首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Water utilization of tropical hardwood hammocks of the Lower Florida Keys   总被引:1,自引:0,他引:1  
Summary Predawn water potential of representative plant species, together with stable isotope composition of stem water and potential water sources were investigated in four low-elevation tropical hardwood hammocks in the Lower Florida Keys, during a one year period. Hammock species had the lowest water potentials when soil water content was low and/or soil salinity was high, but differences in groundwater salinity had no effect on the water potential. Comparison of D/H ratio of plant stem water with soil and ground water corroborates the conclusion that they are primarily utilizing soil water and not groundwater. Thus, tropical hardwood hammocks are buffered from saline groundwater, and are able to thrive in areas where groundwater salinity is as high as 25. The effect of sea level rise on these forests may depend more on changes in the frequency of tidal inundation of the soil surface than on changes in groundwater salinity.  相似文献   

2.
3.
Aboveground net production rates of the subalpine stone pine (Pinus pumila) forests in central Japan were estimated by the summation method; net production was defined as the sum of annual biomass increment and annual loss due to death. In the two pine stands of different scrub heights, P1 (200 cm) and P2 (140 cm), aboveground biomass reached 177 and 126 ton ha−1, respectively. Leaf biomass was about 14 ton ha−1 in each stand. The estimates of aboveground net production during the 2 year period (1987–1989) averaged 4.1 and 3.7 ton ha−1 y−1 in P1 and P2, respectively, which were at the lowest among the pine forests in the world. Two indices of efficiency of energy fixation, that is, the ratio of net production to the total radiation during a growing season and the ratio of net production to total radiation per unit of leaf weight, were evaluated. Both efficiency indices for the twoP. pumila stands fell in the range obtained for other Japanese evergreen conifer forests. This suggested that the low annual net production of the stone pine stands were mainly due to a limitation in the length of the growing season. The pine forests were also characterized by a small allocation (about 17%) of aboveground net production into biomass increment, in comparison with other evergreen conifer forest types. Annual net carbon gain in theP. pumila forests was suggested to be largely invested in leaf production at the expense of the growth of woody parts.  相似文献   

4.
We discuss the mechanisms leading to nutrient limitation in tropical marine systems, with particular emphasis on nitrogen cycling in Caribbean ecosystems. We then explore how accelerated nutrient cycling from human activities is affecting these systems.Both nitrogen and phosphorus exert substantial influence on biological productivity and structure of tropical marine ecosystems. Offshore planktonic communities are largely nitrogen limited while nearshore ecosystems are largely phosphorus limited. For phosphorus, the ability of sediment to adsorb and store phosphorus is probably greater for tropical carbonate sediments than for most nearshore sediments in temperate coastal systems. However, the ability of tropical carbonate sediments to take up phosphorus can become saturated as phosphorus loading from human sources increases. The nature of the sediment, the mixing rate between nutrient-laden runoff waters and nutrient-poor oceanic waters and the degree of interaction of these water masses with the sediment will probably control the dynamics of this transition.Nearshore tropical marine ecosystems function differently from their temperate counterparts where coupled nitrification/denitrification serves as an important mechanism for nitrogen depuration. In contrast, nearshore tropical ecosystems are more susceptible to nitrogen loading as depurative capacity of the microbial communities is limited by the fragility of the nitrification link. At the same time, accumulation of organic matter in nearshore carbonate sediments appears to impair their capacity for phosphorus immobilization. In the absence of depurative mechanisms for either phosphorus or nitrogen, limitation for both these nutrients is alleviated and continued nutrient loading fuels the proliferation of nuisance algae.  相似文献   

