首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical dry forest is the most widely distributed land-cover type in the tropics. As the rate of land-use/land-cover change from forest to pasture or agriculture accelerates worldwide, it is becoming increasingly important to quantify the ecosystem biomass and carbon (C) and nitrogen (N) pools of both intact forests and converted sites. In the central coastal region of México, we sampled total aboveground biomass (TAGB), and the N and C pools of two floodplain forests, three upland dry forests, and four pastures converted from dry forest. We also sampled belowground biomass and soil C and N pools in two sites of each land-cover type. The TAGB of floodplain forests was as high as 416 Mg ha–1, whereas the TAGB of the dry forest ranged from 94 to 126 Mg ha–1. The TAGB of pastures derived from dry forest ranged from 20 to 34 Mg ha–1. Dead wood (standing and downed combined) comprised 27%–29% of the TABG of dry forest but only about 10% in floodplain forest. Root biomass averaged 32.0 Mg ha–1 in floodplain forest, 17.1 Mg ha–1 in dry forest, and 5.8 Mg ha–1 in pasture. Although total root biomass was similar between sites within land-cover types, root distribution varied by depth and by size class. The highest proportion of root biomass occurred in the top 20 cm of soil in all sites. Total aboveground and root C pools, respectively, were 12 and 2.2 Mg ha–1 in pasture and reached 180 and 12.9 Mg ha–1 in floodplain forest. Total aboveground and root pools, respectively, were 149 and 47 kg ha–1 in pasture and reached 2623 and 264 kg ha–1 in floodplain forest. Soil organic C pools were greater in pastures than in dry forest, but soil N pools were similar when calculated for the same soil depths. Total ecosystem C pools were 306. The Mg ha–1 in floodplain forest, 141 Mg ha–1 in dry forest, and 124 Mg ha–1 in pasture. Soil C comprised 37%–90% of the total ecosystem C, whereas soil N comprised 85%–98% of the total. The N pools lack of a consistent decrease in soil pools caused by land-use change suggests that C and N losses result from the burning of aboveground biomass. We estimate that in México, dry forest landscapes store approximately 2.3 Pg C, which is about equal to the C stored by the evergreen forests of that country (approximately 2.4 Pg C). Potential C emissions to the atmosphere from the burning of biomass in the dry tropical landscapes of México may amount to 708 Tg C, as compared with 569 Tg C from evergreen forests.  相似文献   

2.
Methylated and total Hg, and TOC concentrations were measured in precipitation and runoff in a first order Precambrian Shield watershed, and in precipitation, throughfall, shallow groundwater and runoff in a zero Precambrian Shield watershed. Plots dominated by open lichen-covered bedrock and another containing small patches of conifer forest and thin discontinuous surficial deposits were monitored within the zero order catchment. Methyl (3–10 fold) and non-methyl (1.4–2.8 fold) Hg concentrations changed irregularly during rainfall and snowmelt runoff events in all catchments. Temporal patterns of Hg concentration in runoff included flushing and subsequent dilution as well as peak concentrations coinciding with peak or recession flow. Mercury export was highest from lichen-covered bedrock surfaces as a result of high runoff yields and minimal opportunity for physical retention and in the case of MeHg demethylation. Forest canopy and lichen/bedrock surfaces were often net sources for Hg while forest soils were mostly sinks. However, upland soils undergoing periodic reducing conditions appear to be sites for the in situ production of MeHg.  相似文献   

3.
Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.  相似文献   

4.
Altitudinal variations in temperature and soils were analysed on a humid subtropical mountain, Mt Emei (3,099 m a.s.l., 29°34.5N, 103°21.5E), in Sichuan, China, to see how the vegetation varies with the environmental factors. As a principal finding, the coldest mean monthly temperature –1°C, rather than the warmth index of 85°C·months, emerged as the primary factor that delimited the evergreen broadleaved forest. With regard to soils, properties such as organic C, total N, available P, exchangeable K tended to increase with altitude. The highest values in organic C (26.6%), total N (1.34%) and available P (45.39 ppm) were recorded in surface soils of the mixed forest (2,210 m a.s.l.) including all three tree life forms, i.e. evergreen/deciduous broadleaved and coniferous trees. The high pH and contents of exchangeable Ca and Mg in the surface soils derived from the parent material, limestone and dolomite, between 900 and 1,200 m, where several Tertiary tree species existed. The C/N ratios of surface soils in the coniferous forests (2,500–3,099 m) were higher than those of the evergreen broadleaved forests (600–1,500 m) and the mixed forests (1,500–2,500 m).  相似文献   

