首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Summary Streptomycin (SM)-producingStreptomyces griseus was permeable to extracellular SM during exponential growth, and less permeable during the stationary phase when antibiotic production was maximal. Uptake of [3H] dihydrostreptomycin ([3H]DSM) by the producer organism was abolished by inhibitors of electron transport, sulfhydryl reagents and an uncoupler of oxidative phosphorylation, and it was competitively inhibited by spermidine. These results indicate that SM was taken up by an active transport process via a polyamine transport system. A mutant with lower SM-resistance showed the same level of SM 6-phosphotransferase as the parent strain. It is suggested that selfresistance in the SM-producers is at least partly determined by transport and permeability mechanisms.  相似文献   

2.
3.
The shooty morphology of a nontumorous amphidiploid mutant of Nicotiana glauca Grah. x N. langsdorffii Weinm. was restored by cytokinins, whether exogenously applied or endogenously produced by transformation of the mutant with a transfer DNA (T-DNA) cytokinin-biosynthesis gene (isopentenyltransferase; ipt). Auxins alone did not confer this effect. Similar transformation was not achieved for the parental species. In the case of transformation with the ipt gene, selection of the transformed tissues was based on its hormone-independent growth in the presence of the antibiotic kanamycin. Transformed tissues exhibited a shooty morphology, indistinguishable from that of wildtype genetic tumors N. glauca x N. langsdorffii. This altered phenotype was caused by the presence and constitutive expression of the ipt gene. The insertion and expression of this gene in transformed tissues was confirmed by using the polymerase chain reaction (PCR) technique as well as conventional molecular hybridization analysis. Expression of the ipt gene led to an elevated level of cytokinin in the transformed mutant tissues. This evidence supports the notion that genetic tumors are caused, at least in part, by elevated levels of cytokinin in interspecific hybrids.  相似文献   

4.
Cinnamoyl-CoA reductase 1 (CCR1, gene At1g15950) is the main CCR isoform implied in the constitutive lignification of Arabidopsis thaliana. In this work, we have identified and characterized two new knockout mutants for CCR1. Both have a dwarf phenotype and a delayed senescence. At complete maturity, their inflorescence stems display a 25–35% decreased lignin level, some alterations in lignin structure with a higher frequency of resistant interunit bonds and a higher content in cell wall-bound ferulic esters. Ferulic acid-coniferyl alcohol ether dimers were found for the first time in dicot cell walls and in similar levels in wild-type and mutant plants. The expression of CCR2, a CCR gene usually involved in plant defense, was increased in the mutants and could account for the biosynthesis of lignins in the CCR1-knockout plants. Mutant plantlets have three to four-times less sinapoyl malate (SM) than controls and accumulate some feruloyl malate. The same compositional changes occurred in the rosette leaves of greenhouse-grown plants. By contrast and relative to the control, their stems accumulated unusually high levels of both SM and feruloyl malate as well as more kaempferol glycosides. These findings suggest that, in their hypolignified stems, the mutant plants would avoid the feruloyl-CoA accumulation by its redirection to cell wall-bound ferulate esters, to feruloyl malate and to SM. The formation of feruloyl malate to an extent far exceeding the levels reported so far indicates that ferulic acid is a potential substrate for the enzymes involved in SM biosynthesis and emphasizes the remarkable plasticity of Arabidopsis phenylpropanoid metabolism.  相似文献   

5.
Application of marker-assisted backcrossing for gene introgression is still limited by the high costs of marker analysis. High-throughput (HT) assays promise to reduce these costs, but new selection strategies are required for their efficient implementation in breeding programs. The objectives of our study were to investigate the properties of HT marker systems compared to single-marker (SM) assays, and to develop optimal selection strategies for marker-assisted backcrossing with HT assays. We employed computer simulations with a genetic model consisting of 10 chromosomes of 160 cM length to investigate the introgression of a dominant target gene. We found that a major advantage of HT marker systems is that they can provide linkage maps with equally spaced markers, whereas the possibility to provide linkage maps with high marker densities smaller than 10 cM is only of secondary use in marker-assisted backcrossing. A three-stage selection strategy that combines selection for recombinants at markers flanking the target gene with SM assays and genome-wide background selection with HT markers in the first backcross generation was more efficient than genome-wide background selection with HT markers alone. Selection strategies that combine SM and HT assays were more efficient than genome-wide background selection with HT assays alone. This result was obtained for a broad range of cost ratios of HT and SM assays. A further considerable reduction of the costs could be achieved if the population size in the first backcross generation was twice the population size in generations BC2 and BC3 of a three-generation backcrossing program. We conclude that selection strategies combining SM and HT assays have the potential to greatly increase the efficiency and flexibility of marker-assisted backcrossing.  相似文献   