5.
Carbon storage and sequestration in tropical mountain forests and their dependence on elevation and temperature are not well understood. In an altitudinal transect study in the South Ecuadorian Andes, we tested the hypotheses that (i) aboveground net primary production (ANPP) decreases continuously with elevation due to decreasing temperatures, whereas (ii) belowground productivity (BNPP) remains constant or even increases with elevation due to a shift from light to nutrient limitation of tree growth. In five tropical mountain forests between 1050 and 3060 m a.s.l., we investigated all major above‐ and belowground biomass and productivity components, and the stocks of soil organic carbon (SOC). Leaf biomass, stemwood mass and total aboveground biomass (AGB) decreased by 50% to 70%, ANPP by about 70% between 1050 and 3060 m, while stem wood production decreased 20‐fold. Coarse and large root biomass increased slightly, fine root biomass fourfold, while fine root production (minirhizotron study) roughly doubled between 1050 and 3060 m. The total tree biomass (above‐ and belowground) decreased from about 320 to 175 Mg dry mass ha?1, total NPP from ca. 13.0 to 8.2 Mg ha?1 yr?1. The belowground/aboveground ratio of biomass and productivity increased with elevation indicating a shift from light to nutrient limitation of tree growth. We propose that, with increasing elevation, an increasing nitrogen limitation combined with decreasing temperatures causes a large reduction in stand leaf area resulting in a substantial reduction of canopy carbon gain toward the alpine tree line. We conclude that the marked decrease in tree height, AGB and ANPP with elevation in these mountain forests is caused by both a belowground shift of C allocation and a reduction in C source strength, while a temperature‐induced reduction in C sink strength (lowered meristematic activity) seems to be of secondary importance.  相似文献   

6.
We estimated the fluxes, inputs and outputs of Ca, K,and Mg in a Mexican tropical dry forest. The studywas conducted in five contiguous small watersheds(12–28 ha) gauged for long-term ecosystem research. A total of five 80 × 30 m plots were used for thestudy. We quantified inputs from the atmosphere,dissolved and particulate-bound losses, throughfalland litterfall fluxes, and standing crop litter pools. Mean cation inputs for a six-year period were 3.03 kg/ha for Ca, 1.31 kg/ha for K, and 0.80 kg/ha for Mg. Mean outputs in runoff were 5.24, 2.83, and 1.79 kg/ha, respectively. Calcium, K, and Mgconcentrations increased as rainfall moved through thecanopy. Annual Ca return in the litterfall (11.4 g/m2) was much higher than K (2.3 g/m2)and Mg (1.6 g/m2). Litterfall represented 99%of the Ca, 84% of the Mg, and 53% of the K, totalaboveground return to the soil. Calcium concentrationin standing litter (3.87%) was much higher than K(0.38%) and Mg (0.37%). These concentrations werehigher (Ca), lower (K), or similar (Mg) to those inlitterfall. Residence times on the forest floor were0.86, 1.17, and 1.77 yr for K, Mg, and Carespectively. Compared to the residence time fororganic matter at the site (1.31 yr), these resultssuggest slow mineralization for Ca in this ecosystem. Budget estimates were calculated for a wet and a dryyear. Results indicated that nutrients accumulated inthe dry but that nutrients were lost during the wetyear. Comparison of Ca, K, and Mg losses in streamwater with the input rates from the atmosphere for thesix-year period show that inputs are lower thanoutputs in the Chamela tropical dry forestecosystem.  相似文献   

7.
Sutherland  Ross A. 《Hydrobiologia》1998,389(1-3):153-167
Fluvial bed sediments represent an important sink and source for a variety of organic and inorganic compounds. Their most important constituent is organic matter (OM) and its primary component organic carbon (OC). Few studies have been conducted in fluvial environments examining bed-associated OM or OC. This is surprising given the recent interest in global carbon cycling and the importance of bed-associated organics as ecosystem energy sources. The objective of this study was to examine the relationship between OM, determined by loss-on-ignition (LOI), and OC in fluvial bed sediments determined by a dry combustion analyzer. The wide adoption of the LOI method in soil science reflects its ease of use, it is inexpensive, it is rapid, requires no specialized training, and strong statistical relationships commonly exist between OM and OC estimated by standard dry combustion procedures. Regression models were developed between OC and OM for six bed sediment size fractions (≤2.0 mm) for 113 sample sites in a tropical stream on Oahu, Hawaii. All models were highly significant (p < 0.0001), with coefficients of determination ranging from 35 to 79%. Measurement of LOI explained 64% of the variation in OC for all grouped data. The black-box LOI approach may be useful for rapid reconnaissance surveys of drainage systems. Examination of OM to OC conversion factors for Manoa bed sediments indicates that values typically observed in the soils literature (1.7–2.2) are far too low. Values of OM/OC were found to increase with increasing grain size, and decrease with increasing LOI percentage. Conversion factors obtained for grouped data had a mean of 14.9, a coefficient of variation of 21%, and a range of values between 6.2 and 27.4. It is suggested that these high conversion factors reflect significant water loss by dehydration of Fe, Al, and Mn oxides at a muffle furnace temperature of 450 °C. Therefore, the blind application of conversion factors developed from soils should be avoided when converting from OM to OC for fluvial bed sediments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
9.
10.
The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity.  相似文献   

