首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The productivity of Escherichia coli as a producer of recombinant proteins is affected by its metabolic properties, especially by acetate production. Two commercially used E. coli strains, BL21 (lambdaDE3) and JM109, differ significantly in their acetate production during batch fermentation at high initial glucose concentrations. E. coli BL21 grows to an optical density (OD, 600 nm) of 100 and produces no more than 2 g/L acetate, while E. coli JM109 grows to an OD (600 nm) of 80 and produces up to 14 g/L acetate. Even in fed-batch fermentation, when glucose concentration is maintained between 0.5 and 1.0 g/L, JM109 accumulates 4 times more acetate than BL21. To investigate the difference between the two strains, metabolites and enzymes involved in carbon utilization and acetate production were analyzed (isocitrate, ATP, phosphoenolpyruvate, pyruvate, isocitrate lyase, and isocitrate dehydrogenase). The results showed that during batch fermentation isocitrate lyase activity and isocitrate concentration were higher in BL21 than in JM109, while pyruvate concentration was higher in JM109. The activation of the glyoxylate shunt pathway at high glucose concentrations is suggested as a possible explanation for the lower acetate accumulation in E. coli BL21. Metabolic flux analysis of the batch cultures supports the activity of the glyoxylate shunt in E. coli BL21.  相似文献   

4.
Most central metabolic pathways such as glycolysis, fatty acid synthesis, and the TCA cycle have complementary pathways that run in the reverse direction to allow flexible storage and utilization of resources. However, the glyoxylate shunt, which allows for the synthesis of four-carbon TCA cycle intermediates from acetyl-CoA, has not been found to be reversible to date. As a result, glucose can only be converted to acetyl-CoA via the decarboxylation of the three-carbon molecule pyruvate in heterotrophs. A reverse glyoxylate shunt (rGS) could be extended into a pathway that converts C4 carboxylates into two molecules of acetyl-CoA without loss of CO2. Here, as a proof of concept, we engineered in Escherichia coli such a pathway to convert malate and succinate to oxaloacetate and two molecules of acetyl-CoA. We introduced ATP-coupled heterologous enzymes at the thermodynamically unfavorable steps to drive the pathway in the desired direction. This synthetic pathway in essence reverses the glyoxylate shunt at the expense of ATP. When integrated with central metabolism, this pathway has the potential to increase the carbon yield of acetate and biofuels from many carbon sources in heterotrophic microorganisms, and could be the basis of novel carbon fixation cycles.  相似文献   

5.
Phue JN  Kedem B  Jaluria P  Shiloach J 《Genomics》2007,89(2):300-305
Escherichia coli K (JM109) and E. coli B (BL21) are strains used routinely for recombinant protein production. These two strains grow and respond differently to environmental factors such as glucose and oxygen concentration. The differences have been attributed to differential expression of individual genes that constitute certain metabolic pathways that are part of the central carbon metabolism. By implementing a semiparametric algorithm, which is based on a density ratio model, it was possible to compare and quantify the expression patterns of groups of genes involved in several central carbon metabolic pathways. The groups comprising the glyoxylate shunt, TCA cycle, fatty acid, and gluconeogenesis and anaplerotic pathways were expressed differently between the two strains, whereas no differences were apparent for the groups comprising either glycolysis or the pentose phosphate pathway. These results further characterized differences between the two E. coli strains and illustrated the potency of the semiparametric algorithm.  相似文献   