5.
Climate change and changes in land use will alter the stores of carbon and turnover of soil organic matter. We have used a theory for carbon cycles in terrestrial ecosystems to analyse changes in soil organic matter turnover in coniferous forests. The central concepts of the theory are a continuously changing substrate quality, a constant decomposer efficiency and a climatically controlled decomposer growth rate. Measurements on litter production and soil carbon stores from field experiments have been used to successfully validate the model predictions. Measured litter production increased with increasing temperature but the response was not identical for forests of different vegetation types which reflect variations in productivity. The temperature response of needle-litter production and decomposition rate were strongest in the most productive forests and weakest for the low productive forests. Initial decay rates of soil C store from steady state showed the same trend in temperature response as decay of a single litter cohort did, but the absolute values are 16% of the decay rates of a single litter cohort. Predicted soil C ranged from 5 to 9 kg C m–2. There exists a remarkable variation in forest soil C store response to temperature; the magnitude and even the sign depends on productivity as defined by vegetation type. The assumption that, in general, decomposition rates increase more than NPP with temperature, and consequently, soil C stores should decrease in response to a climate warming, seems therefore too simplistic.  相似文献   

6.
Recent studies have suggested that the residence time of Pb in the forest floor may not be as long as previously thought, and there is concern that the large pulse of atmospheric Pb deposited in the 1960s and early 1970s may move rapidly through mineral soils and eventually contaminate groundwater. In order to assess Pb mobility at a woodland (JMOEC) in south-central Ontario, a stable Pb isotope tracer 207Pb (8 mg m–2) was added to the forest floor in white pine (Pinus strobus) and sugar maple (Acer saccharum) stands, respectively, and monitored over a 2-year period. Excess 207Pb was rapidly lost from the forest floor. Applying first-order rate coefficients (k) of 0.57 (maple) and 0.32 (pine) obtained from the tracer study, and estimates of Pb deposition in the region, current predicted Pb concentrations in the forest floor are 1.5–3.1 and 2.1–5.8 mg kg–1 in the maple and pine plots, respectively. These values compare favorably with measured concentrations (corrected for mineral soil contamination) of 3.1–4.3 mg kg–1 in the maple stand and 2.6–3.6 mg kg–1 in the pine stand. The response time (1/k) of Pb in the forest floor at the sugar maple and white pine plots was estimated to be 1.8 and 3.1 years, respectively. The rapid loss of Pb from the forest floor at the JMOEC is much greater than previously reported, and is probably due to the rapid rate of litter turnover that is characteristic of forests with mull-type forest floors. In a survey of 23 forested sites that border the Precambrian Shield in south-central Ontario, Pb concentrations in the forest floor increased exponentially with decreasing soil pH. Lead concentrations in the forest floor at the most acidic survey sites, which exhibited mor-type forest floors, were approximately 10 times higher (80 mg kg–1) than at the JMOEC, and pollution Pb burdens were up to 25 times greater. Despite the rapid loss of Pb from the forest floor at the JMOEC, the highest pollution Pb concentrations were found in the upper (0–1 cm) mineral soil horizon. Lead concentrations in the upper 30 cm of mineral soil were strongly correlated with organic matter content, indicating that pollution Pb does not move as a pulse down the soil profile, but instead is linked with organic matter distribution, indicating groundwater contamination is unlikely.  相似文献   

