首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total and culturable rhizosphere microbial communities structure from three different genotypes of Arabidopsis thaliana growing on three different substrates was studied with phospholipid fatty acid analysis (PLFA) and multivariate statistical analyses: correspondence analysis (CA) and distance based redundancy analyses (db-RDA). In addition, microbial biomass from different groups (total bacteria, Gram+, Gram? and fungi) was calculated from biomarkers PLFA peak area, both from total and culturable microbial community. db-RDA analysis showed significant differences between soils but not between plant genotypes for culturable microbial community structure. Total microbial community was significantly different between soils, and also between plant lines in each soil. Biomass of different bacterial groups showed significant higher values in soil two rhizosphere irrespective of the plant line. In addition, significant differences between plant lines were also found for microbial biomass of different bacterial groups both in total and culturable microbial community. Throughout the work we have demonstrated that PLFA analysis has been able to show a different behaviour of total microbial community with regard to the culturable fraction analyzed in this work under the influence of plant roots. Microbial biomass of different microbial groups calculated with PLFA biomarkers was a suitable tool to detect differences between soils irrespective of the plant line, and differences in the same soil between plant lines. According to this data, a previous study should be carried out before GMPs are used in field conditions to evaluate the potential alterations that may take place on rhizosphere microbial communities structure which may further affect soil productivity. In conclusion, based on data presented in this work, GMPs alter rhizosphere microbial communities structure and this effect is different depending on the soil. Furthermore, total microbial community is affected to a greater extent than the culturable fraction analyzed.  相似文献   

2.
冬季作物对稻田土壤微生物量碳、氮和微生物熵的短期影响   总被引:18,自引:0,他引:18  
研究不同的冬季作物马铃薯、黑麦草、紫云英、油菜在"冬季作物-双季稻"轮作种植制度下短期内对稻田土壤微生物碳、氮和微生物熵的影响,在湖南省土壤肥料研究所的实验网室内设置了小区试验.试验结果表明:几种冬季作物均提高了稻田土壤微生物碳、氮含量,黑麦草明显提高了土壤微生物量碳和微生物熵,紫云英明显提高了土壤微生物量氮.冬季作物对土壤微生物量碳和土壤微生物量氮的季节性影响变化趋势基本一致,紫云英、马铃薯处理的土壤微生物量C、N含量均在水稻生育期间8月中旬达到最大值.  相似文献   

3.
A food chain consisting of toluene, toluene-degrading Pseudomonas sp. PS+ and a bacterivorous flagellated amoebae Vahlkampfia sp. was established in a batch culture. This culture was amended with [U-13C]toluene and served as a model system to elucidate the flux of carbon in the food chain by quantifying bacterial biovolumes and 13C enrichment of phospholipid fatty acid (PLFA) biomarkers of the bacteria and the heterotrophic protists. Major PLFA detected in the batch co-culture included those derived from Pseudomonas sp. PS+ (16:1omega7c and 18:1omega7c) and Vahlkampfia sp. (20:4omega6c and 20:3omega6c). A numerical model including consumption of toluene by the bacteria and predation of the bacteria by the heterotrophic protists was adjusted to the measured toluene carbon, bacterial carbon and delta13C values of bacterial and protist biomass. Using this model, we estimated that 28+/-7% of the consumed toluene carbon was transformed into bacterial biomass, and 12+/-4% of the predated bacterial carbon was incorporated into heterotrophic protist biomass. Our study showed that the 13C enrichment of PLFA biomarkers coupled to biomass determination via biovolume calculations is a suitable method to trace carbon fluxes in protist-inclusive microbial food chains because it does not require the separation of protist cells from bacterial cells and soil particles.  相似文献   