6.
Fungal biotrophy is associated with a reduced capacity to produce potentially toxic secondary metabolites (SMs). Yet, the genome of the biotrophic plant pathogen Cladosporium fulvum contains many SM biosynthetic gene clusters, with several related to toxin production. These gene clusters are, however, poorly expressed during the colonization of tomato. The sole detectable SM produced by C. fulvum during in vitro growth is the anthraquinone cladofulvin. Although this pigment is not detected in infected leaves, cladofulvin biosynthetic genes are expressed throughout the pre‐penetration phase and during conidiation at the end of the infection cycle, but are repressed during the biotrophic phase of tomato colonization. It has been suggested that the tight regulation of SM gene clusters is required for C. fulvum to behave as a biotrophic pathogen, whilst retaining potential fitness determinants for growth and survival outside its host. To address this hypothesis, we analysed the disease symptoms caused by mutant C. fulvum strains that do not produce or over‐produce cladofulvin during the biotrophic growth phase. Non‐producers infected tomato in a similar manner to the wild‐type, suggesting that cladofulvin is not a virulence factor. In contrast, the cladofulvin over‐producers caused strong necrosis and desiccation of tomato leaves, which, in turn, arrested conidiation. Consistent with the role of pigments in survival against abiotic stresses, cladofulvin protects conidia against UV light and low‐temperature stress. Overall, this study demonstrates that the repression of cladofulvin production is required for C. fulvum to sustain its biotrophic lifestyle in tomato, whereas its production is important for survival outside its host.  相似文献   

7.
An str gene cluster containing at least four genes (strR, strA, strB, and strC) involved in streptomycin biosynthesis or streptomycin resistance or both was self-cloned in Streptomyces griseus by using plasmid pOA154. The strA gene was verified to encode streptomycin 6-phosphotransferase, a streptomycin resistance factor in S. griseus, by examining the gene product expressed in Escherichia coli. The other three genes were determined by complementation tests with streptomycin-nonproducing mutants whose biochemical lesions were clearly identified. strR complemented streptomycin-sensitive mutant SM196 which exhibited impaired activity of both streptomycin 6-phosphotransferase and amidinotransferase (one of the streptomycin biosynthetic enzymes) due to a regulatory mutation; strB complemented strain SD141, which was specifically deficient in amidinotransferase; and strC complemented strain SD245, which was deficient in linkage between streptidine 6-phosphate and dihydrostreptose. By deletion analysis of plasmids with appropriate restriction endonucleases, the order of the four genes was determined to be strR-strA-strB-strC. Transformation of S. griseus with plasmids carrying both strR and strB genes enhanced amidinotransferase activity in the transformed cells. Based on the gene dosage effect and the biological characteristics of the mutants complemented by strR and strB, it was concluded that strB encodes amidinotransferase and strR encodes a positive effector required for the full expression of strA and strB genes. Furthermore, it was found that amplification of a specific 0.7-kilobase region of the cloned DNA on a plasmid inhibited streptomycin biosynthesis of the transformants. This DNA region might contain a regulatory apparatus that participates in the control of streptomycin biosynthesis.  相似文献   

