首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have purified the IL-1 beta converting enzyme from the THP-1 cell line using standard chromatographic techniques and obtained the N-terminal amino acid sequence of this novel protein. After stimulation of THP-1 cells with lipopolysaccharide, hydroxyurea, and silica, the protease was solubilized by multiple freeze/thawing. The protein was purified by ion-exchange chromatography, affinity chromatography on blue agarose, gel filtration, and chromatofocusing. The molecular weight of the protein is approximately 22,000 Da and the pI is between 7.1 and 6.8. The overall yield for this procedure was 16% of the activity found in the initial cell lysates. An antiserum raised against a peptide based on the N-terminus was used to precipitate the protease, confirming our identification of the 22,000-Da protein as the IL-1 beta converting enzyme.  相似文献   

2.
The substrate specificity of the protease which generates mature human interleukin-1 beta (IL-1 beta) from pro-interleukin-1 beta was investigated using synthetic peptide substrates and recombinant pro-IL-1 beta. The requirement of an L-aspartate in the P-1 position was confirmed together with the need for a small hydrophobic residue in the P-1' position (Gly or Ala). It was shown that the enzyme can tolerate conservative substitutions in the P-2 and P-2' positions. We found little difference in the enzyme's ability to cleave denatured and native pro-IL-1 beta, indicating that tertiary structure recognition is not involved in binding. The enzyme did, however, require a peptide of more than six amino acids for cleavage to occur. These results conclusively demonstrate the unusual specificity of this protease.  相似文献   

3.
4.
5.
Dystroglycan (DG) complex, composed of alphaDG and betaDG, provides a link between the extracellular matrix (ECM) and cortical cytoskeleton. Although the proteolytic processing of betaDG was reported in various physiological and pathological conditions, its exact mechanism remains unknown. In this study, we addressed this issue using the cell culture system of rat schwannoma cell line RT4. We found that the culture medium of RT4 cells was enriched with the protease activity that degrades the fusion protein construct of the extracellular domain of betaDG specifically. This activity was suppressed by the inhibitor of matrix metalloproteinase-2 (MMP-2) and MMP-9, but not by the inhibitors of MMP-1, MMP-3, MMP-8, and MMP-13. Zymography and RT-PCR analysis showed that RT4 cells secreted MMP-2 and MMP-9 into the culture medium. Finally, active MMP-2 and MMP-9 enzymes degraded the fusion protein construct of the extracellular domain of betaDG. These results indicate (1) that RT4 cells secrete the protease activity that degrades the extracellular domain of betaDG specifically and (2) that MMP-2 and MMP-9 may be involved in this process.  相似文献   

6.
Leukocyte activation is a property of systemic infection. Animal experiments indicate interleukin-1 (IL-1) as a possible modulator, while contradictory results have been reported from in-vitro stimulation of isolated leukocytes. The purpose of the present study was to investigate the activation of isolated polymorphonuclear (PMN) leukocytes in vitro by preparations of recombinant human IL-1 beta and IL-1 receptor antagonist, which in earlier studies could elicit and abrogate, respectively, a sepsis-like syndrome in rabbits. They have also been shown to influence acute phase protein synthesis in mice and rats, and release of leukocyte cathepsin G in vivo. It was found that recombinant human IL-1 beta elicited a dose-dependent luminol-enhanced chemiluminescence response in isolated human PMN leukocytes in the dose range 8.8 x 10(-11)-8.8 x 10(-8) M. The effect could be blocked by prior treatment with the IL-1 receptor antagonist, indicating a direct effect on the specific IL-1 receptor. Preincubation by IL-1 beta enhanced the effect of a secondary challenge with phorbol 12-myristate 13-acetate or formyl-Met-Leu-Phe by 30-40%. The priming effect of rhIL-1 beta could also be blocked by the specific receptor antagonist. In this study, incubation of PMN leukocytes with rhIL-1 beta failed to induce degranulation of both azurophil (neutrophil proteinase 4/proteinase 3) and specific (lactoferrin) granules. rhIL-1 beta has been shown to induce degranulation in vivo, which is thus indicated as an indirect effect. We conclude that IL-1 beta is a direct and specific, but probably weak stimulator of the PMN leukocyte.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The PABP [poly(A)-binding protein] is able to interact with the 3' poly(A) tail of eukaryotic mRNA, promoting its translation. Cleavage of PABP by viral proteases encoded by several picornaviruses and caliciviruses plays a role in the abrogation of cellular protein synthesis. We report that infection of MT-2 cells with HIV-1 leads to efficient proteolysis of PABP. Analysis of PABP integrity was carried out in BHK-21 (baby-hamster kidney) and COS-7 cells upon individual expression of the protease from several members of the Retroviridae family, e.g. MoMLV (Moloney murine leukaemia virus), MMTV (mouse mammary tumour virus), HTLV-I (human T-cell leukaemia virus type I), SIV (simian immunodeficiency virus), HIV-1 and HIV-2. Moreover, protease activity against PABP was tested in a HeLa-cell-free system. Only MMTV, HIV-1 and HIV-2 proteases were able to cleave PABP in the absence of other viral proteins. Purified HIV-1 and HIV-2 proteases cleave PABP1 directly at positions 237 and 477, separating the two first RNA-recognition motifs from the C-terminal domain of PABP. An additional cleavage site located at position 410 was detected for HIV-2 protease. These findings indicate that some retroviruses may share with picornaviruses and caliciviruses the capacity to proteolyse PABP.  相似文献   