6.
The lipoamide dehydrogenase (LPD) encoded by lpdA gene is a component of the pyruvate dehydrogenase complex (PDHc), alpha-ketoglutarate dehydrogenase (AKGDH) and the glycine cleavage multi-enzyme (GCV) systems. In the present study, cell growth characteristics, enzyme activities and intracellular metabolite concentrations were compared between the parent strain Escherichia coli BW25113 and its lpdA knockout mutant in batch and continuous cultures. The lpdA knockout mutant produced significantly more pyruvate and L-glutamate under aerobiosis. Some D-lactate and succinate also accumulated in the culture broth. Based on the investigation of enzyme activities and intracellular metabolite concentrations, acetyl-CoA was considered to be formed by the combined reactions through pyruvate oxidase (PoxB), acetyl-CoA synthetase (Acs) and acetate kinase (Ack)-phosphoacetyltransferase (Pta) in the lpdA mutant. The effect of the lpdA gene knockout on the intracellular metabolic flux distributions was investigated based on 1H-13C NMR spectra and GC-MS signals obtained from 13C-labeling experiment using the mixture of [U-13C] glucose, [1-13C] glucose, and naturally labeled glucose. Flux analysis of the lpdA mutant indicated that the Entner-Doudoroff (ED) pathway and the glyoxylate shunt were activated. The fluxes through glycolysis and oxidative pentose phosphate (PP) pathway (except for the flux through glucose-6-phosphate dehydrogenase) were slightly downregulated. The TCA cycle was also downregulated in the mutant strain. On the other hand, the fluxes through the anaplerotic reactions of PEP carboxylase, PEP carboxykinase and malic enzyme were upregulated, which were consistent with the results of enzyme activities. Furthermore, the influence of the poxB gene knockout on the growth of E. coli was also studied because of its similar function to PDHc which connects the glycolysis to the TCA cycle. Under aerobiosis, a comparison of lpdA mutant and poxB mutant indicated that PDHc is the main enzyme which catalyzes the reaction from pyruvate to acetyl-CoA in the parent strain, while PoxB plays a very important role in the PDHc-deficient strain.  相似文献   

7.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

8.
Succinic dehydrogenase was the most susceptible among the TCA cycle enzymes to gamma irradiation in preclimacteric banana. Maximum inhibition occurred at the 3rd day after irradiation. Impairment of this activity did not affect operation of the TCA cycle, assessed from the incorporation pattern of acetate [2-14C] into the organic acids such as citric, malic and succinic. Nevertheless, incorporation into keto acids like glyoxylate, α-keto-glutarate and oxaloacetate showed a difference. The rate of labelling into α-ketoglutarate and oxaloacetate was reduced on the 3rd day while incorporation into glyoxylate was increased indicating the operation of glyoxylate shunt pathway. Studies on the individual enzymes of this pathway, isocitrate lyase and malate synthetase confirmed its operation. The reduction in oxalo-acetate has been attributed to the increased gluconeogenesis.  相似文献   

9.
The mutant deficient in glucose-6-phosphate dehydrogenase (G6PDH) was constructed by disrupting zwf gene by one-step inactivation protocol using polymerase chain reaction primers. The knockout of zwf gene was shown to have different influence on the metabolism of Escherichia coli grown on glucose or acetate. The decreased rates of substrate uptake and CO(2) production were found for the mutant grown on acetate, whereas these two rates were increased during the growth on glucose. The metabolic flux analysis based on (13)C-labeling experiments indicates that the metabolism of the mutant grown on glucose is related to the higher flux via tricorboxylic acid (TCA) cycle to generate anabolic reducing equivalents normally provided by the oxidative pentose phosphate pathway. However, the metabolism of the mutant grown on acetate shows a lower flux towards the TCA cycle as compared with the parent strain. The decreased flux through TCA cycle is associated with an increased flux via the glyoxylate shunt, by which the carbon source can bypass the two decarboxylative steps of TCA cycle in which CO(2) is released, thus conserving more carbon for biosynthesis in response to the decreased uptake rate of the carbon source.  相似文献   

10.
The physiology and central metabolism of a ppc mutant Escherichia coli were investigated based on the metabolic flux distribution obtained by (13)C-labelling experiments using gas chromatography-mass spectrometry (GC-MS) and 2-dimensional nuclear magnetic resonance (2D NMR) strategies together with enzyme activity assays and intracellular metabolite concentration measurements. Compared to the wild type, its ppc mutant excreted little acetate and produced less carbon dioxide at the expense of a slower growth rate and a lower glucose uptake rate. Consequently, an improvement of the biomass yield on glucose was observed in the ppc mutant. Enzyme activity measurements revealed that isocitrate lyase activity increased by more than 3-fold in the ppc mutant. Some TCA cycle enzymes such as citrate synthase, aconitase and malate dehydrogenase were also upregulated, but enzymes of glycolysis and the pentose phosphate pathway were downregulated. The intracellular intermediates in the glycolysis and the pentose phosphate pathway, therefore, accumulated, while acetyl coenzyme A and oxaloacetate concentrations decreased in the ppc mutant. The intracellular metabolic flux analysis uncovered that deletion of ppc resulted in the appearance of the glyoxylate shunt, with 18.9% of the carbon flux being channeled via the glyoxylate shunt. However, the flux of the pentose phosphate pathway significantly decreased in the ppc mutant.  相似文献   

