoxic and/or antitumor activity. The occurrence of topoisomerase-mediated DNA cleavage appears to be responsible for antitumor activity. The capability of the drugs to interfere with the action of topoisomerase II requires the presence of an oxidizable phenolic group on their structure. This feature (or a related one) is shared by all antitumor drugs acting on this enzyme.  相似文献   

15.
Double-stranded DNA is a therapeutic target for a variety of anticancer and antimicrobial drugs. Noncovalent interactions of small molecules with DNA usually occur via intercalation of planar compounds between adjacent base pairs or minor-groove recognition by extended crescent-shaped ligands. However, the dynamic and flexibility of the DNA platform provide a variety of conformations that can be targeted by structurally diverse compounds. Here, we propose a novel DNA-binding template for construction of new therapeutic candidates. Four bisphenylcarbazole derivatives, derived from the combined molecular architectures of known antitumor bisphenylbenzimidazoles and anti-infectious dicationic carbazoles, have been designed, and their interaction with DNA has been studied by a combination of biochemical and biophysical methods. The substitutions of the bisphenylcarbazole core with two terminal dimethylaminoalkoxy side chains strongly promote the interaction with DNA, to prevent the heat denaturation of the double helix. The deletion or the replacement of the dimethylamino-terminal groups with hydroxyl groups strongly decreased DNA interaction, and the addition of a third cationic side chain on the carbazole nitrogen reinforced the affinity of the compound for DNA. Although the bi- and tridentate molecules both derive from well-characterized DNA minor-groove binders, the analysis of their binding mode by means of circular and linear dichroism methods suggests that these compounds form intercalation complexes with DNA. Negative-reduced dichroism signals were recorded in the presence of natural DNA and synthetic AT and GC polynucleotides. The intercalation hypothesis was validated by unwinding experiments using topoisomerase I. Prominent gel shifts were observed with the di- and trisubstituted bisphenylcarbazoles but not with the uncharged analogues. These observations, together with the documented stacking properties of such molecules (components for liquid crystals), prompted us to investigate their binding to the human telomeric DNA sequence by means of biosensor surface plasmon resonance. Under conditions favorable to G4 formation, the title compounds showed only a modest interaction with the telomeric quadruplex sequence, comparable to that measured with a double-stranded oligonucleotide. Their sequence preference was explored by DNase I footprinting experiments from which we identified a composite set of binding sequences comprising short AT stretches and a few other mixed AT/GC blocks with no special AT character. The variety of the binding sequences possibly reflects the coexistence of distinct positioning of the chromophore in the intercalation sites. The bisphenylcarbazole unit represents an original pharmacophore for DNA recognition. Its branched structure, with two or three arms suitable to introduce a structural diversity, provides an interesting scaffold to built molecules susceptible to discriminate between the different conformations of nucleic acids.  相似文献   

16.
This paper reports the synthesis and the biological properties of two novel pyrene-bearing isoxazolidinyl derivatives able to exhibit antitumor activity by DNA intercalation. The synthetic approach exploits a consolidated protocol based on 1,3-dipolar cycloaddition reaction. The intercalating properties have been determined by combining electrophoresis studies with molecular docking, while the antitumor activity has been evaluated over five carcinoma cell lines. The obtained compounds show also a good affinity towards silver cations; the presence of a 2-hydroxybenzyl appendage on the isoxazolidine ring ensures a good affinity and selectivity in the binding.  相似文献   

17.
Two DNA hexadecamers containing one central 5'-GC-3' base step have been examined by footprinting methodology in the presence and absence of actinomycin D. The results of these studies, coupled with imino proton NMR measurements indicate that the antitumor drug causes a change in DNA conformation at a distance from the actinomycin intercalation site in a molecule of sequence d[ATATATAGCTATATAT] that does not occur in d[AAAAAAAGCTTTTTTT]. The experiments demonstrate that DNase I rate enhancements associated with actinomycin D binding are caused by ligand alteration of equilibrium DNA structure.  相似文献   

18.
The molecular oxygen adduct of Co(II)-bleomycin is stable for long periods when bound to salmon sperm DNA at large ratios of polymer to drug. According to ESR studies of orientation of the paramagnetic complex associated with DNA fibers, the oxygen-oxygen bond is restricted to a plane perpendicular to the fiber axis. Thus, one can define three g values for the adduct 2.104, 2.016, and 2.000, one parallel to the fiber axis and two orthogonal to it. There is no change in orientation over the range of 77 K to ambient temperature. Furthermore, there is no difference in results at a series of relative humidities ranging from less than 76% where bulk DNA alone assumes an A conformation to 95% where it is primarily B DNA. A structural model is presented for the geometry of the metal binding domain of O2-Co-bleomycin in relationship to the fiber axis of DNA.  相似文献   

19.
The interaction of coralyne, an antitumour alkaloid with natural and synthetic duplex DNAs was investigated under conditions where the drug existed fully as a true monomer for the first time using spectrophotometric, spectrofluorimetric, circular dichroic and viscometric techniques. The absorption spectrum of coralyne monomer showed hypochromic and bathochromic effects on binding to duplex DNAs. This effect was used to determine the binding parameters of coralyne. The binding constants for four natural DNAs and four synthetic polynucleotides obtained from spectrophotometric titration, according to an excluded site model, using McGhee-von Hippel analysis, were all in the range of (0.38-9.8) x 10(5) M-1, and showed a relatively high specificity for the GC rich ML DNA and the alternating GC polynucleotide. The binding of coralyne decreased with increasing ionic strength, indicating that the binding affinity has a strong electrostatic component. Coralyne stabilized all the DNAs against thermal strand separation. The intense steady state fluorescence of coralyne was effectively quenched on binding to DNAs and the quantitative data on the Stern-Volmer quenching constant obtained was sequence dependent, being maximum with the GC rich DNA and alternating GC polymer. Circular dichriosm studies further evidenced for a strong perturbation of the B-conformation of DNAs consequent to coralyne binding with the concomitant development of extrinsic circular dichroic bands for the bound drug molecules suggesting their strong intercalated geometry in duplex DNAs. Further tests of intercalation using viscosity measurements on linear and covalently closed plasmid DNA conclusively proved the strong intercalation of coralyne in duplex DNA. Binding of the closely related natural alkaloid, berberine under these conditions showed considerably lower affinity to duplex DNAs in all experiments. Taken together, these results suggest that coralyne binds strongly to duplex DNAs by a mechanism of intercalation with specificity towards alternating GC duplex structure.  相似文献   

20.
Association of fascaplysin with double-stranded calf thymus DNA was investigated by means of isothermal titration calorimetry, absorption spectroscopy, and circular dichroism. The UV spectroscopic data could be well interpreted in terms of a two-site model for the binding of fascaplysin to DNA revealing affinity constants of K1 = 2.5 x 10(6) M(-1) and K2 = 7.5 x 10(4) M(-1) (base pairs of DNA). Based on the typical change observed in the absorption and circular dichroism spectra, intercalation of fascaplysin is regarded as the major binding mode. The calorimetric titration curves showed an exothermic reaction which was exhausted at a 2:1 base pair/drug; ratio. This finding is in agreement with an intercalation model comprising nearest neighbor exclusion. In addition, significantly weaker non-intercalative DNA interactions can be observed at high drug concentration. By comparison of all these data with the binding behavior of known intercalating agents, it is concluded that fascaplysin intercalates into DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号