4.
水稻和稗草共生土壤微生物生物量碳及酶活性的变化   总被引:8,自引:0,他引:8  
李海波  孔垂华 《应用生态学报》2008,19(10):2234-2238
以稻田稗草、化感水稻PI312777和普通水稻辽粳9为试材,研究了田间稗草和水稻1∶1共生条件下,土壤微生物生物量碳及脱氢酶、脲酶和转化酶活性的变化.结果表明:在稗草 的干扰下,化感水稻PI312777根区土壤微生物生物量碳含量比单作减少了 50.52%(P<0.01),而行间土壤微生物生物量碳含量增加;普通水稻辽粳9根区土壤 微生物生物量碳含量比单作减少了38.99%(P<0.01),但其行间土壤微生物生物量碳含量无明显变化.两个水稻品种根区土壤脱氢酶活性均被显著抑制(P<0.05),下降率都在20%以上;PI312777根区土壤脲酶和转化酶活性均被显著促进(P<0.01);而辽粳9根区土壤转化酶活性也被显著抑制(P<0.01),但脲酶活性无明显变化.化感水稻根区土壤微生物生物量碳含量的显著减少及脲酶、转化酶活性的增加是其化感特性的表现,表明土壤微生物和酶均参与了水稻和稗草的种间作用,化感水稻具有抗稗草干扰的明显优势.  相似文献   

5.
设置了冬闲-双季稻、紫云英-双季稻、油菜-双季稻、大蒜-双季稻,马铃薯、紫云英、油菜轮作接茬双季稻5个处理,通过3年(2013—2015)大田试验,系统研究了双季稻田冬季复种对产量和土壤有机碳、活性有机碳及碳库管理指数等的影响。结果表明:冬种作物早稻产量均高于对照,晚稻产量除冬种油菜有所降低外,其他各冬作处理均高于对照。各冬种处理土壤总有机碳、活性有机碳、可溶性有机碳、微生物量碳含量和碳库指数较冬闲处理均有显著提高。土壤碳库管理指数除了冬季作物轮种处理外,其他冬种处理较冬闲处理均有显著提高。土壤总有机碳与活性有机碳和微生物量碳之间呈极显著相关,与可溶性有机碳和碳库管理指数存在显著相关,碳库活度和碳库活度指数各冬种处理也有所提高,但影响不显著。  相似文献   

6.
微生物群落功能多样性是土壤质量变化重要的指标,不同作物类型的秸秆还田措施对土壤微生物群落功能多样性具有明显的影响。以位于双季稻主产区不同冬季覆盖作物-双季稻种植模式大田定位试验田为研究对象,以冬闲-双季稻种植模式为对照(CK),应用Biolog-GN技术开展黑麦草-双季稻(Ry)、紫云英-双季稻(Mv)、油菜-双季稻(Ra)和马铃薯-双季稻(Po)种植模式条件下不同冬季覆盖作物秸秆还田后对双季稻田根际土壤微生物功能多样性影响的研究。研究结果表明,早稻和晚稻成熟期,与CK处理相比,冬季覆盖作物秸秆还田处理增加了稻田土壤碳源平均颜色变化率(AWCD),以Po处理AWCD均为最高,均显著高于Ry和CK处理。不同冬季覆盖作物秸秆还田处理土壤微生物代谢多样性指数表现出明显的差异,早稻成熟期,Po处理的Richness、Shannon和McIntosh指数均为最高,其次为Ry、Mv和Ra处理,CK处理最低;晚稻成熟期,各处理的Richness、Shannon和McIntosh指数大小顺序均表现为PoRaMvRyCK。土壤微生物碳源利用的主成分分析结果表明,各冬季覆盖作物秸秆还田处理根际土壤微生物利用的主要碳源为氨基酸类和糖类物质,不同处理间碳源利用类型有差异。冬季覆盖作物秸秆还田措施有利于提高双季稻田根际土壤微生物对碳源的利用能力、物种丰富度和均匀度。  相似文献   

7.
This report is part of a serial study applying stable isotope labelling to rice microcosms to track the utilization of recently photosynthesized carbon by active microbiota in the rhizosphere. The objective of the present study was to apply phospholipid fatty acid-based stable isotope probing (PLFA-SIP) to detect the spatial variation of active microorganisms associated with rhizosphere carbon flow. In total, 49 pulses of 13CO2 were applied to rice plants in a microcosm over a period of 7 days. Rhizosphere soil was separated from bulk soil by a root bag. Soil samples were taken from rhizosphere and bulk soil, and the bulk soil samples were further partitioned both vertically (up layer and down layer) and horizontally with increasing distance to the root bag. Incorporation of 13C into PLFAs sharply decreased with distance to the roots. The labelling of 16:1omega9, 18:1omega7, 18:1omega9, 18:2omega6,9 and i14:0 PLFAs was relatively stronger in the rhizosphere while that of i15:0 and i17:0 increased in the bulk soil. The microorganisms associated with 16:1omega9 were active in both up- and down-layer soils. The microorganisms represented by i14:0, 18:1omega7 and 18:2omega6,9 exhibited a relatively higher activity in up-layer soil, whereas those represented by i15:0 and i17:0 were more active in down-layer soil. These results suggest that in the rhizosphere Gram-negative and eukaryotic microorganisms were most actively assimilating root-derived C, whereas Gram-positive microorganisms became relatively more important in the bulk soil. The active populations apparently differed between up- and down-layer soil and in particular changed with distance to the roots, demonstrating systematic changes in the activity of the soil microbiota surrounding roots.  相似文献   