8.
The herbicide sulfometuron methyl (SM) inhibited the growth of the cyanobacterium Synechococcus sp. PCC7942, but not of Synechocystis sp. PCC6714. The inhibitory effect was alleviated by the simultaneous addition of valine, leucine and isoleucine. SM resistant mutants were isolated from Synechococcus 7942, two types of which were further analysed. In these mutants, SM3/20 and SM2/32, the activity of acetolactate synthase (ALS) — a key enzyme in the biosynthesis of branched-chain amino acids —appeared 2600- and 300-fold, respectively, more resistant to SM than that of their wild type. Strain SM2/32 also exhibited a low level of ALS activity. Although the growth of the latter mutant was extremely inhibited by valine, the sensitivity of its ALS activity to feed-back inhibition by the amino acid was unaltered. At high concentrations valine inhibited growth of the wild type strains and of the mutant SM3/20. Isoleucine alleviated the valine-induced growth inhibition. Unlike that of Synechococcus 7942, the ALS activity of Synechocystis was found to tolerate high concentrations (100-fold) of the herbicide. The study confirms that the SM mutations are correlated with a cyanobacterial ilv gene.Abbreviations ALS acetolactate synthase; ile, isoleucine - leu leucine - NTG N-methyl-N-nitro-N-nitrosoguanidine - SM sulfometuron methyl - SMr sulfometuron methyl resistant - val valine  相似文献   

9.
All known gene clusters for glycopeptide antibiotic biosynthesis contain a conserved gene supposed to encode an ABC-transporter. In the balhimycin-producer Amycolatopsis balhimycina this gene (tba) is localised between the prephenate dehydrogenase gene pdh and the peptide synthetase gene bpsA. Inactivation of tba in A. balhimycina by gene replacement did not interfere with growth and did not affect balhimycin resistance. However, in the supernatant of the tba mutant RM43 less balhimycin was accumulated compared to the wild type; and the intra-cellular balhimycin concentration was ten times higher in the tba mutant RM43 than in the wild type. These data suggest that the ABC transporter encoded in the balhimycin biosynthesis gene cluster is not involved in resistance but is required for the efficient export of the antibiotic. To elucidate the activity of Tba it was heterologously expressed in Escherichia coli with an N-terminal His-tag and purified by nickel chromatography. A photometric assay revealed that His6-Tba solubilised in dodecylmaltoside possesses ATPase activity, characteristic for ABC-transporters.  相似文献   

10.
Effective utilization of microbes often requires complex genetic modification using multiple antibiotic resistance markers. Because a few markers have been used in Geobacillus spp., the present study was designed to identify a new marker for these thermophiles. We explored antibiotic resistance genes functional in Geobacillus kaustophilus HTA426 and identified a thiostrepton resistance gene (tsr) effective at 50 °C. The tsr gene was further used to generate the mutant tsrH258Y functional at 55 °C. Higher functional temperature of the mutant was attributable to the increase in thermostability of the gene product because recombinant protein produced from tsrH258Y was more thermostable than that from tsr. In fact, the tsrH258Y gene served as a selectable marker for plasmid transformation of G. kaustophilus. This new marker could facilitate complex genetic modification of G. kaustophilus and potentially other Geobacillus spp.  相似文献   

11.
Production of transgenic organisms is a well-established, versatile course of action in molecular biology. Genetic engineering often requires heterologous, dominant antibiotic resistance genes that have been used as selectable markers in many species. However, as heterologous 5′ and 3′ flanking sequences often result in very low expression rates, endogenous flanking sequences, especially promoters, are mostly required and are easily obtained in model organisms, but it is much more complicated and time-consuming to get appropriate sequences from less common organisms. In this paper, we show that aminoglycoside 3′-phosphotransferase gene (aphVIII) based constructs with 3′ and 5′ untranslated flanking sequences (including promoters) from the multicellular green alga Volvox work in the unicellular green alga Chlamydomonas and flanking sequences from Chlamydomonas work in Volvox, at least if a low expression rate is compensated by an enforced high gene dosage. This strategy might be useful for all investigators that intend to transform species in which genomic sequences are not available, but sequences from related organisms exist.  相似文献   

