首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of sub-optimal temperatures (T) on the microbial growth rate (μ) has been assessed by means of dimensionless variables: Tdim = [T−Tmin]/[Topt−Tmin] and μdim = μ/μopt. Tmin represents the temperature at which there is no growth, Topt the optimum temperature at which the growth rate, μopt, is maximum. Data sets, growth rate vs temperature, have been taken from the literature for 12 organisms (psychrotrophs, mesophiles and thermophiles). In order to compare these organisms, the power law function has been used: [μdim] = [Tdim]α. The parameters μopt and Topt are determined from direct readings whereas Tmin and αare estimated by means of a non-linear regression. An accurate estimation of Tmin is obtained providing low growth rate data are available. A wide range of optimal temperatures where the growth rate almost equals μopt prevents one from obtaining a narrow confidence interval forα. On the basis of the analysis hereafter developed, thermophiles are characterized by values of the power α less than mesophiles and psychrotrophs. Almost all of these values are significantly different from two, previously determined for Staphylococcus xylosus and widely used for predicting the microbial growth in foods. Received 15 May 1998/ Accepted in revised form 25 September 1998  相似文献   

2.
It was shown that well known equation r = ln[N(t2)/N(t1)]/(t2 - t1) is the definition of the average value of intrinsic growth rate of population r within any given interval of time t2-t1 and changing arbitrarity its numbers N(t). The common opinion considering the equation as suitable only for exponentially growing population was found to be incorrect. The fundamentally different approach is based on the calculation of r within the framework of demographic model, realized as Euler - Lotka equation or population projection matrices. However this model requires simultaneous realization of several assumptions improbable for natural populations: exponential change in population size, stable age structure and maintaining constant age-dependent birth and death rates. The calculation of r by definition requires the data on the dynamics of population numbers, whereas calculation on the basis of the model requires the demographic tables of birth and death rate, but not the population numbers. With the example of American ginseng it was shown that evalution of r by definition and model approaches could produce opposite results.  相似文献   

3.
The viability of Clavibacter michiganensis subsp. michiganensis (Cmm) was determined by measuring the intracellular pH (pHin) as a viability parameter. This was based on the observation that growth of Cmm was inhibited at pH 5.5 and below. Therefore, viable cells should maintain their pHin above this pH value. The pHin of Cmm was determined using the fluorescent probe 5(and 6-)-carboxyfluorescein succinimidyl ester (cFSE). The pHin of Cmm cells exposed to acid treatments was determined using fluorescence spectrofluorometry, and for cells exposed to elevated temperatures, the pHin was determined using fluorescence spectrofluorometry and flow cytometry (FCM). A good correlation was found between the presence of a pH gradient and the number of colony-forming units (cfu) observed in plate counts. However, with the spectrofluorometry technique, the analysis is based on the whole cell population and the detection sensitivity of this technique is rather low, i.e., cell numbers of at least 107 cfu ml-1 are needed for the analysis. Using FCM, heat-treated and non-treated Cmm cells could be distinguished based on the absence and presence of a pH gradient, respectively. The major advantage of FCM is its high sensitivity, allowing analysis of microbial populations even at low numbers, i.e., 102-103 cfu ml-1.  相似文献   

4.
The time course of heart rate (HR) and venous blood norepinephrine concentration [NE], as an expression of the sympathetic nervous activity (SNA), was studied in six sedentary young men during recovery from three periods of cycle ergometer exercise at 21% +/- 2.8%, 43% +/- 2.1% and 65% +/- 2.3% of VO2max respectively (mean +/- SE). The HR decreased mono-exponentially with tau values of 13.6 +/- 1.6 s, 32.7 +/- 5.6 s and 55.8 +/- 8.1 s respectively in the three periods of exercise. At the low exercise level no change in [NE] was found. At medium and high exercise intensity: (a) [NE] increased significantly at the 5th min of exercise (delta [NE] = 207.7 +/- 22.5 pg.ml-1 and 521.3 +/- 58.3 pg.ml-1 respectively); (b) after a time lag of 1 min [NE] decreased exponentially (tau = 87 s and 101 s respectively); (c) in the 1st min HR decreased about 35 beats.min-1; (d) from the 2nd to 5th min of recovery HR and [NE] were linearly related (100 pg.ml-1 delta [NE] congruent to 5 beats.min-1). In the 1st min of recovery, independent of the exercise intensity, the adjustment of HR appears to have been due mainly to the prompt restoration of vagal tone. The further decrease in HR toward the resting value could then be attributed to the return of SNA to the pre-exercise level.  相似文献   