7.
Eight forest sites representing a large range of climate, vegetation, and productivity were sampled in a transect across Oregon to study the relationships between aboveground stand characteristics and soil microbial properties. These sites had a range in leaf area index of 0.6 to 16 m2 m–2 and net primary productivity of 0.3 to 14 Mg ha–1 yr–1.Measurements of soil and forest floor inorganic N concentrations and in situ net N mineralization, nitrification, denitrification, and soil respiration were made monthly for one year. Microbial biomass C and anaerobic N mineralization, an index of N availability, were also measured. Annual mean concentrations of NH 4 + ranged from 37 to 96 mg N kg–1 in the forest floor and from 1.7 to 10.7 mg N kg–1 in the mineral soil. Concentrations of NO 3 were low ( < 1 mg N kg–1) at all sites. Net N mineralization and nitrification, as measured by the buried bag technique, were low on most sites and denitrification was not detected at any site. Available N varied from 17 to 101 mg N kg–1, microbial biomass C ranged from 190 to 1230 mg Ckg–1, and soil respiration rates varied from 1.3 to 49 mg C kg–1 day–1 across these sites. Seasonal peaks in NH 4 + concentrations and soil respiration rates were usually observed in the spring and fall.The soils data were positively correlated with several aboveground variables, including leaf area index and net primary productivity, and the near infrared-to-red reflectance ratio obtained from the airborne simulator of the Thematic Mapper satellite. The data suggest that close relationships between aboveground productivity and soil microbial processes exist in forests approaching semi-equilibrium conditions.Abbreviations IR infrared - LAI leaf area index - k c proportion of microbial biomass C mineralized to CO2 - NPP net primary productivity - TM Thematic Mapper  相似文献   

8.
Soil nutrient pools and nitrogen dynamics in old-growth forests were compared with selectively logged stands and stands that were selectively logged and then burned approximately 100 years ago to test the hypothesis that land-use history exerts persistent controls on nutrient capital and nitrogen (N) transformation rates. We provide estimates of net N mineralization and nitrification rates for old-growth forests from the northeastern United States, a region in which few old-growth forests remain and for which few published accounts of mineralization rates exist. At the plot level, no effects of the dominant tree species were observed on any measured soil properties or N-cycling rates. Effects of alternate disturbance histories were detected in soil carbon (C) and N pools. Old-growth forest soils had higher total C (67 Mg·ha–1) and N capital (3.3 Mg·ha–1) than that of historically logged then burned soils (C = 50 Mg·ha–1 and N = Mg·ha–1), with intermediate values (C = 54 Mg·ha–1 and N = 2.7 Mg·ha–1) in the stands that were historically logged. Despite these differences in C and N content, corresponding differences in C–N ratio, net N mineralization rates, and net nitrification rates were not observed. The N concentration in the green foliage of American beech trees (Fagus grandifolia) was also highest from canopy trees growing in old-growth stands (3.0%), followed by logged stands (2.6%), and lowest in the logged/burned stands (2.2%). These data suggest that some legacies of light harvesting on ecosystem processes may be detected nearly 100 years following the disturbance event. These results are discussed in the context of how multiple forest disturbances act in concert to affect forest dynamics.  相似文献   

9.
A model of soil carbon cycling in forest ecosystems was applied to predict the soil carbon balance in nine forest ecosystems from the tropics to the boreal zone during the past three decades (1965–95). The parameters of carbon flows and initial conditions of carbon pools were decided based on data obtained in each forest stand. Assumptions for model calculation were: (i) primary production (i.e. litterfall and root turnover rates) increased with increasing CO2 concentrations in the atmosphere (10% per 40 p.p.m. CO2); and (ii) temperature increased by 0.6°C per 100 years, but precipitation changed little. The simulation employed a daily time step and used daily air temperature and precipitation observed near each forest stand over an average year during the last decade. The model calculations suggest that the accumulation of total soil carbon increased 8.5–10.4 tC (ton of carbon) ha–1 in broad-leaved forests from the tropics to the cool-temperate zone during the past three decades, but the amount of soil carbon (3.0–8.4 tC ha–1) increased much less in needle forests from the subtropical to boreal zones during the same period. There is a linear relationship between the increasing rate of soil carbon stock during the past three decades (1965–95) in forest stands concerned (RMS, % per 30 years) and annual mean temperature of their soils (T0,°C), as: RMS = 0.34T0 + 4.1. Based on the data of carbon stock in forest soil in each climate zone reported, the global sink of atmospheric CO2 into forest soil was roughly estimated to be 42 GtC (billion tons of carbon) per 30 years, which was 1.4 GtC year–1 on average over the past three decades.  相似文献   

