首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The role of the heme propionate groups in determining the electron transfer and electrostatic properties of myoglobin have been studied by thermodynamic, kinetic, and spectroscopic studies of horse heart myoglobin in which the heme propionate groups are esterified. Spectroelectrochemical analysis has established that the Em,7 of dimethylester heme-substituted Mb (DME-Mb) (Em,7 = 100.2(2) mV vs. NHE (Normal Hydrogen Electrode) (25 °C) is increased  40 mV relative to that of the native protein with ΔH° = −12.9(2) kcal/mol and Δ = −51.0(8) cal/mol/deg (pH 7.0, μ = 0.1 M (phosphate)). The second order rate constant for reduction of DME-metMb by Fe(EDTA)2− is increased  > 400-fold relative to that for reduction of native metMb to a value of 1.34(2) × 103 M−1 s−1 with ΔS = −13(1) cal/mol/deg and ΔH = 9.2(3) (pH 7.0, μ = 0.1 M (phosphate)). Analysis of the pH dependences of the reduction potential and rate constant for reduction by Fe(EDTA)2− demonstrates that heme propionate esterification introduces significant changes into the electrostatic interactions in myoglobin. These changes are also manifested by differences in the pH dependences of the 1H NMR spectra of native and DME-metMb that reveal shifts in pKa values for specific His residues as the result of heme propionate esterification. In sum, the current results establish that heme propionate esterification not only affects the electron transfer properties of myoglobin but also influences the titration behavior of specific His residues.  相似文献   

2.
Using stopped-flow rapid mixing and flash photolysis techniques, the dissociation rate coefficients of horse carbonmonoxy myoglobin (hMbCO) and oxygenated myoglobin (hMbO2) in aqueous solution have been determined as a function of temperature between 274 and 342 K. From the Arrhenius plot, an activation enthalpy for dissociation of 74 kJ/mol was obtained for both ligands. The pronounced kinetic differences arise from markedly different pre-exponentials. We compare the Arrhenius parameters with those of the association reaction, as measured at cryogenic temperatures. In our analysis we conclude that the entropy loss upon binding of O2 is twice as large as that for CO. Taking reasonable estimates for the frequency factor, the transition state entropy in hMbO2 is located roughly half way in between the entropies of the bound and unbound states. By contrast, the entropy of the transition state in hMbCO appears to be identical to that of the bound state. Possible structural reasons for the different behavior are discussed. Received: 13 January 1997 / Accepted: 24 April 1997  相似文献   

3.
Some Gram-positive bacterial pathogens harbor a gene that encodes a protein (HNS, Heme domain of NO Synthase-like proteins) with striking sequence identity to the oxygenase domain of mammalian NO synthases (NOS). However, they lack the N-terminal and the Zn-cysteine motif participating to the stability of an active dimer in the mammalian isoforms. The unique properties of HNS make it an excellent model system for probing how the heme environment tunes NO dynamics and for comparing it to the endothelial NO synthase heme domain (eNOS(HD)) using ultrafast transient spectroscopy. NO rebinding in HNS from Staphylococcus aureus (SA-HNS) is faster than that measured for either Bacillus anthracis (BA-HNS) or for eNOS(HD) in both oxidized and reduced forms in the presence of arginine. To test whether these distinct rates arise from different energy barriers for NO recombination, we measured rebinding kinetics at several temperatures. Our data are consistent with different barriers for NO recombination in SA-HNS and BA-HNS and the presence of a second NO-binding site. The hypothesis that an additional NO-binding cavity is present in BA-HNS is also consistent with the effect of the NO concentration on its rebinding. The lack of the effect of NO concentration on the geminate rebinding in SA-HNS could be due to an isolated second site. We confirm the existence of a second NO site in the oxygenase domain of the reduced eNOS as previously hypothesized [A. Slama-Schwok, M. Négrerie, V. Berka, J.C. Lambry, A.L. Tsai, M.H. Vos, J.L. Martin, Nitric oxide (NO) traffic in endothelial NO synthase. Evidence for a new NO binding site dependent on tetrahydrobiopterin? J. Biol. Chem. 277 (2002) 7581-7586]. This site requires the presence of arginine and BH(4); and we propose that NO dynamic and escape from eNOS is regulated by the active site H-bonding network connecting between the heme, the substrate, and cofactor.  相似文献   

4.
Aspergillus niger produces multiple forms of polygalacturonases with molecular masses ranging from 30 to 60 kDa. The high molecular weight polygalacturonase (61 ± 2 kDa) from A. niger possesses a pH optimum of 4.3 and a pI of 3.9. The enzyme exhibited high sensitivity, both in terms of activity and structure, in the pH range of 4.3–7.0. The enzyme was irreversibly inactivated at pH 7.0. The enzyme is predominantly rich in parallel β structure. There is unfolding of the enzyme molecule between 4.3 and 7.0 resulting in irreversible loss of secondary and tertiary structure with the exposure of hydrophobic surfaces. ANS binding measurements, intrinsic fluorescence and acrylamide quenching measurements have confirmed the unfolding and exposure of hydrophobic surfaces. The midpoint of pH transition for both activity and secondary structure is 6.2 ± 0.1. The pH-induced changes of polygalacturonase confirm the role of histidine residues in structure and activity of the enzyme. The irreversible nature of inactivation is due to the unfolding induced exposure of hydrophobic surfaces leading to association/aggregation of the molecule. Size exclusion chromatography measurements have established the association of enzyme at higher pH. Urea induced unfolding measurements at pH 4.3 and 7.0 have confirmed the loss in stability as we approach neutral pH.  相似文献   

5.
Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0', the binding constant of cyanide to the reduced protein was estimated to be 4.7 x 10(-3) L M(-1) or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 J mol(-1) K(-1) (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号