5.
Temperature and nutrition are two prominent environmental variables influencing juvenile growth rate in ectotherms. These two factors interact in complex ways. Here, we present a comprehensive analysis of the interactive effects of temperature and nutrition on various components of fitness (growth rate, survival), food intake, and level of energy storage in an insect herbivore, caterpillars of Spodoptera exigua Hübner (Lepidoptera: Noctuidae). In a factorial experimental design, final‐instar caterpillars (i.e., fifth instars) were individually reared at one of three constant temperatures (18, 26, and 34 °C), in which they received one of six diets differing in their ratio of protein and digestible carbohydrate [P:C mixture, expressed as the percentage of diet by dry mass: protein 42%:carbohydrate 0% (42:0), 35:7, 28:14, 21:21, 14:28, and 7:35]. Within the range of test temperatures, larval growth rate increased with rising temperature and was strongly affected by P:C mixture, reaching a maximum on moderate P:C diets at each temperature and falling at very high and low P:C mixtures. There was a significant temperature*diet interaction, such that the difference in growth rates between temperatures was greatest on moderate P:C diets and least on the most extreme diets (42:0 and 7:35). Food intake rate patterns followed a similar trend to growth rate. Rapidly growing animals at high ambient temperature suffered high mortality across all dietary P:C mixtures, but to a greater extent on the extremely unbalanced diets. This suggests that there are developmental and physiological costs associated with fast growth at high temperature, as indicated by high rate of pupation failure and reduced lipid storage efficiency. Our study shows how temperature and nutrition interplay to mediate phenotypic variations in growth rates and energy utilization in an insect ectotherm.  相似文献   

6.
Some aspects of the rate of increase of a coccinellid   总被引:2,自引:0,他引:2  
Abstract. 1. Fecundity, growth and development were determined at a range of feeding levels and temperatures and compared with the component models for the predator rate of increase.
2. Fecundity and growth rate show a linear dependence on rate of consumption, while development rate conforms to an alternative non-linear model. The non-linearity of development rate is due to a dependence of weight gain during an instar on rate of consumption.
3. The primary influence of temperature is on the rate of consumption, limiting fecundity and growth rate at temperatures below the optimum for the stage, while higher temperatures have a deleterious effect. Temperature has a more direct influence on development rates, allowing comparable growth despite the variation in rates of consumption.  相似文献   

7.
The general effects of temperature and nutritional quality ongrowth rate and body size are well known. We know little, however,about the physiological mechanisms by which an organism translatesvariation in diet and temperature into reaction norms of bodysize or development time. We outline an endocrine-based physiologicalmechanism that helps explain how this translation occurs inthe holometabolous insect Manduca sexta (Sphingidae). Body sizeand development time are controlled by three factors: (i) growthrate, (ii) the timing of the cessation of juvenile hormone secretion(measured by the critical weight) and (iii) the timing of ecdysteroidsecretion leading to pupation (the interval to cessation ofgrowth [ICG] after reaching the critical weight). Thermal reactionnorms of body size and development time are a function of howthese three factors interact with temperature. Body size issmaller at higher temperatures, because the higher growth ratedecreases the ICG, thereby reducing the amount of mass thatcan accumulate. Development time is shorter at higher temperaturesbecause the higher growth rate decreases the time required toattain the critical weight and, independently, controls theduration of the ICG. Life history evolution along altitudinal,latitudinal and seasonal gradients may occur through differentialselection on growth rate and the duration of the two independentlycontrolled determinants of the growth period.  相似文献   

