首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuromedin U (NMU) is a hypothalamic peptide involved in energy homeostasis and stress responses. NMU, when administered intracerebroventricularly, decreases food intake and body weight while increasing body temperature and heat production. In addition, NMU, acting via the corticotropin-releasing hormone (CRH) system, induces gross locomotor activity and stress responses. We studied the effect of intracerebroventricularly administered NMU (0.5-4 nmol) in the regulation of gastric functions in conscious rats. Intracerebroventricular administration of NMU significantly decreased gastric acid output to 30-60% and gastric emptying to 35-70% in a dose-dependent manner. Vagotomy did not abolish the inhibitory effect of NMU on pentagastrin-induced gastric acid secretion. Pretreatment with indomethacin (10 mg/kg), an inhibitor of prostaglandin synthesis, also did not affect NMU-induced acid inhibition. Pretreatment with anti-CRH IgG (1 microg/rat), however, completely blocked NMU-induced acid inhibition (P < 0.01). Administration of yohimbine (4 mg/kg), an alpha(2)-adrenergic receptor antagonist, also abolished NMU-induced acid inhibition (P < 0.01). These findings suggest that NMU is critical in the central regulation of gastric acid secretion via CRH.  相似文献   

2.
Neuromedin U (NMU) is a hypothalamic neuropeptide that regulates body weight and composition. Here we show that mice lacking the gene encoding NMU (Nmu(-/-) mice) develop obesity. Nmu(-/-) mice showed increased body weight and adiposity, hyperphagia, and decreased locomotor activity and energy expenditure. Obese Nmu(-/-) mice developed hyperleptinemia, hyperinsulinemia, late-onset hyperglycemia and hyperlipidemia. Notably, however, treatment with exogenous leptin was effective in reducing body weight in obese Nmu(-/-) mice. In addition, central leptin administration did not affect NMU gene expression in the hypothalamus of rats. These results indicate that NMU plays an important role in the regulation of feeding behavior and energy metabolism independent of the leptin signaling pathway. These characteristic functions of NMU may provide new insight for understanding the pathophysiological basis of obesity.  相似文献   

3.
Neuromedin U (NMU) is a highly conserved neuropeptide with a variety of physiological functions mediated by two receptors, peripheral NMUR1 and central nervous system NMUR2. Here we report the generation and phenotypic characterization of mice deficient in the central nervous system receptor NMUR2. We show that behavioral effects, such as suppression of food intake, enhanced pain response, and excessive grooming induced by intracerebroventricular NMU administration were abolished in the NMUR2 knockout (KO) mice, establishing a causal role for NMUR2 in mediating NMU's central effects on these behaviors. In contrast to the NMU peptide-deficient mice, NMUR2 KO mice appeared normal with regard to stress, anxiety, body weight regulation, and food consumption. However, the NMUR2 KO mice showed reduced pain sensitivity in both the hot plate and formalin tests. Furthermore, facilitated excitatory synaptic transmission in spinal dorsal horn neurons, a mechanism by which NMU stimulates pain, did not occur in NMUR2 KO mice. These results provide significant insights into a functional dissection of the differential contribution of peripherally or centrally acting NMU system. They suggest that NMUR2 plays a more significant role in central pain processing than other brain functions including stress/anxiety and regulation of feeding.  相似文献   

4.
The present study investigated whether the serotonergic system is involved in mediating the behavioral effects of corticotropin-releasing hormone (CRH) in juvenile spring chinook salmon, Oncorhynchus tshawytscha. An intracerebroventricular (ICV) injection of CRH induced hyperactivity. The effect of CRH was potentiated in a dose-dependent manner by the concurrent administration of the serotonin (5-HT) selective reuptake inhibitor fluoxetine. However, administration of fluoxetine alone had no effect on locomotor activity, suggesting that the locomotor-stimulating effect of CRH is mediated by the activation of the serotonergic system. Conversely, ICV injections of the 5-HT(1A) receptor antagonist NAN-190 attenuated the effect of CRH on locomotor activity when given in combination with CRH but had no effect when administered alone. These results provide the first evidence to support the hypothesis that the effect of CRH on locomotor activity in teleosts is mediated by activating the serotonergic system.  相似文献   

5.
Maruyama K  Miura T  Uchiyama M  Shioda S  Matsuda K 《Peptides》2006,27(7):1820-1826
Our recent research has indicated that intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide (PACAP) suppresses food intake and locomotor activity in the goldfish. However, the anorexigenic mechanism of PACAP has not yet been clarified. The aim of this study was to investigate the relationship between the anorexigenic action of PACAP and that of corticotropin-releasing hormone (CRH), which is implicated in the regulation of energy homeostasis as a powerful anorexigenic peptide in the goldfish brain. We first examined feeding-induced changes in the expression of CRH mRNA, and the effect of ICV administration of PACAP on the expression of CRH mRNA in the goldfish brain. Semiquantitative analysis revealed that the expression of CRH mRNA was significantly increased by excessive feeding for 7 days. ICV administration of PACAP at a dose sufficient to suppress food intake induced a significant increase in the expression of CRH mRNA. We also examined the effect of alpha-helical CRH(9-41), a CRH antagonist, on the anorexigenic action of PACAP in the goldfish. The inhibitory effect of PACAP was completely suppressed by treatment with alpha-helical CRH(9-41). We finally investigated the effect of ICV-administered CRH on locomotor activity in the goldfish. CRH at a dose sufficient to suppress food intake induced a significant increase in locomotor activity, unlike ICV-injected PACAP. These results suggest that, in the goldfish, the anorexigenic action of PACAP is related to the CRH neuronal pathway, but that the modulation of locomotor activity by PACAP is independent of modulation by CRH.  相似文献   