8.
Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil microbiotic properties. More research will expand our understanding of combined effects of these alternatives on feedbacks between soil microbiotic properties and SOC accrual.  相似文献   

9.
以高粱连作5年为对照(CK),研究了高粱连作3年轮作苜蓿(T1)和葱(T2),对下茬高粱生长、根际土壤微生物及土壤酶活性的影响.结果表明:与CK相比,轮作改善了高粱地上部的生长;T1增产16.5%,效果明显.轮作也促进了高粱根系的生长,T1和T2处理的高粱总根长是CK的1.3和1.4倍,根总表面积是CK的1.6和1.5倍,根体积是CK的2.2和1.6倍,根系生物量是CK的2.0和1.3倍,T1促进了根系在10 cm以下土层中的分布.借助Biolog法对穗花期根际土壤微生物群落功能多样性分析表明,T1和T2处理根际土壤微生物活性显著高于CK,且Shannon多样性指数分别是CK的1.2和1.1倍;轮作提高了根际土壤蔗糖酶活性.综上,轮作苜蓿比轮作葱更能改善高粱根际土壤环境,提高土壤微生物活性和酶活性,控制高粱连作障碍,提高高粱产量.  相似文献   

10.
Lipid biomarker analysis has proven valuable in testing the hypothesis that attributes of the extant microbiota can directly reflect the occurrence of contaminant biodegradation. Two past research efforts have demonstrated this utility and are described here. A 4.5 m vertical core was obtained from a diesel fuel oil contamination plume. Core material was assayed for total petroleum hydrocarbons (TPH) and bacterial membrane phospholipids (PLFA) via a single solvent extraction. Microbial viable biomass and the relative abundance of Gram-negative bacterial PLFA biomarkers were found to be significantly correlated with TPH concentration. The core TPH profile also revealed two distinct areas where the average TPH level of 3,000 microg g(-1) fell to near detection limits. Both areas were characterized by a three-fold decrease in the hexadecane/pristane ratio, indicating alkane biodegradation, and a distinct PLFA profile that showed a close similarity to the uncontaminated surface soil. Low-order, incomplete detonations can deposit hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) into training range surface soils. Since surface soils are exposed to temporal and diurnal moisture cycles, we investigated the effect two very different soil moisture tensions had on the in situ microbiota and RDX biodegradation. Saturated soils were characterized by rapid RDX biodegradation, 4 day half-life, a decrease in number of species detected and increase in PLFA biomarkers for Gram-negative proteobacteria (n16:1omega7c, n18:1omega9c, and n18:1omega7c) and Gram-positive firmicutes (i15:0 and a15:0). Terminal restriction fragment length polymorphism (T-RFLP) profiles of endpoint microbial communities indicated a shift from 18 to 36% firmicutes, the loss of gamma-proteobacteria and the emergence of alpha-proteobacteria. These two past research efforts demonstrated the utility of the lipid biomarker analysis in identifying microbial community characteristics that were associated with two very different soil contaminants. Lipid biomarkers defined areas of TPH biodegradation and identified community shifts as a result of soil conditions that affected explosives fate. Information like this can be used to enhance the predictive power of ecological models such as the Army Training and Testing Area Carrying Capacity for munitions model [ATTACC].  相似文献   