8.
一株高效苯酚降解真菌的分离鉴定及其菌剂的制备   总被引:1,自引:0,他引:1  
【背景】含酚废水是普遍存在的有毒、难降解的有机污染物之一,生物法处理含酚废水因成本低、无二次污染而具有广阔的应用前景。可降解苯酚的微生物中,真菌比细菌对恶劣环境的适应性更好。针对液态菌液保存时间较短和运输困难的瓶颈,制备固体菌剂可以提高菌体存活率和储藏稳定性。【目的】筛选一株能够高效降解苯酚的真菌,优化其降酚性能并选择合适的载体制备菌剂。【方法】通过逐级驯化和纯化分离降酚菌,筛选得到降酚性能较强的真菌并通过ITS r DNA基因测序进行种属鉴定,通过参数优化进一步提高菌株降解苯酚的性能;以不同材料为载体制备菌剂,通过稀释平板计数法和苯酚降解实验探究菌剂在不同温度下的保存效果。【结果】分离筛选得到一株高效降解苯酚真菌QWD1,通过鉴定证明其属于Magnusiomyces capitatus,其最适降解条件:(NH_4)_2SO_4为氮源,接种量为15%,pH为7.0,温度为35°C,氮源浓度为14 mmol/L。在此条件下,28 d内对1 600 mg/L苯酚去除率可以达到97.15%;制备菌剂最合适载体为谷糠,适宜保存温度为4°C,保存时间可达到90 d甚至更长,活菌数高达2.5×10~8 CFU/g左右,降解苯酚效果良好。【结论】筛选得到了一株高效降解苯酚真菌,优化其降解性能并将其制备成菌剂,为处理含酚废水提供了新菌种和理论支持。  相似文献   

9.
The western Antarctic Peninsula is an extreme low temperature environment that is warming rapidly due to global change. Little is known, however, on the temperature sensitivity of growth of microbial communities in Antarctic soils and in the surrounding oceanic waters. This is the first study that directly compares temperature adaptation of adjacent marine and terrestrial bacteria in a polar environment. The bacterial communities in the ocean were adapted to lower temperatures than those from nearby soil, with cardinal temperatures for growth in the ocean being the lowest so far reported for microbial communities. This was reflected in lower minimum (Tmin) and optimum temperatures (Topt) for growth in water (?17 and +20°C, respectively) than in soil (?11 and +27°C), with lower sensitivity to changes in temperature (Q10; 0–10°C interval) in Antarctic water (2.7) than in soil (3.9). This is likely due to the more stable low temperature conditions of Antarctic waters than soils, and the fact that maximum in situ temperatures in water are lower than in soils, at least in summer. Importantly, the thermally stable environment of Antarctic marine water makes it feasible to create a single temperature response curve for bacterial communities. This would thus allow for calculations of temperature‐corrected growth rates, and thereby quantifying the influence of factors other than temperature on observed growth rates, as well as predicting the effects of future temperature increases on Antarctic marine bacteria.  相似文献   

10.
Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.  相似文献   

11.
[目的]深入了解现场微生物驱油机理、效果评价标准及影响因素.[方法]结合现场微生物驱油过程产出液的跟踪监测及室内物模实验对微生物在地层中的生长繁殖、运移及分布规律进行研究.[结果]结果表明,通过从水井注入的外源微生物在油藏中能够有效生长繁殖,而且注入的营养液也能够激活内源微生物,但由于地层渗透率及营养液浓度的影响,产出液菌浓要比注入菌浓低1-2个数量级;葡萄糖的快速降解以及地层对微生物的过滤及吸附作用使大量的微生物停留在近井地带,仅有部分微生物能够从生产井采出,而且其运移速度要比营养液慢.[结论]地层渗透率和产出液中营养物浓度是影响微生物数量及分布的两个关键因素,现场微生物驱油产出液中的菌浓一般很难达到106个/mL以上,该研究结果对微生物驱油技术的发展和应用具有重要意义.  相似文献   