11.
Species diversity, population structure, abundance and dispersion patterns of all woody plants 10cm gbh were inventoried in two 1-ha plots of tropical dry evergreen (sacred grove or temple) forests at Kuzhanthaikuppam (KK) and Thirumanikkuzhi (TM) on the Coromandel coast of south India. Site KK is a stunted forest (average tree height ca 6 m) and TM a tall forest (average tree height ca 10 m). A total of 54 species (in 47 genera and 31 families) were recorded. Species richness and stand density were 42 and 38 species and 1367 and 974 individuals ha–1 respectively for the sites KK and TM. About 50% of the total species were common to both the sites. Site TM is twofold more voluminous (basal area 29.48 m2 ha–1) than KK (basal area 15.44 m2 ha–1). Nearly one third of the individuals are multi-stemmed in the low-statured site KK whereas one fourth of the tree density is multi-stemmed in TM. Species abundance pattern varied between the two sites. The abundance of three species in KK and two species in TM is pronounced. Memecylon umbellatum, the most abundant species contributing to one third of total stand density in KK, is least represented in TM. Species richness, density and diversity indices decreased with increasing girth threshold. Most species exhibited clumped dispersion of individuals both at 0.25 and 1-ha scales. Population structure for girth frequency is an expanding one for both the sites, except for basal area distribution in KK. Variations in plant diversity and abundance are related to site attributes and human impacts. In the light of habitat uniqueness, species richness and sacred grove status, the need for conservation is emphasized.  相似文献   

12.
Plant biomass, net primary productivity and dry matter turnover were studied in a grassland situated in a tropical monsoonal climate at Kurukshetra, India (29°58′N, 76°51′E). Based on differences in vegetation in response to microrelief, three stands were distinguished on the study site. The stand I was dominated by Sesbania bispinosa, stand II represented mixed grasses and stand III was dominated by Desmostachya bipinnata. Floristic composition of the three stands revealed the greatest number of species on stand II (75). The study of life form classes indicated a thero-cryptophytic flora. The biomass of live shoots in all the three stands attained a maximum value in September (424–1921 g m-2) and below ground plant biomass in November (749–1868 g m-2). The annual above ground net primary production was greatest on stand I (2143 g m-2) and lowest on stand II (617 g m-2). The rate of production was highest during the rainy season (15.34 to 3.18 g m-2 day-2). Below ground net production ranged from 1592 to 785 g m-2 y-2 and the rates were high in winter and summer seasons. Total annual net primary production was estimated to be 3141, 1403, 2493 and 2134 g m-2 on stands I, II, III and on the grassland as a whole, respectively. The turnover of total plant biomass plus below ground biomass indicated almost a complete replacement of phytomass within the year. The system transfer functions showed greater transfer of material from total net primary production to the shoot compartment during rainy season and to the root compartment during winter and summer seasons.  相似文献   

13.
The distribution of lichens in lowland deciduous and evergreen forests in Thailand is used to interpret recent changes in the distribution of these forests. The role of fire in changing the forest structure, microclimate and species content is discussed. Characteristic corticolous lichen communities of dry deciduous and moist evergreen forests are described, as well as changes in the composition of the flora following fire events. Where frequent fires have altered the forest rates of change in forest type are suggested using lichen data from randomly selected trees in forest plots, and growth rates of sampled species in quadrats. The disjunct nature of the lichen floras in lowland deciduous and evergreen forests is discussed, their origin and use in interpreting changes in forest types in monsoon climates over long periods of time.  相似文献   