10.
The distribution of tree biomass and the allocation of organic matter production were measured in an 11-yr-old Pinus caribaea plantation and a paired broadleaf secondary forest growing under the same climatic conditions. The pine plantation had significantly more mass aboveground than the secondary forest (94.9 vs 35.6 t ha-1 for biomass and 10.5 vs 5.0 t ha-1 for litter), whereas the secondary forest had significantly more fine roots (⩽2 mm diameter) than the pine plantation (10.5 and 1.0 t ha-1, respectively). Standing stock of dead fine roots was higher than aboveground litter in the secondary forest. In contrast, aboveground litter in pine was more than ten times higher than the dead root fraction. Both pine and secondary forests had similar total organic matter productions (19.2 and 19.4 t ha-1 yr-1, respectively) but structural allocation of that production was significantly different between the two forests; 44% of total production was allocated belowground in the secondary forest, whereas 94% was allocated aboveground in pine. The growth strategies represented by fast growth and large structural allocation aboveground, as for pine, and almost half the production allocated belowground, as for the secondary forest, illustrate equally successful, but contrasting growth strategies under the same climate, regardless of soil characteristics. The patterns of accumulation of organic matter in the soil profile indicated contrasting nutrient immobilization and mineralization sites and sources for soil organic matter formation.  相似文献   

11.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests.  相似文献   

12.
The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems ha–1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B × X–0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton ha–1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.  相似文献   

13.
Contemporary carbon stocks of mineral forest soils in the Swiss Alps   总被引:2,自引:1,他引:1  
Soil organic carbon (SOC) has been identified as the main globalterrestrial carbon reservoir, but considerable uncertainty remains as toregional SOC variability and the distribution of C between vegetationand soil. We used gridded forest soil data (8–km × 8–km)representative of Swiss forests in terms of climate and forest typedistribution to analyse spatial patterns of mineral SOC stocks alonggradients in the European Alps for the year 1993. At stand level, meanSOC stocks of 98 t C ha–1 (N = 168,coefficient of variation: 70%) were obtained for the entiremineral soil profile, 76 t C ha–1 (N =137, CV: 50%) in 0–30 cm topsoil, and 62 t Cha–1 (N = 156, CV: 46%) in0–20 cm topsoil. Extrapolating to national scale, we calculatedcontemporary SOC stocks of 110 Tg C (entire mineral soil, standarderror: 6 Tg C), 87 Tg C (0–30 cm topsoil, standarderror: 3.5 Tg C) and 70 Tg C (0–20 cm topsoil, standarderror: 2.5 Tg C) for mineral soils of accessible Swiss forests(1.1399 Mha). According to our estimate, the 0–20 cm layers ofmineral forest soils in Switzerland store about half of the Csequestered by forest trees (136 Tg C) and more than five times morethan organic horizons (13.2 Tg C).At stand level, regression analyses on the entire data set yielded nostrong climatic or topographic signature for forest SOC stocks in top(0–20 cm) and entire mineral soils across the Alps, despite thewide range of values of site parameters. Similarly, geostatisticalanalyses revealed no clear spatial trends for SOC in Switzerland at thescale of sampling. Using subsets, biotic, abiotic controls andcategorial variables (forest type, region) explained nearly 60%of the SOC variability in topsoil mineral layers (0–20 cm) forbroadleaf stands (N = 56), but only little of thevariability in needleleaf stands (N = 91,R 2 = 0.23 for topsoil layers).Considerable uncertainties remain in assessments of SOC stocks, due tounquantified errors in soil density and rock fraction, lack of data onwithin-site SOC variability and missing or poorly quantifiedenvironmental control parameters. Considering further spatial SOCvariability, replicate pointwise soil sampling at 8–km × 8–kmresolution without organic horizons will thus hardly allow to detectchanges in SOC stocks in strongly heterogeneous mountain landscapes.  相似文献   