12.
Control of microbial conversion processes is frequently inhibited by the infeasibility of measuring important process variables. In order to circumvent this lack of measurements, an accurate or valuable and conveniently measurable on-line hardware measurement can be combined with the balance equations describing the process to obtain estimates of less easily measurable variables. In this article the on-line estimation of the specific growth rate of Candida utilis is evaluated. The observer-based estimator requires a hardware measurement of the biomass during fermentations in conjuction with a model of the process; therefore the Biomass Monitor, giving an on-line measurement of viable biomass, is used in the bioreactor experiments described. The optimal tuning of the estimation for the experimental conditions is described and several alternative adaptations of the design of the estimator are presented. The influence of implemented time intervals for discretization of the estimator on the reliability of the estimated growth rate values is discussed. Additionally, the necessary choice of an initial value of the estimated specific growth rate has proven to be of great importance in practice.  相似文献   

13.
The inhibitory effect of enterocin CCM 4231 (concentration 3200 AU ml-1) was used to control the growth of Listeria monocytogenes Ohio and Staphylococcus aureus in soy milk. The growth and bacteriocin (enterocin) production of producer strain CCM 4231 in soy milk was also checked. Bacteriocin production by CCM 4231 strain in soy milk was first detected after 2 h from the beginning of cultivation (100 AU ml-1). The stationary phase for CCM 4231 was reached after 6 h reaching 10.38 cfu ml-1 (log10) with a slight increase up to 24 h (10.43 cfu ml-1, log10), and the maximum bacteriocin production in soy milk (200 AU ml-1) was noted after 8 h of the beginning of cultivation with stability up to 24 h. The addition of enterocin CCM 4231 at 3200 AU ml-1 to a growing indicator strain, L. monocytogenes Ohio, in soy milk resulted in inhibition for 24 h. The high inhibitory effect of enterocin was found after 1 h and 2 h of its addition (in 5 h-6 h of cultivation), the difference between the experimental and the control samples (ES, CS) being 4.96 log cycles at 5 h and 5.15 log cycles at 6 h. Staphylococcus aureus was not fully inhibited, although a difference of 3.55 log cycles was found when ES and CS were compared at the end of cultivation (24 h). The pH was not influenced by enterocin addition. The inhibitory effect of enterocin CCM 4231 against L. monocytogenes Ohio in soy milk was probably bacteriocidal; while Staph. aureus was influenced bacteriostatically. In general, the observed inhibitory activity confirmed the possibility for further application of bacteriocins in food environments as the protective agents. Of course, legislation problems must be solved.  相似文献   

14.
The effects of nisin and monolaurin, alone and in combination, were investigated on Bacillus licheniformis spores in milk at 37 degrees C. In the absence of inhibitors, germinated spores developed into growing vegetative cells and started sporulation at the end of the exponential phase. In the presence of nisin (25 IU ml-1), spore outgrowth was inhibited (4 log10 reduction at 10 h). Regrowth appeared between 10 and 24 h and reached a high population level (1.25 x 10(8) cfu ml-1) after 7 d. Monolaurin (250 micrograms ml-1) had a bacteriostatic effect during the first 10 h but thereafter, regrowth occurred slowly with a population level after 7 d (4 x 10(5) cfu ml-1) lower than that of nisin. Different combined effects of nisin (between 0 and 42 IU ml-1), monolaurin (ranging from 0 to 300 micrograms ml-1), pH values (between 5.0 and 7.0) and spore loads (10(3), 10(4), 10(5) spores ml-1) were investigated using a Doehlert matrix in order to study the main effects of these factors and the different interactions. Results were analysed using the Response Surface Methodology (RSM) and indicated that nisin and monolaurin had no action on spores before germination; only pH values had a significant effect (P < or = 0.001), i.e. spore count decreased as the pH value increased in relation to germination. Sublethal concentrations of nisin (30 IU ml-1) and monolaurin (100 micrograms ml-1) in combination acted synergistically on outgrown spores and vegetative cells, showing total inhibition at pH 6.0, without regrowth, within 7 d at 37 degrees C.  相似文献   