14.
Natural vegetation on the south-eastern coast of Peninsular India has now been reduced to patches, some of which are preserved as sacred groves. The plant biodiversity and population structure of woody plants (>20 cm girth at breast height; gbh) in two such groves, Oorani and Olagapuram, occurring on the north-west of Pondicherry have been analyzed. A total of 169 angiosperms have been enumerated from both sites. The Oorani grove (3.2 ha) had 74 flowering plant species distributed in 71 genera and 41 families; 30 of them are woody species, 8 are lianas and 4 are parasites. The Olagapuram grove (2.8 ha) was more species-rich with 136 species in 121 genera of 58 families; woody species were fewer (21) while 9 lianas and 3 parasites occurred. The vegetation structure indicates that the Oorani grove is a relic of tropical dry evergreen forest, whereas Olagapuram is reduced to a thorny woodland. The latter is heavily degraded as it has lost the status of a sacred grove because of its conversion to Eucalyptus plantations. The Oorani grove has an Amman temple in the centre. The attendant cultural rites and religious rituals have perpetuated the status of a sacred grove which has ensured the protection of the grove.  相似文献   

15.
Dry forests represent a large percentage of tropical forests and are vulnerable to both anthropogenic and natural disturbances, yet important aspects of their sensitivity to disruption remain poorly understood. It is particularly unclear how changes in land-use or tropical storm patterns may affect the resiliency of phosphorus (P)-limited neotropical forests. In these systems, vegetation is sustained in the long-term by atmospheric P-inputs through rainfall, dust, or fog. Past research supports the idea that dust and fog deposition are dependent on canopy density (e.g. leaf area index). Thus, the canopy may function as a 'trap' for P, enabling a positive feedback between vegetation and P-deposition. We developed a conceptual model to investigate how Neotropical vegetation may respond to reduced P-deposition due to canopy losses. The model suggests that a canopy-deposition feedback may induce bistable vegetation dynamics; under some conditions, forests may be unable to naturally recover from relatively small disturbances.  相似文献   

16.
Himken  M.  Lammel  J.  Neukirchen  D.  Czypionka-Krause  U.  Olfs  H.-W. 《Plant and Soil》1997,189(1):117-126
There is increasing interest in cultivation of Miscanthus as a source of renewable energy in Europe, but there is little information on its nutrient requirements. Our aim was to determine the nutrient requirement of an established Miscanthus crop through a detailed study of nutrient uptake and nutrient remobilization between plant parts during growth and senescence. Therefore dry matter of rhizomes and shoots as well as N, P, K and Mg concentration under three N fertilizer rates (0, 90, and 180 kg N ha-1) were measured in field trials in 1992/93 and at one rate of 100 kg N h-1 in 1994/95.Maximum aboveground biomass in an established Miscanthus crop ranged between 25-30 t dry matter ha-1 in the September of both trial years. Due to senescence and leaf fall there was a 30% loss in dry matter between September and harvest in March. N fertilization had no effect on crop yield at harvest. Concentrations of N, P, K and Mg in shoots were at a maximum at the beginning of the growing period in May and decreased thereafter while concentrations in rhizomes stayed fairly constant throughout the year and were not affected by N fertilization.Nutrient mobilization from rhizomes to shoots - defined as the maximum change in nutrient content in rhizomes from the beginning of the growth period measured in 1992/93 was 55 kg N ha-1, 8 kg P ha-1, 39 kg K ha-1 and 11 kg Mg ha-1. This is equivalent to 21 N, 36 P, 14 K and 27 Mg of the maximum nutrient content of the shoots. Nutrient remobilization from shoots to rhizomes defined as the increase in nutrient content of rhizomes between September and March measured in 1994/95 was 101 kg N ha-1, 9 kg P ha-1, 81 kg K ha-1 and 8 kg Mg ha-1 equivalent to 46 N, 50 P, 30 K and 27 Mg of nutrient content of shoots in September. Results showed that nutrient remobilization within the plant needs to be considered when calculating nutrient balances and fertilizer recommendations.  相似文献   