11.
Acetyl-CoA assimilation was extensively studied in organisms harboring the glyoxylate cycle. In this study, we analyzed the metabolism of the facultative methylotroph Methylobacterium extorquens AM1, which lacks isocitrate lyase, the key enzyme in the glyoxylate cycle, during growth on acetate. MS/MS-based proteomic analysis revealed that the protein repertoire of M. extorquens AM1 grown on acetate is similar to that of cells grown on methanol and includes enzymes of the ethylmalonyl-CoA (EMC) pathway that were recently shown to operate during growth on methanol. Dynamic 13C labeling experiments indicate the presence of distinct entry points for acetate: the EMC pathway and the TCA cycle. 13C steady-state metabolic flux analysis showed that oxidation of acetyl-CoA occurs predominantly via the TCA cycle and that assimilation occurs via the EMC pathway. Furthermore, acetyl-CoA condenses with the EMC pathway product glyoxylate, resulting in malate formation. The latter, also formed by the TCA cycle, is converted to phosphoglycerate by a reaction sequence that is reversed with respect to the serine cycle. Thus, the results obtained in this study reveal the utilization of common pathways during the growth of M. extorquens AM1 on C1 and C2 compounds, but with a major redirection of flux within the central metabolism. Furthermore, our results indicate that the metabolic flux distribution is highly complex in this model methylotroph during growth on acetate and is fundamentally different from organisms using the glyoxylate cycle.  相似文献   

12.
Cells of Escherichia coli growing on sugars that result in catabolite repression or amino acids that feed into glycolysis undergo a metabolic switch associated with the production and utilization of acetate. As they divide exponentially, these cells excrete acetate via the phosphotransacetylase-acetate kinase pathway. As they begin the transition to stationary phase, they instead resorb acetate, activate it to acetyl coenzyme A (acetyl-CoA) by means of the enzyme acetyl-CoA synthetase (Acs) and utilize it to generate energy and biosynthetic components via the tricarboxylic acid cycle and the glyoxylate shunt, respectively. Here, we present evidence that this switch occurs primarily through the induction of acs and that the timing and magnitude of this induction depend, in part, on the direct action of the carbon regulator cyclic AMP receptor protein (CRP) and the oxygen regulator FNR. It also depends, probably indirectly, upon the glyoxylate shunt repressor IclR, its activator FadR, and many enzymes involved in acetate metabolism. On the basis of these results, we propose that cells induce acs, and thus their ability to assimilate acetate, in response to rising cyclic AMP levels, falling oxygen partial pressure, and the flux of carbon through acetate-associated pathways.  相似文献   

13.
基因的表达受不同的转录调节因子调节。大肠杆菌中的异柠檬酸裂解酶调节因子(IclR)能够抑制编码乙醛酸支路酶的aceBAK操纵子的表达。本研究基于代谢物的13C同位体物质分布来定量解析代谢反应,主要研究了iclR基因在大肠杆菌生理和代谢中的作用。大肠杆菌iclR基因缺失突变株的生长速率、糖耗速率和乙酸的产量相对于原始菌株都有所降低,但菌体得率略有增加。通过代谢途径的流量比率分析发现基因缺失株的乙醛酸支路得到了激活,33%的异柠檬酸流经了乙醛酸支路;戊糖磷酸途径的流量变小,使得CO2的生成量减少。同时,乙醛酸支路激活,但草酰乙酸形成磷酸烯醇式丙酮酸的流量基本不变,说明磷酸烯醇式丙酮酸-乙醛酸循环没有激活,没有过多的碳原子在磷酸烯醇式丙酮酸羧化激酶反应中以CO2形式排出,从而确保了菌体得率。葡萄糖利用速率的降低、乙酰辅酶A的代谢效率提高等使得iclR基因敲除菌的乙酸分泌较原始菌株有所降低。  相似文献   