15.
Stimulation of photosynthesis in response to elevated carbon dioxide concentration [CO2] in the short-term (min) should be highly temperature dependent at high photon flux. However, it is unclear if long-term (days, weeks) adaptation to a given growth temperature alters the temperature-dependent stimulation of photosynthesis to [CO2]. In velveltleaf (Albutilon theophrasti), the response of photosynthesis, determined as CO2 assimilation, was measured over a range of internal CO2 concentrations at 7 short-term measurement (12, 16, 20, 24, 28, 32, 36 degrees C) temperatures for each of 4 long-term growth (16, 20, 28 and 32 degrees C) temperatures. In vivo estimates of VCmax, the maximum RuBP saturated rate of carboxylation, and Jmax, the light-saturated rate of potential electron transport, were determined from gas exchange measurements for each temperature combination. Overall, previous exposure to a given growth temperature adjusted the optimal temperatures of Jmax and VCmax with subsequently greater enhancement of photosynthesis at elevated [CO2] (i.e., a greater enhancement of photosynthesis at elevated [CO2] was observed at low measurement temperatures for A. theophrasti grown at low growth temperatures compared with higher growth temperatures, and vice versa for plants grown and measured at high temperatures). Previous biochemical based models used to predict the interaction between rising [CO2] and temperature on photosynthesis have generally assumed no growth temperature effect on carboxylation kinetics or no limitation by Jmax. In the current study, these models over predicted the temperature dependence of the photosynthetic response to elevated [CO2] at temperatures above 24 degrees C. If these models are modified to include long-term adjustments of Jmax and VCmax to growth temperature, then greater agreement between observed and predicted values was obtained.  相似文献   

16.
Enterobacter sakazakii can be present, although in low levels, in dry powdered infant formulae, and it has been linked to cases of meningitis in neonates, especially those born prematurely. In order to prevent illness, product contamination at manufacture and during preparation, as well as growth after reconstitution, must be minimized by appropriate control measures. In this publication, several determinants of the growth of E. sakazakii in reconstituted infant formula are reported. The following key growth parameters were determined: lag time, specific growth rate, and maximum population density. Cells were harvested at different phases of growth and spiked into powdered infant formula. After reconstitution in sterile water, E. sakazakii was able to grow at temperatures between 8 and 47 degrees C. The estimated optimal growth temperature was 39.4 degrees C, whereas the optimal specific growth rate was 2.31 h(-1). The effect of temperature on the specific growth rate was described with two secondary growth models. The resulting minimum and maximum temperatures estimated with the secondary Rosso equation were 3.6 degrees C and 47.6 degrees C, respectively. The estimated lag time varied from 83.3 +/- 18.7 h at 10 degrees C to 1.73 +/- 0.43 h at 37 degrees C and could be described with the hyperbolic model and reciprocal square root relation. Cells harvested at different phases of growth did not exhibit significant differences in either specific growth rate or lag time. Strains did not have different lag times, and lag times were short given that the cells had spent several (3 to 10) days in dry powdered infant formula. The growth rates and lag times at various temperatures obtained in this study may help in calculations of the period for which reconstituted infant formula can be stored at a specific temperature without detrimental impact on health.  相似文献   