8.
Extracellular liquid of the edible fungus Lepista irina was found to effectively degrade beta,beta-carotene, beta-lonone, beta-cyclocitral, dihydroactinidiolide, and 2-hydroxy-2,6,6-trimethylcyclohexanone were formed as volatile breakdown products of beta,beta-carotene with mycelium-free culture supernatants, whereas beta-apo-10'-carotenal was identified as non-volatile degradation product. The key enzyme catalyzing the oxidative cleavage of beta,beta-carotene was purified with an overall yield of 63% and a purification factor of 43. Biochemical characterization showed a molecular mass of 50.5 kDa and an isoelectric point of 3.75. Fastest beta,beta-carotene degradation occurred at 34 degrees C and pH values between 3.5 and 4. Degenerate oligonucleotides were derived from N-terminal and internal amino acid sequences. By means of PCR-based cDNA-library screening a 1284 bp cDNA was identified which showed great overall similarity to Pleurotus eryngii polyvalent peroxidases. The obtained sequence contains an open reading frame of 1083 nucleotides, encoding a polypeptide of 361 amino acids. A 30 amino acid signal peptide was identified upstream of the N-terminal sequence of the mature enzyme. The L. irina versatile peroxidase represents the first microbial enzyme capable of carotenoid degradation that has been characterized on a molecular level, proving the participation of extracellular enzymes of white rot fungi in biotic carotenoid degradation processes.  相似文献   

9.
The influence of the hyaluronan-binding protease (PHBSP), a plasma enzyme with FVII- and pro-urokinase-activating potency, on components of the contact phase (kallikrein/kinin) system was investigated. No activation or cleavage of the proenzymes involved in the contact phase system was observed. The pro-cofactor high molecular weight kininogen (HK), however, was cleaved in vitro by PHBSP in the absence of any charged surface, releasing the activated cofactor and the vasoactive nonapeptide bradykinin. Glycosoaminoglycans strongly enhanced the reaction. The cleavage was comparable to that of plasma kallikrein, but clearly different from that of coagulation factor FXIa. Upon extended incubation with PHBSP, the light chain was further processed, partially removing about 60 amino acid residues from the N-terminus of domain D5 of the light chain. These cleavage site(s) were distinct from plasma kallikrein or FXIa cleavage sites. PHBSP and, more interestingly, also plasma kallikrein could cleave low molecular weight kininogen in vitro, indicating that domains D5H and D6H are no prerequisite for kininogen cleavage. PHBSP was also able to release bradykinin from HK in plasma where the pro-cofactor circulates predominantly in complex with plasma kallikrein or FXI. In conclusion, PHBSP represents a novel kininogen-cleaving and bradykinin-releasing enzyme in plasma that shares significant catalytic similarities with plasma kallikrein. Since they are structurally unrelated in their heavy chains (propeptide), their similar in vivo catalytic activities might be directed at distinct sites where PHBSP could induce processes that are related to the kallikrein/kinin system.  相似文献   