17.
Several lines of evidence suggest that nitrogen in most tropical forests is relatively more available than N in most temperate forests, and even that it may function as an excess nutrient in many tropical forests. If this is correct, tropical forests should have more open N cycles than temperate forests, with both inputs and outputs of N large relative to N cycling within systems. Consequent differences in both the magnitude and the pathways of N loss imply that tropical forests should in general be more15N enriched than are most temperate forests. In order to test this hypothesis, we compared the nitrogen stable isotopic composition of tree leaves and soils from a variety of tropical and temperate forests. Foliar 15N values from tropical forests averaged 6.5 higher than from temperate forests. Within the tropics, ecosystems with relatively low N availability (montane forests, forests on sandy soils) were significantly more depleted in15N than other tropical forests. The average 15N values for tropical forest soils, either for surface or for depth samples, were almost 8 higher than temperate forest soils. These results provide another line of evidence that N is relatively abundant in many tropical forest ecosystems.  相似文献   

18.
低密度种指在热带森林中存在的成年个体密度很低的物种 ,是热带森林中树种的主要存在形式。对低密度种的认识和保护是热带森林生物多样性保育的关键之一。与稀有种相比 ,低密度种的含义更为广阔 ,它还包括那些密度低、分布范围广和绝对个体数量大的物种。低密度种形成的主要原因是母树附近的幼苗和种子的存活率较低 ,密度制约和有限更新也是低密度种形成的重要原因。维持低密度种最重要的外部原因是昆虫较强的飞行能力和传粉能力 ,而其最重要的内部原因是低密度种的生殖特性。  相似文献   

19.
Between 1992 and 2000, we sampled 504 randomly chosen locations in theFlorida Keys, Florida, USA, for the elemental content of green leaves of theseagrass Thalassia testudinum. Carbon content ranged from29.4–43.3% (dry weight), nitrogen content from 0.88–3.96%, andphosphorus content from 0.048–0.243%. N and P content of the samples werenot correlated, suggesting that the relative availability of N and P variedacross the sampling region. Spatial pattern in C:N indicated a decrease in Navailability from inshore waters to the reef tract 10 km offshore;in contrast, the pattern in C:P indicated an increase in P availability frominshore waters to the reef tract. The spatial pattern in N:P was used to definea P-limited region of seagrass beds in Florida Bay and near shore, and anN-limited region of seagrass beds offshore. The close juxtaposition ofN–and P-limited regions allows the possibility that N loading from thesuburban Florida Keys could influence the offshore, N-limited seagrass bedswithout impacting the more nearshore, P-limited seagrass beds.  相似文献   

20.
It has been suggested that a feedback exists between the vegetation and soil whereby fertile (vs infertile) sites support species with shorter leaf life spans and higher quality litter which promotes rapid decomposition and higher soil nutrient availability. The objectives of this study were to (1) characterize and compare the C and N dynamics of dominant upland forest ecosystems in north central Wisconsin, (2) compare the nutrient use efficiency (NUE) of these forests, and (3) examine the relationship between NUE and site characteristics. Analyzing data from 24 stands spanning a moisture / nutrient gradient, we found that resource-poor stands transferred less C and N from the vegetation to the forest floor, and that N remained in the forest floor at least four times longer than in more resource-rich stands. Analyzing data by leaf habit, we found that less N was transferred to the forest floor annually via litterfall in conifer stands, and that N remained in the forest floor of these stands nearly three times longer than in hardwood stands. NUE did not differ among forests with different resource availabilities, but was greater for conifers than for hardwoods. Vitousek's (1982) index of nutrient use efficiency (INUE1)=leaf litterfall biomass / leaf litterfall N) was most closely correlated to litterfall specific leaf area and percent hardwood leaf area index, suggesting that differences in species composition may have been responsible for the differences in NUE among our stands. NUE2, defined as ANPP / leaf litterfall N, was not closely correlated to any of the site characteristics included in this analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号