14.
Reduction of aerobic acetate production by Escherichia coli.   总被引:4,自引:0,他引:4       下载免费PDF全文
Acetate excretion by Escherichia coli during aerobic growth on glucose is a major obstacle to enhanced recombinant protein production. We report here that the fraction of carbon flux through the anaplerotic pathways is one of the factors influencing acetate excretion. Flux analysis of E. coli central metabolic pathways predicts that increasing the fraction of carbon flux through the phosphoenolpyruvate carboxylase (PPC) pathway and the glyoxylate bypass reduces acetate production. We tested this prediction by overexpressing PPC and deregulating the glyoxylate bypass by using a fadR strain. Results show that the acetate yield by the fadR strain with PPC overexpression is decreased more than fourfold compared to the control, while the biomass yield is relatively unaffected. Apparently, the fraction of carbon flux through the anaplerotic pathways is one of the factors that influence acetate excretion. These results confirm the prediction of our flux analysis and further suggest that E. coli is not fully optimized for efficient utilization of glucose.  相似文献   

15.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

16.
17.
The response of the central carbon metabolism of Escherichia coli to temperature-induced recombinant production of human fibroblast growth factor was studied on the level of metabolic fluxes and intracellular metabolite levels. During production, E. coli TG1:plambdaFGFB, carrying a plasmid encoded gene for the recombinant product, revealed stress related characteristics such as decreased growth rate and biomass yield and enhanced by-product excretion (acetate, pyruvate, lactate). With the onset of production, the adenylate energy charge dropped from 0.85 to 0.60, indicating the occurrence of a severe energy limitation. This triggered an increase of the glycolytic flux which, however, was not sufficient to compensate for the increased ATP demand. The activation of the glycolytic flux was also indicated by the readjustment of glycolytic pool sizes leading to an increased driving force for the reaction catalyzed by phosphofructokinase. Moreover, fluxes through the TCA cycle, into the pentose phosphate pathway and into anabolic pathways decreased significantly. The strong increase of flux into overflow pathways, especially towards acetate was most likely caused by a flux redirection from pyruvate dehydrogenase to pyruvate oxidase. The glyoxylate shunt, not active during growth, was the dominating anaplerotic pathway during production. Together with pyruvate oxidase and acetyl CoA synthase this pathway could function as a metabolic by-pass to overcome the limitation in the junction between glycolysis and TCA cycle and partly recycle the acetate formed back into the metabolism.  相似文献   

18.
Volatile fatty acids (VFAs) are an inexpensive and renewable carbon source that can be generated from gas fermentation and anaerobic digestion of fermentable wastes. The oleaginous yeast Yarrowia lipolytica is a promising biocatalyst that can utilize VFAs and convert them into triacylglycerides (TAGs). However, currently there is limited knowledge on the metabolism of Y. lipolytica when cultured on VFAs. To develop a better understanding, we used acetate as the sole carbon source to culture two strains, a control strain and a previously engineered strain for lipid overaccumulation. For both strains, metabolism during the growth phase and lipid production phase were investigated by metabolic flux analysis using two parallel sodium acetate tracers. The resolved flux distributions demonstrate that the glyoxylate shunt pathway is constantly active and the flux through gluconeogenesis varies depending on strain and phase. In particular, by regulating the activities of malate transport and pyruvate kinase, the cells divert only a portion of the glyoxylate shunt flux required to satisfy the needs for anaplerotic reactions and NADPH production through gluconeogenesis and the oxidative pentose phosphate pathway (PPP). Excess flux flows back to the tricarboxylic acid (TCA) cycle for energy production. As with the case of glucose as the substrate, the primary source for lipogenic NADPH is derived from the oxidative PPP.  相似文献   

19.
20.
Plasmid DNA (pDNA) is an emerging experimental vaccine, produced in E. coli, initially targeted for viral diseases. Unlike traditional protein vaccines whose average dose is micrograms, the average dose of pDNA is on the scale of milligrams. Production yields are, therefore, important for the future development of this vaccine. The E. coli strains currently used for pDNA production, JM109 and DH5alpha, are both suitable for production of stable pDNA due to the deletion of recA and endA, however, these two E. coli K strains are sensitive to growth conditions such as high glucose concentration. On the other hand E. coli BL21 is less sensitive to growth conditions than E. coli JM109 or DH5alpha, this strain grows to higher densities and due to its active glyoxylate shunt and anaplerotic pathways is not sensitive to high glucose concentration. This strain is used for recombinant protein production but not for pDNA production because of its inability to produce stable pDNA. To adapt E. coli BL21 for stable pDNA production, the strain was mutated by deleting both recA and endA, and a proper growth and production strategy was developed. Production values, reaching 2 g/L were obtained using glucose as a carbon source. The produced plasmid, which was constructed for HIV clinical study, was found to have identical properties to the plasmid currently produced by E. coli DH5alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号