10.
11.
Human immunodeficiency virus type 1 (HIV-1) infection causes apoptosis of infected CD4 T cells as well as uninfected (bystander) CD4 and CD8 T cells. It remains unknown what signals cause infected cells to die. We demonstrate that HIV-1 protease specifically cleaves procaspase 8 to create a novel fragment termed casp8p41, which independently induces apoptosis. casp8p41 is specific to HIV-1 protease-induced death but not other caspase 8-dependent death stimuli. In HIV-1-infected patients, casp8p41 is detected only in CD4(+) T cells, predominantly in the CD27(+) memory subset, its presence increases with increasing viral load, and it colocalizes with both infected and apoptotic cells. These data indicate that casp8p41 independently induces apoptosis and is a specific product of HIV-1 protease which may contribute to death of HIV-1-infected cells.  相似文献   

12.
The production of bioactive interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, is mediated by activated caspase-1. One of the known molecular mechanisms underlying pro-caspase-1 processing and activation involves interaction between the caspase recruit domains (CARDs) of caspase-1 and a serine/threonine kinase RIP2. While the association of Nod1 with both caspase-1 and RIP2 is already known, the consequences of these interactions are poorly understood. Because Nod1 also binds to RIP2, we hypothesized that Nod1 plays a role in pro-caspase-1 activation and IL-1beta processing. We show here that Nod1 binds to both RIP2 and caspase-1 by CARD interactions. Nod1 enhances pro-caspase-1 oligomerization and pro-caspase-1 processing. Nod1 enhances caspase-1-induced IL-1beta secretion, as well as lipopolysaccharide (LPS)-induced IL-1beta secretion in transfected cells. Moreover, HT1080 cells stably transfected with Nod1 showed higher LPS-induced IL-1beta secretion than non-transfected cells, suggesting a role of Nod1 in LPS-induced responses. Our data indicate that Nod1 can regulate IL-1beta secretion, implying that Nod1 may play a role in inflammatory responses to bacterial LPS.  相似文献   

13.
A vaccinia virus vector was used to express the yeast KEX1 gene, which encodes a prohormone carboxypeptidase specific for the removal of basic amino acids from prohormone processing intermediates, in mammalian cells. When produced in BSC-40 cells, Kex1p was localized to the perinuclear region and conferred a large increase in enzymatic activity characteristic of this carboxypeptidase. Expression of the KEX1 gene together with the yeast KEX2 gene, which encodes a prohormone endopeptidase specific for cleavage at pairs of basic amino acids, and the mouse proopiomelanocortin (mPOMC) cDNA in BSC-40 cells resulted in the full conversion of mPOMC to mature peptides including gamma-lipotropin. This in vivo processing of mPOMC to mature peptides by the KEX2/KEX1 gene products demonstrates a significant functional homology of the basic prohormone processing machinery in yeast and neuroendocrine cells.  相似文献   

14.
15.
Shigella pathogenesis involves bacterial invasion of colonic epithelial cells and movement of bacteria through the cytoplasm and into adjacent cells by means of actin-based motility. The Shigella protein IcsA (VirG) is unipolar on the bacterial surface and is both necessary and sufficient for actin-based motility. IcsA is inserted into the outer membrane as a 120-kDa polypeptide that is subsequently slowly cleaved, thereby releasing the 95-kDa amino-terminal portion into the culture supernatant. IcsP, the major Shigella protease that cleaves IcsA, was identified and cloned. It has significant sequence similarity to the E. coli serine proteases, OmpP and OmpT. Disruption of icsP in serotype 2a S. flexneri leads to a marked reduction in IcsA cleavage, increased amounts of IcsA associated with the bacterium and altered distribution of IcsA on the bacterial surface. The icsP mutant displays significantly increased rates of actin-based motility, with a mean speed 27% faster than the wild-type strain; moreover, a significantly greater percentage of the icsP mutant moves in the cytoplasm. Yet, plaque formation on epithelial monolayers by the mutant was not altered detectably. These data suggest that IcsA, and not a host protein, is limiting in the rate of actin-based motility of wild-type serotype 2a S. flexneri .  相似文献   