11.
施磷对干旱胁迫下箭竹根际土壤养分及微生物群落的影响   总被引:2,自引:0,他引:2  
以箭竹及其根际土壤作为研究对象,采用两因素随机区组实验,设置2种水分处理(正常浇水和干旱胁迫)和2种施磷量处理(施磷和不施磷),探究施磷对干旱胁迫下箭竹根际土壤养分及微生物群落结构和多样性的影响。结果表明:(1)干旱胁迫显著降低了箭竹根际土壤中微生物量碳、可溶性有机氮和有效磷的含量,虽对箭竹根际土壤微生物群落的多样性无显著影响,但显著降低了箭竹根际土壤中总PLFA(phospholipid fatty acid contents)的含量和真菌、细菌、革兰氏阳性菌与革兰氏阴性菌的PLFA含量以及革兰氏阳性菌/革兰氏阴性菌的PLFA比值,显著改变了箭竹根际土壤微生物群落结构,结果显著降低了箭竹的生物量。(2)施磷显著增加了受旱箭竹根际土壤中微生物量碳和有效磷的含量,虽大体上对受旱箭竹根际土壤微生物群落的多样性无显著影响,但显著增加了受旱箭竹根际土壤中总PLFA和真菌PLFA的含量,并在一定程度上增加了细菌、革兰氏阳性菌、革兰氏阴性菌和放线菌的PLFA含量以及革兰氏阳性菌/革兰氏阴性菌和真菌/细菌的PLFA比值,也在一定程度上改善了受旱箭竹根际土壤微生物群落结构,从而改善受旱箭竹的生长。(3)主成分分析表明,干旱对箭竹根际土壤微生物群落结构的影响显著,而施磷的影响不明显。(4)相关分析发现,箭竹根际土壤微生物群落结构与箭竹根际土壤微生物量碳、可溶性有机氮及箭竹生物量呈显著正相关。综上,干旱降低了箭竹根际土壤养分含量和微生物生物量,改变了箭竹根际土壤微生物群落结构,抑制了箭竹的生长;施磷能增加受旱箭竹根际土壤养分含量和微生物生物量,改善受旱箭竹根际土壤微生物群落结构,进而改善受旱箭竹的生长。  相似文献   

12.
连作对麦冬根际土壤细菌群落的影响   总被引:2,自引:0,他引:2  
以中草药麦冬为研究对象,采用变性梯度凝胶电泳(DGGE)方法,考察连作对麦冬根际土壤细菌群落的影响。结果表明,重茬麦冬根际细菌群落的Shannon-Wiener指数从苗期至快速生长期、再到块根膨大期分别为3.36-3.40-3.69,丰富度指数为55.0-61.5-63.5,均匀度指数为0.84-0.82-0.89;而同期正茬根际细菌群落的上述指数值分别为3.66-3.33-3.72、67.5-53.5-63.5和0.87-0.84-0.90。通过对土壤细菌群落的DGGE图谱进行主成分分析,结果显示,上述各个时期重茬与正茬样本均发生显著分离,表明连作改变了麦冬根际细菌群落的多样性变化趋势和结构组成。进一步比较麦冬块根膨大期根际主要功能菌群的数量变化,发现连作后氨化细菌和好气性纤维素分解菌数量增加,而硝化细菌和固氮菌的数量减少。对比发现重茬麦冬的产量仅为正茬的70.6%,表明麦冬连作减产与其根际土壤细菌群落的变化相关。  相似文献   

13.
以日光温室连作第2、6、10、14、18、20、24、26茬次的黄瓜根际土壤为研究材料,研究了长期连作对黄瓜根际土壤酚酸类物质的影响及其与土壤化学性质、酶活性、微生物活性的关系.结果表明:随着连作茬次的增加,酚酸类物质含量显著增加,且茬次间的总酚增长量在连作前期(0~2茬)和后期(20~26茬)显著高于连作中期(10~...  相似文献   