17.
Temperature is an important factor regulating microbial activity and shaping the soil microbial community. Little is known, however, on how temperature affects the most important groups of the soil microorganisms, the bacteria and the fungi, in situ. We have therefore measured the instantaneous total activity (respiration rate), bacterial activity (growth rate as thymidine incorporation rate) and fungal activity (growth rate as acetate-in-ergosterol incorporation rate) in soil at different temperatures (0-45 degrees C). Two soils were compared: one was an agricultural soil low in organic matter and with high pH, and the other was a forest humus soil with high organic matter content and low pH. Fungal and bacterial growth rates had optimum temperatures around 25-30 degrees C, while at higher temperatures lower values were found. This decrease was more drastic for fungi than for bacteria, resulting in an increase in the ratio of bacterial to fungal growth rate at higher temperatures. A tendency towards the opposite effect was observed at low temperatures, indicating that fungi were more adapted to low-temperature conditions than bacteria. The temperature dependence of all three activities was well modelled by the square root (Ratkowsky) model below the optimum temperature for fungal and bacterial growth. The respiration rate increased over almost the whole temperature range, showing the highest value at around 45 degrees C. Thus, at temperatures above 30 degrees C there was an uncoupling between the instantaneous respiration rate and bacterial and fungal activity. At these high temperatures, the respiration rate closely followed the Arrhenius temperature relationship.  相似文献   

18.
降雨对秦皇岛西浴场细菌总数和可培养菌群组成的影响   总被引:3,自引:0,他引:3  
【目的】研究降雨条件对浴场细菌总数和优势菌群组成的影响。【方法】2014年8月强降雨前后采集秦皇岛西浴场3个站位的海水样品,采用荧光显微镜计数法和平板计数法分别对细菌总数和可培养细菌总数进行计数;对群落结构组成进行分析,并对可培养细菌进行鉴定。【结果】雨前3个站位细菌总数和可培养细菌总数平均值分别为5.6×10~9 CFU/L和8.3×10~7 CFU/L,雨后分别为9.2×109 CFU/L和2.1×10~8 CFU/L。在可培养菌群中,变形菌门(Proteobacteria,雨前占80%,雨后占73%)是主要的微生物类群,其次为拟杆菌门(Bacteroides,雨前占12%,雨后占13%)、厚壁菌门(Firmicutes,雨前占7%,雨后占11%)等;肠杆菌属(Enterobacter spp.,21株)、海杆菌属(Marinobacter spp.,13株)、弓形菌属(Arcobacter spp.,13株)、假单胞菌属(Pseudomonas spp.,10株)、芽孢杆菌属(Bacillus spp.,10株)和弧菌属(Vibrio spp.,6株)为雨前可培养细菌优势属,而雨后可培养细菌优势属为肠杆菌属(22株)、海杆菌属(21株)、芽孢杆菌属(14株)、不动杆菌属(Acinetobacter spp.,11株)、假单胞菌属(9株)和弓形菌属(5株)等。【结论】降雨对细菌总数有显著的影响,同时降雨后浴场微生物群落结构发生了改变。  相似文献   

19.
20.
Many sigmoidal functions to describe a bacterial growth curve as an explicit function of time have been reported in the literature. Furthermore, several expressions have been proposed to model the influence of temperature on the main characteristics of this growth curve: maximum specific growth rate, lag time, and asymptotic level. However, as the predictive value of such explicit models is most often guaranteed only at a constant temperature within the temperature range of microbial growth, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a dynamic mathematical model--a first-order differential equation--has been derived, describing the bacterial population as a function of both time and temperature. Furthermore, the inactivation of the population at temperatures above the maximum temperature for growth has been incorporated. In the special case of a constant temperature, the solution coincides exactly with the corresponding Gompertz model, which has been validated in several recent reports. However, the main advantage of this dynamic model is its ability to deal with time-varying temperatures, over the whole temperature range of growth and inactivation. As such, it is an essential building block in (time-saving) simulation studies to design, e.g., optimal temperature-time profiles with respect to microbial safety of a production and distribution chain of chilled foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号