14.
The nitrogen cycle in lodgepole pine forests,southeastern Wyoming   总被引:7,自引:4,他引:3  
Storage and flux of nitrogen were studied in several contrasting lodgepole pine (Pinus contorta spp.latifolia) forests in southeastern Wyoming. The mineral soil contained most of the N in these ecosystems (range of 315–860 g · m–2), with aboveground detritus (37.5–48.8g · m–2) and living biomass (19.5–24.0 g · m–2) storing much smaller amounts. About 60–70% of the total N in vegetation was aboveground, and N concentrations in plant tissues were unusually low (foliage = 0.7% N), as were N input via wet precipitation (0.25 g · m–2 · yr–1), and biological fixation of atmospheric N (<0.03 g · m–2 · yr–1, except locally in some stands at low elevations where symbiotic fixation by the leguminous herbLupinus argenteus probably exceeded 0.1 g · m–2 · yr–1).Because of low concentrations in litterfall and limited opportunity for leaching, N accumulated in decaying leaves for 6–7 yr following leaf fall. This process represented an annual flux of about 0.5g · m–2 to the 01 horizon. Only 20% of this flux was provided by throughfall, with the remaining 0.4g · m–2 · yr–1 apparently added from layers below. Low mineralization and small amounts of N uptake from the 02 are likely because of minimal rooting in the forest floor (as defined herein) and negligible mineral N (< 0.05 mg · L–1) in 02 leachate. A critical transport process was solubilization of organic N, mostly fulvic acids. Most of the organic N from the forest floor was retained within the major tree rooting zone (0–40 cm), and mineralization of soil organic N provided NH4 for tree uptake. Nitrate was at trace levels in soil solutions, and a long lag in nitrification was always observed under disturbed conditions. Total root nitrogen uptake was calculated to be 1.25 gN · m–2 · yr–1 with estimated root turnover of 0.37-gN · m–2 · yr–1, and the soil horizons appeared to be nearly in balance with respect to N. The high demand for mineralized N and the precipitation of fulvic acid in the mineral soil resulted in minimal deep leaching in most stands (< 0.02 g · m–2 · yr–1). These forests provide an extreme example of nitrogen behavior in dry, infertile forests.  相似文献   

15.
The eastern U.S. receives elevated rates of Ndeposition compared to preindustrial times, yetrelatively little of this N is exported indrainage waters. Net uptake of N into forestbiomass and soils could account for asubstantial portion of the difference between Ndeposition and solution exports. We quantifiedforest N sinks in biomass accumulation andharvest export for 16 large river basins in theeastern U.S. with two separate approaches: (1)using growth data from the USDA ForestService's Forest Inventory and Analysis (FIA)program, and (2) using a model of forestnitrogen cycling (PnET-CN) linked to FIAinformation on forest age-class structure. Themodel was also used to quantify N sinks in soiland dead wood, and nitrate losses below therooting zone. Both methods agreed that netgrowth rates were highest in the relativelyyoung forests on the Schuylkill watershed, andlowest in the cool forests of northern Maine. Across the 16 watersheds, wood export removedan average of 2.7 kg N ha–1 yr–1(range: 1–5 kg N ha–1 yr–1), andstanding stocks increased by 4.0 kg N ha–1yr–1 (–3 to 8 kg N ha–1 yr–1). Together, these sinks for N in woody biomassamounted to a mean of 6.7 kg N ha–1yr–1 (2–9 kg N ha–1 yr–1), or73% (15–115%) of atmospheric N deposition. Modeled rates of net N sinks in dead wood andsoil were small; soils were only a significantnet sink for N during simulations ofreforestation of degraded agricultural sites. Predicted losses of nitrate depended on thecombined effects of N deposition, and bothshort- and long-term effects of disturbance. Linking the model with forest inventoryinformation on age-class structure provided auseful step toward incorporating realisticpatterns of forest disturbance status acrossthe landscape.  相似文献   