12.
RNase III is a double strand specific endoribonuclease that is involved in the regulation of gene expression in bacteria. In Streptomyces coelicolor, an RNase III (rnc) null mutant manifests decreased ability to synthesize antibiotics, suggesting that RNase III globally regulates antibiotic production in that species. As RNase III is involved in the processing of ribosomal RNAs in S. coelicolor and other bacteria, an alternative explanation for the effects of the rnc mutation on antibiotic production would involve the formation of defective ribosomes in the absence of RNase III. Those ribosomes might be unable to translate the long polycistronic messenger RNAs known to be produced by operons containing genes for antibiotic production. To examine this possibility, we have constructed a reporter plasmid whose insert encodes an operon derived from the actinorhodin cluster of S. coelicolor. We show that an rnc null mutant of S. coelicolor is capable of translating the polycistronic message transcribed from the operon. We show further that RNA species with the mobilities expected for mature 16S and 23S ribosomal RNAs are produced in the rnc mutant even though the mutant contains higher levels of the 30S rRNA precursor than the wild-type strain.  相似文献   

13.
Zhang Y  Xu C  Lu Z  Yang Y  Ge F  Zhu G  Teng M  Niu L 《Current microbiology》2002,44(4):273-279
The plasmid pUT for homologous recombination was constructed by the insertion of the 1.1-kb thiostrepton resistance (tsr R) gene into the E. coli plasmid pUB1-GI1. Plasmid pUTK was produced through ligating the cleaved plasmid pUT by KpnI. After pUT and pUTK were introduced into Streptomyces diastaticus No.7 strain M1033 (SM33) by protoplast transformation, a series of tsrR transformants were obtained, further based on enzyme assays. These results for polymerase chain reaction (PCR), DNA sequencing, restriction enzyme digestion, and recovery of cloned fragments from the transformant chromosome demonstrated the plasmid pUT and pUTK had integrated into the SM33 chromosome in three different patterns of single cross-over by homologous recombination. This directly results in double-copy GI gene in the transformant chromosome, of which one is wild-type GI gene, the other mutant GI (GIG138P, GI1) gene. Among the strains of the three kinds of recombinant patterns, one transformant was chosen and named K1, T2, and T3, respectively. The further identification of the three recombinant strains by PCR, DNA sequencing, restriction enzyme digestion, and Southern hybridization also proved there is a double-copy GI gene within their chromosome. Enzyme activity assay and thermostability analysis indicated that all three engineering strains expressed not only wild-type enzyme but also mutant GI. Received: 9 July 2001 / Accepted: 8 August 2001  相似文献   

14.
15.
A mutant strain SM434 (ttr-3) of Escherichia coli that exhibits a temperature-sensitive Unc(succinate-nonutilizing) phenotype was characterized. The mutant allele ttr-3 was not linked to the ilvA gene, but was complemented by Fill carrying 81 min-91 min of the E. coli chromosome. The mutant strain SM434 exhibited resistance to N,N'-dicyclohexylcarbodiimide (DCCD) and a temperature-sensitive phenotype at the level of ATP synthesis, compatible with that of cell growth. These findings indicate that the mutant strain SM434 could carry a mutation (ttr-3) in an unknown gene responsible for the energy-transduction system.  相似文献   

16.
Summary A number of mutants (abs)-resistant to antibiotic(s) produced by sporulating Bacillus subtilis 168 have been isolated from an early blocked asporogenous mutant (spoA12). At least four classes were recognized according to their phenotypic properties. Genetic analysis has shown that these mutants were neither partial revertants nor suppressor mutants of the spoA gene. Both nonsense and missense mutants of the spoA gene are reverted partially by a secondary mutation which is resistant to antibiotic of B. subtilis 168. Another asporogenous mutant, spoB, whose locus is closely linked to pheA, is also affected by the same abs mutation. The nature of abs mutants is discussed.  相似文献   

17.
Purified pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) was used to measure the inorganic pyrophosphate in unfractionated extracts of tissues of Pisum sativum L. The fructose 1,6-bisphosphate produced by the above enzyme was measured by coupling to NADH oxidation via aldolase (EC 4.1.2.13), triosephosphate isomerase (EC 5.3.1.1) and glycerol-3-phosphate dehydrogenase (EC 1.1.1.8). Amounts of pyrophosphate as low as 1 nmol could be measured. The contents of pyrophosphate in the developing embryo of pea, and in the apical 2 cm of the roots, were appreciable; 9.4 and 8.9 nmol g-1 fresh weight, respectively. The possibility that pyrophosphate acts in vivo as an energy source for pyrophosphate: fructose 6-phosphate 1-phosphotransferase and for UDPglucose pyrophosphorylase (EC 2.7.7.9) is considered.  相似文献   