14.
新疆绿洲农田不同连作年限棉花根际土壤微生物群落多样性   总被引:22,自引:4,他引:18  
以南北疆不同连作年限棉花根际土壤为研究对象,采用Biolog技术,并结合传统平板培养法和土壤酶的测定,研究连作对棉花根际土壤微生物群落多样性的影响。Biolog分析结果表明,不同连作年限棉花根际土壤微生物碳源利用和功能多样性差异显著。荒地土壤微生物活性较低;在连作年限较短时(5—10a),根际土壤微生物群落的平均颜色变化率(AWCD)和Shannon指数较高;长期连作(15—20a),则呈明显下降趋势。主成分分析表明,不同连作年限的棉花根际土壤微生物碳源利用特征有明显不同。第一、二组开垦与未开垦土壤分别在PC1和PC2上出现差异,未开垦土壤得分均为负值,开垦土壤均为正值;而正茬与连作多年的棉花土壤在PC1上差异显著。其中在PC1上起分异作用的碳源主要是羧酸类和聚合物类,这两类碳源可能是影响连作棉花根际土壤微生物的主要碳源。可培养微生物数量的测定结果表明,荒地细菌数量最少;在连作年限较低时(5—10a左右),细菌数量呈上升趋势;而长期连作(>15a)后,细菌数量呈现下降趋势。真菌数量在连作多年后(10—15a)也开始增加。放线菌变化趋势不明显。四种土壤酶活性在连作的初中期(5—15a),连作障碍表现明显,土壤酶活性呈下降(过氧化氢酶和磷酸酶)或先升高后下降(脲酶和蔗糖酶)趋势,但随着连作年限的延长(15—20a),这4种土壤酶活性均表现出增高趋势。综上所述,棉花长期连作使棉花根际土壤微生物群落多样性降低,发生连作障碍,进而导致棉花产量降低。  相似文献   

15.
The farm household responsibility system (FHRS) was adopted in Chinese rural areas during the economic reform in the early 1980s. Since then, many farm households have increased cropping intensity by using large quantities of nitrogen (N) fertilizers in their responsible fields to increase agricultural income. However, intensive cropping systems with low N input are still common in remote places of the southwestern region of China. Maintenance and improvement of soil quality in intensive cropping systems is critical for sustaining agricultural productivity and environmental quality for future generations. The effects of intensive cropping of vegetables on paddy rice (Oryza sativa L.) yield using small quantities of N fertilizers through N mineralization of paddy soil in irrigated rice-based multiple cropping systems were studied in 15 paddy fields in Sichuan Province, China for 3 years. Intensification of vegetable cropping with negative N balance and removal of vegetable crop residues has greatly decreased total N (TN) contents in paddy soil leading to low levels of effective cumulated soil temperature and thickness of plow layer. As a result, the N mineralization in paddy field during paddy rice growing period was decreased. In addition to the low levels of chemical fertilizer N input and residual mineral N input, the lower level of N mineralization in paddy fields and low N recovery efficiency decreased the amount of N accumulated in aboveground biomass of paddy rice at maturity, resulting in limited rice yields. The amount of mineralized N only correlated with TN (partial correlation analysis). Therefore, in paddy fields with very low N input, the N mineralization in paddy soil during the paddy rice-growing period was the major limiting factor affecting the total yield increases. In addition, a decline in soil fertility can be determined using TN as an indicator. To improve paddy rice yield and avoid soil deterioration, the development and adoption of rational soil management programs are needed. These include input of plant residues, conscientious soil tillage for the maintenance of soil temperature and thickness of the plow layer, and the split application of fertilizer for the improvement of N recovery efficiency.  相似文献   

16.
选择黄土高原7种典型植物的根际与非根际土壤为研究对象,对土壤的养分含量、微生物生物量碳、氮、磷和基础呼吸的影响进行了初步研究。结果表明,7种不同植物根际土壤与非根际土壤的养分含量、微生物生物量和基础呼吸均存在显著差异;除冷蒿的土壤微生物生物量磷以外,其他各种植物的根际土壤的养分含量、微生物生物量和基础呼吸均比非根际土壤的高;土壤有机碳、全氮与土壤微生物生物量碳、氮及基础呼吸之间均具有极显著或显著相关关系,表明了土壤微生物生物量碳、氮可以作为判断土壤肥力状况的生物学指标,同时也可为提高土壤肥力水平和土壤培肥效果提供依据。  相似文献   