16.
The adrenal gland requires stimuli from peptides derived from the ACTH precursor, pro-opiomelanocortin (POMC), to maintain its tonic state. Studies have proposed that a specific postsecretional cleavage of the nonmitogenic N-terminal 16 kDa fragment, also known as pro-gamma-melanotropin (pro-gamma-MSH), is required, releasing shorter fragments that promote adrenal growth. Here, we provide evidence for this hypothesis by the cloning and characterization of a serine protease that is upregulated during growth of the adrenal cortex. It is expressed exclusively in the outer adrenal cortex, the site of cell proliferation, and in the Y1 adrenal cell line. We also show that it is required for growth of Y1 cells, remains bound to the cell surface, and cleaves its substrate, pro-gamma-MSH, at a specific bond.  相似文献   

17.
Lactoferrin is a member of the lactotransferrin family of non-haem, iron-binding glycoproteins and is found at high concentrations in all human secretions, where it plays a major role in mucosal defence. In recent work, we observed that lactoferrin has proteolytic activity and attenuates the pathogenic potential of Haemophilus influenzae by cleaving and removing two putative colonization factors, namely the IgA1 protease protein and the Hap adhesin. Experiments with protease inhibitors further suggested that lactoferrin may belong to a serine protease family. In the present study we explored the mechanism of lactoferrin protease activity and discovered that mutation of either Ser259 or Lys73 results in a dramatic decrease in proteolysis. Examination of the crystal structure revealed that these two residues are located in the N-terminal lobe of the protein, adjacent to a 12-15 A cleft that separates the N-lobe and the C-lobe and that can readily accommodate large polypeptide substrates. In additional work, we found that lactoferrin cleaves IgA1 protease at an arginine-rich region defined by amino acids 1379-1386 (RRSRRSVR) and digests Hap at an arginine-rich sequence between amino acids 1016 and 1023 (VRSRRAAR). Based on our results, we conclude that lactoferrin is a serine protease capable of cleaving arginine-rich sequences. We speculate that Ser259 and Lys73 form a catalytic dyad, reminiscent of a number of bacterial serine proteases. In addition, we speculate that lactoferrin may cleave arginine-rich sequences in a variety of microbial virulence proteins, contributing to its long-recognized antimicrobial properties.  相似文献   

18.
A 99-amino acid protein having the deduced sequence of the protease from human immunodeficiency virus type 2 (HIV-2) was synthesized by the solid phase method and tested for specificity. The folded peptide catalyzes specific processing of a recombinant 43-kDa GAG precursor protein (F-16) of HIV-1. Although the protease of HIV-2 shares only 48% amino acid identity with that of HIV-1, the HIV-2 enzyme exhibits the same specificity toward the HIV-1 GAG precursor. Fragments of 34, 32, 24, 10, and 9 kDa were generated from F-16 GAG incubated with the protease. N-terminal amino acid sequence analysis of proteolytic fragments indicate that cleavage sites recognized by HIV-2 protease are identical to those of HIV-1 protease. The verified cleavage sites in F-16 GAG appear to be processed independently, as indicated by the formation of the intermediate fragments P32 and P34 in nearly equal ratios. The site nearest the amino terminus is quite conserved between the two viral GAG proteins (...VSQNY-PIVQN...in HIV-1,...KGGNY-PVQHV...in HIV-2). In contrast, the putative second site (...IPFAA-AQQKG...) of HIV-2 GAG shares minimal sequence identity with site 2 of HIV-1 GAG (...SATIM-MQRGN...). These sequence variations in the substrates suggest higher order structural features that may influence recognition by the proteases. Pepstatin A inhibits HIV-2 protease, whereas 1,10-phenanthroline and phenylmethylsulfonylfluoride do not; these results are in agreement with the finding that proteases of HIV and other retroviruses are aspartyl proteases.  相似文献   

19.
20.
A peptidase activity cleaving at single arginine residues has been detected in extracts of the atrial gland of Aplysia Californica. The enzyme assay consisted of incubation of enzyme with the mammalian opioid peptide dynorphin A and detection by specific radioimmunoassay of dynorphin (1-8), a single arginine cleavage product. The peptidase activity was characterized following chromatography on DEAE-cellulose. Activity was abolished by a thiol-directed inhibitor and chelators and activated by dithiothreitol and cobalt chloride. The pH optimum was 6.2 in phosphate buffer. Analysis of the products of two substrates suggested that cleavage was occurring on the amino side of the arginine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号