18.
For the rapid selection of higher recombinant hirudin producing strain in a methylotrophic yeastHansenula polymorpha, a multiple gene integration and dose-dependent selection vector, based on a telomere-associated ARS and a bacterial aminoglycoside 3-phosphotransferase ( (aph) gene, was adopted. Two hirudin expression cassettes (HV1 and HV2) were constructed using theMOX promoter ofH. polymorpha and the mating factor α secretion signal ofS. cerevisiae. Multiple integrants of a transformang vector containing hirudin expression cassettes were easily selected by using an antibiotic, G418. Hirudin expression level and integrated plasmid copy number of the tested transformants increased with increasing the concentration of G418 used for selection. The expression level of HV1 was consistently higher than that of HV2 under the similar conditions, suggesting that the gene context might be quite important for the high-level gene expression inH. polymorpha. The highest hirudin producing strain selected in this study produced over 96 mg/L of biologically active hirudin in a 500-mL flask and 165 mg/L in a 5-L fermentor.  相似文献   

19.
Protein synthesis at synaptic terminals contributes to LTP in hippocampus and to the formation of new synaptic connections by sensory neurons (SNs) of Aplysia. Here we report that after removal of the SN cell body, isolated SN synapses of Aplysia in culture express protein‐synthesis dependent long‐term facilitation (LTF) produced by 5‐HT that decays rapidly. Changes in expression of a SN‐specific neuropeptide sensorin in isolated SN varicosities parallel the changes in synaptic efficacy. At 24 h after 5‐HT the magnitude of LTF produced at isolated SN synapses was significantly greater than that produced when SN cell bodies were present. LTF was maintained at 48 h at connections with SN cell bodies, but not at isolated SN synapses. The increase in synaptic efficacy at isolated SN synapses at 24 h was blocked by the protein synthesis inhibitor anisomycin. LTF was accompanied by changes in expression of sensorin. The increase in sensorin level at isolated SN varicosities with 5‐HT was blocked by anisomycin or was reversed 48 h after 5‐HT treatment alone. The results suggest that, as is the case for initial synapse formation between SNs and L7, changes in protein synthesis at synaptic terminals may contribute directly to LTF of stable synapses. Changes in expression within the cell body provide additional contributions for long‐term maintenance of the new level of synaptic efficacy that was initiated directly by local changes in protein synthesis at or near synaptic terminals. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 275–286, 2003  相似文献   

20.
The conserved nature of the genes that code for actinomycete secondary metabolite biosynthetic pathways suggests a common evolutionary ancestor and incidences of lateral gene transfer. Resistance genes associated with these biosynthetic pathways also display a high degree of similarity. Actinomycete aminoglycoside phosphotransferase antibiotic resistance enzymes (APH) are coded for by such genes and are therefore good targets for evaluating the bioactive potential of actinomycetes. A set of universal PCR primers for APH encoding genes was used to probe genomic DNA from three collections of actinomycetes to determine the utility of molecular screening. An additional monitoring of populations for the predominance of specific classes of enzymes to predict the potential of environmental sites for providing isolates with interesting metabolic profiles. Approximately one-fifth of all isolates screened gave a positive result by PCR. The PCR products obtained were sequenced and compared to existing APH family members. Sequence analysis resolved the family into nine groups of which six had recognizable phenotypes: 6′-phosphotransferase (APH(6)), 3′-phosphotransferase (APH(3)), hydroxyurea phosphotransferase (HUR), peptide phosphotransferase, hygromycin B phosphotransferase (APH(7″)) and oxidoreductase. The actinomycetes screened fell into seven groups, including three novel groups with unknown phenotypes. The strains clustered according to the environmental site from where they were obtained, providing evidence for the movement of these genes within populations. The value of this as a method for obtaining novel compounds and the significance to the ecology of antibiotic biosynthesis are discussed. Journal of Industrial Microbiology & Biotechnology (2002) 29, 60–69 doi:10.1038/sj.jim.7000260 Received 25 June 2001/ Accepted in revised form 26 March 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号