17.
As the major crops in north China, spring crops are usually planted from April through May every spring and harvested in fall. Wheat is also a very common crop traditionally planted in fall or spring and harvested in summer year by year. This continuous cropping system exhibited the disadvantages of reducing the fertility of soil through decreasing microbial diversity. Thus, management of microbial diversity in the rhizosphere plays a vital role in sustainable crop production. In this study, ten common spring crops in north China were chosen sole-cropped and four were chosen intercropped with peanut in wheat fields after harvest. Denaturing gradient gel electrophoresis (DGGE) and DNA sequencing of one 16S rDNA fragment were used to analyze the bacterial diversity and species identification. DGGE profiles showed the bacterial community diversity in rhizosphere soil samples varied among various crops under different cropping systems, more diverse under intercropping system than under sole-cropping. Some intercropping-specific bands in DGGE profiles suggested that several bacterial species were stimulated by intercropping systems specifically. Furthermore, the identification of these dominant and functional bacteria by DNA sequencing indicated that intercropping systems are more beneficial to improve soil fertility. Compared to intercropping systems, we also observed changes in microbial community of rhizosphere soil under sole-crops. The rhizosphere bacterial community structure in spring crops showed a strong crop species-specific pattern. More importantly, Empedobacter brevis, a typical plant pathogen, was only found in the carrot rhizosphere, suggesting carrot should be sown prudently. In conclusion, our study demonstrated that crop species and cropping systems had significant effects on bacterial community diversity in the rhizosphere soils. We strongly suggest sorghum, glutinous millet and buckwheat could be taken into account as intercropping crops with peanut; while hulled oat, mung bean or foxtail millet could be considered for sowing in wheat fields after harvest in North China.  相似文献   

18.
The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1(omega)5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1(omega)5 in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1(omega)5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely with neutral lipid fatty acid 16:1(omega)5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1(omega)5. The fungal neutral lipid/phospholipid ratio in the extraradical mycelium was positively correlated with the level of root infection and thus decreased with increasing applications of P. The neutral lipid/phospholipid ratio indicated that at high P levels, less carbon was allocated to storage structures. At all levels of P applied, the major part of the AM fungus was found to be present outside the roots, as estimated from phospholipid fatty acid 16:1(omega)5. The ratio of extraradical biomass/intraradical biomass was not affected by the application of P, except for a decrease at the highest level of P applied.  相似文献   

19.
The study provides the first evidence of the presence and abundance of bacterial population that coupled ferric iron reduction to aromatic compounds degradation in tropical irrigated paddy soils in the Philippines. Culturable phenol/benzoate degrading iron-reducing bacteria was enumerated by the most probable number (MPN) counts using phenol or benzoate as sole carbon source, and ferric oxide [Fe(OH)(3)] as the sole electron acceptor. Population density of phenol degrading iron-reducing bacteria (P-IRB) in irrigated paddy soil ranged from 10(2) to 10(8)g(-1) dry soil, and increased with the progressive rice growth in rice cropping seasons; the study also revealed a significant rhizosphere effect on population of P-IRB. However, high enumeration of benzoate degrading iron-reducing bacteria (B-IRB) was obtained in all the tested soil samples averaging at 1.2 x 10(6)g(-1) dry soil, and did not fluctuate significantly over the rice cropping seasons. Statistical data showed that less cropping density with aerated fallow and high nitrogen rate favored the population growth of P-IRB. However, results showed that population size of B-IRB was relatively insensitive to the effect of either seasonal or extrinsic factors tested in this study.  相似文献   

20.
杉木人工林土壤微生物群落结构特征   总被引:10,自引:0,他引:10  
采用氯仿熏蒸法、稀释平板法和磷脂脂肪酸(phospholipid fatty acid,PLFA)方法,分析了常绿阔叶林转变成杉木人工林后土壤微生物种群数量和群落结构的变化特征.结果表明:常绿阔叶林转变为杉木人工林后,林地土壤的微生物生物量碳、可培养细菌和放线菌数降低.杉木人工林地总PLFAs、细菌PLFAs、真菌PLFAs比常绿阔叶林分别降低了49.4%、52.4%和46.6%,革兰氏阳性和阴性细菌PLFAs远低于常绿阔叶林.杉木人工林根际土壤微生物生物量碳、可培养细菌和放线菌数显著高于杉木人工林林地土壤,根际土壤中总PLFAs、细菌PLFAs、革兰氏阳性和阴性细菌PLFAs的含量也高于林地土壤,但真菌PLFAs和细菌PLFAs之比却低于林地土壤.对土壤微生物群落结构进行主成分分析发现,第1主成分和第2主成分共解释了土壤微生物群落结构变异的78.2%.表明常绿阔叶林与杉木人工林土壤的微生物群落结构间存在差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号