16.
Borken  W.  Xu  Y.J.  Beese  F. 《Plant and Soil》2004,258(1):121-134
Fertilization of nutrient-depleted and degraded forest soils may be required to sustain utilization of forests. In some European countries, the application of composts may now be an alternative to the application of inorganic fertilizers because commercial compost production has increased and compost quality has been improved. There is, however, concern that compost amendments may cause increased leaching of nitrogen, trace metals and toxic organic compounds to groundwater. The objective of this study was to assess the risk of ammonium (NH4 +), nitrate (NO3 ) and dissolved organic nitrogen (DON) leaching following a single compost application to silty and sandy soils in mature beech (Fagus sylvatica L.), pine (Pinus silvestris L.) and spruce (Picea abies Karst.) forests at Solling and Unterlüß in Lower Saxony, Germany. Mature compost from separately collected organic household waste was applied to the soil surface at a rate of 6.3 kg m–2 in the summer of 1997 and changes in NH4 +, NO3 and DON concentrations in throughfall and soil water at 10 and 100 cm soil depths were determined for 32 months. The spruce forests had the highest N inputs by throughfall water and the highest N outputs in both the control and compost plots compared with the pine and beech forests. Overall, the differences in total N outputs at 100 cm soil depth between the control and compost plots ranged between 0.3 and 11.2 g N m–2 for the entire 32-month period. The major leaching of these amounts occurred during the first 17 months after compost amendments, but there was no significant difference in total N outputs (–0.2 to 1.8 g N m–2) between the control and compost plots during the remaining 15 months. Most of the mineral soils acted as a significant sink for NO3 and DON as shown by a reduction of their outputs from 10 to 100 cm depth. Based on these results, we conclude that application of mature compost with high inorganic N contents could diminish the groundwater quality in the first months after the amendments. A partial, moderate application of mature compost with low inorganic N content to nutrient depleted forest soils can minimize the risk of NO3 leaching.  相似文献   

17.
Soils were sampled from two agricultural fields, two relatively pristine forests, and one suburban forest in Ontario, Canada. The ability of these soils to mineralize 2,4-dichlorophenoxyacetate, 3-chlorobenzoate, 4-chlorophenol, 2,4-dichlorophenol, pentachlorophenol, and atrazine was determined using 14C-labeled substrates. Direct preexposure was necessary before atrazine mineralization could be detected; however, it was not necessary for degradation of any of the other chemicals. 2,4-dichlorophenoxyacetate and pentachlorophenol mineralization was much higher in the agricultural soils relative to the pristine forest soils, but 3-chlorobenzoate and 2,4-dichlorophenol mineralization rates showed the opposite trend. Mineralization of 4-chlorophenol was about equivalent in all soils. Suburban forests soils were indistinguishable from agricultural soils with respect to their degradation of 2,4-dichlorophenoxyacetate and chlorobenzoate. Additionally, they were better able than any of the soils to withstand the toxic effects of pentachlorophenol. Pentachlorophenol mineralization was highly variable in the pristine forest soils, ranging from about 6 to 50%. Abiotic factors such as pH, soil type, and organic and moisture content did not account for these significant site differences. The selective forces responsible for these differences, and the possible differences in microbial populations are discussed.  相似文献   

18.
Phosphorus availability in soils is controlled by both the sizes of P pools and the transformation rates among these pools. Rates of gross P mineralization and immobilization are poorly known due to the limitations of available analytical techniques. We developed a new method to estimate P transformation rates in three forest soils and one grassland soil representing an Alfisol, an Ultisol, and Andisol, and a Mollisol. Three treatments were applied to each soil in order to separate the processes of mineral P solubilization, organic P mineralization, and solution P immobilization. One set of soils was retained as control, a second set was irradiated with -rays to stop microbial immobilization, and a third was irradiated and then autoclaved, also stop phosphatase activity. All three sets of samples were then incubated with anion exchange resin bags under aerobic conditions. Differences in resin P among the three treatments were used to estimate gross P mineralization and immobilization rates. Autoclaving did not affect resin-extractable P in any of the soils. Radiation did not alter resin-extractable P in the forest soils but increased resin-extractable P in the grassland soil. This increase was corrected in the calculation of potential P transformation rates. Effects of radiation on phosphatase activity varied with soils but was within 30% of the original values. Rates of P gross mineralization and immobilization ranged from 0.6–3.8 and 0–4.3 mg kg-soil-1 d-1, respectively, for the four soils. The net rates of solubilization of mineral P in the grassland soil were 7–10 times higher than the rates in forest soils. Mineralization of organic P contributed from 20–60% of total available P in the acid forest soils compared with 6% in the grassland soil, suggesting that the P mineralization processes are more important in controlling P availability in these forest ecosystems. This new method does not require an assumption of equilibrium among P pools, and is safer and simpler in operation than isotopic techniques.  相似文献   

19.
Land use change and the global carbon cycle: the role of tropical soils   总被引:31,自引:4,他引:31  
Millions of hectares of tropical forest are cleared annually for agriculture, pasture, shifting cultivation and timber. One result of these changes in land use is the release of CO2 from the cleared vegetation and soils. Although there is uncertainty as to the size of this release, it appears to be a major source of atmospheric CO2, second only to the release from the combustion of fossil fuels. This study estimates the release of CO2 from tropical soils using a computer model that simulates land use change in the tropics and data on (1) the carbon content of forest soils before clearing; (2) the changes in the carbon content under the various types of land use; and (3) the area of forest converted to each use. It appears that the clearing and use of tropical soils affects their carbon content to a depth of about 40 cm. Soils of tropical closed forests contain approximately 6.7 kg C · m-2; soils of tropical open forests contain approximately 5.2 kg C · m-2 to this depth. The cultivation of tropical soils reduces their carbon content by 40% 5 yr after clearing; the use of these soils for pasture reduces it by about 20%. Logging in tropical forests appears to have little effect on soil carbon. The carbon content of soils used by shifting cultivators returns to the level found under primary forest about 35 yr after abandonment. The estimated net release of carbon from tropical soils due to land use change was 0.11–0.26 × 1015 g in 1980.  相似文献   

20.
Increases in the deposition of atmospheric nitrogen (N) influence N cycling in forest ecosystems and can result in negative consequences due to the leaching of nitrate into groundwaters. From December 1995 to February 1998, the Pan-European Programme for the Intensive and Continuous Monitoring of Forest Ecosystems measured forest conditions at a plot scale for conifer and broadleaf forests, including the performance of time series of soil solution chemistry. The influence of various ecosystem conditions on soil solution nitrate concentrations at these forest plots (n = 104) was then analyzed with a statistical model. Soil solution nitrate concentrations varied by season, and summer concentrations were approximately 25% higher than winter ones. Soil solution nitrate concentrations increased dramatically with throughfall (and bulk precipitation) N input for both broadleaf and conifer forests. However, at elevated levels of throughfall N input (more than 10 kg N ha–1 y–1), nitrate concentrations were higher in broadleaf than coniferous stands. This tree-specific difference was not observed in response to increased bulk precipitation N input. In coniferous stands, throughfall N input, foliage N concentration, organic layer carbon–nitrogen (C:N) ratio, and nitrate concentrations covaried. Soil solution nitrate concentrations in conifer plots were best explained by a model with throughfall N and organic layer C:N as main factors, where C:N ratio could be replaced by foliage N. The organic layer C:N ratio classes of more than 30, 25–30, and less than 25, as well as the foliage N (mg N g–1) classes of less than 13, 13–17, and more than 17, indicated low, intermediate, and high risks of nitrate leaching, respectively. In broadleaf forests, correlations between N characteristics were less pronounced, and soil solution nitrate concentrations were best explained by throughfall N and soil pH (0–10-cm depth). These results indicate that the responses of soil solution nitrate concentration to changes in N input are more pronounced in broadleaf than in coniferous forests, because in European forests broadleaf species grow on the more fertile soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号