6.
7.
Overproduction of corticotrophin-releasing factor (CRF), the major mediator of the stress response, has been linked to anxiety, depression and addiction. CRF excess results in increased arousal, anxiety and altered cognition in rodents. The ability to adapt to a potentially threatening stimulus is crucial for survival, and impaired adaptation may underlie stress-related psychiatric disorders. Therefore, we examined the effects of chronic transgenic neural CRF overproduction on behavioural adaptation to repeated exposure to a non-home cage environment. We report that CRF transgenic mice show impaired adaptation in locomotor response to the novel open field. In contrast to wild-type (WT) mice, anxiety-related behaviour of CRF transgenic mice does not change during repeated exposure to the same environment over the period of 7 days or at retest 1 week later. We found that locomotor response to novelty correlates significantly with total locomotor activity and activity in the centre at the last day of testing and at retest in WT but not in CRF transgenic mice. Mice were divided into low responders and high responders on the basis of their initial locomotor response to novelty. We found that differences in habituation and re-exposure response are related to individual differences in locomotor response to novelty. In summary, these results show that CRF transgenic mice are fundamentally different from WT in their ability to adapt to an environmental stressor. This may be related to individual differences in stress reactivity. These findings have implications for our understanding of the role of CRF overproduction in behavioural maladaptation and stress-related psychiatric disorders.  相似文献   

8.
The present study investigated: 1) the behavioral effects of chronic administration of a serotonin uptake inhibitor (fluoxetine) in juvenile Chinook salmon, Oncorhynchus tshawytscha and, 2) whether chronic administration of fluoxetine alters the behavioral effects of corticotropin-releasing hormone (CRH). Chronic (20 day) treatment with fluoxetine decreased locomotor activity when compared to fish given long-term injections of saline. An intracerebroventricular (i.c.v.) injection of CRH had no effect on locomotor activity following a 20 day intraperitoneal treatment with either saline or fluoxetine. Chronic treatment with fluoxetine also increased the amount of time fish spent near the center of the tank. A similar increase was seen in fish given a chronic intraperitoneal (i.p.) series of saline followed by an acute i.c.v. injection of CRH. However, the effect was not additive when fish were given chronic i.p. injections of fluoxetine followed by an acute i.c.v. injection of CRH. These results provide evidence to support the hypothesis that the serotonergic system is involved in mediating locomotor activity and habitat choice in teleosts.  相似文献   

9.
10.
Acute stress affects gut functions through the activation of corticotropin-releasing factor (CRF) receptors. The impact of acute stress on pelvic viscera in the context of chronic stress is not well characterized. We investigated the colonic, urinary, and locomotor responses monitored as fecal pellet output (FPO), urine voiding, and ambulatory activity, respectively, in female and male CRF-overexpressing (CRF-OE) mice, a chronic stress model, and their wild-type littermates (WTL). Female CRF-OE mice, compared with WTL, had enhanced FPO to 2-min handling (150%) and 60-min novel environment (155%) but displayed a similar response to a 60-min partial restraint stress. Female CRF-OE mice, compared with WTL, also had a significantly increased number of urine spots (7.3 +/- 1.4 vs. 1.3 +/- 0.8 spots/h) and lower locomotor activity (246.8 +/- 47.8 vs. 388.2 +/- 31.9 entries/h) to a novel environment. Male CRF-OE mice and WTL both responded to a novel environment but failed to show differences between them in colonic and locomotor responses. Male WTL, compared with female WTL, had higher FPO (113%). In female CRF-OE mice, the CRF(1)/CRF(2) receptor antagonist astressin B and the selective CRF(2) receptor agonist mouse urocortin 2 (injected peripherally) prevented the enhanced defecation without affecting urine or locomotor responses to novel environment. RT-PCR showed that CRF(1) and CRF(2) receptors are expressed in the mouse colonic tissues. The data show that chronic stress, due to continuous central CRF overdrive, renders female CRF-OE mice to have enhanced pelvic and altered behavioral responses to superimposed mild stressors and that CRF(1)-initiated colonic response is counteracted by selective activation of CRF(2) receptor.  相似文献   

11.
12.
13.
14.
Neuromedin U (NMU) is a neuropeptide found in the brain and gastrointestinal tract. The NMU system has been shown to regulate energy homeostasis by both a central and a peripheral mechanism. Peripheral administration of human NMU-25 was recently shown to inhibit food intake in mice. We examined the possibility that other NMU-related peptides exert an anorectic activity by intraperitoneal (i.p.) administration. We found that rat NMU-23 and its structurally-related peptide rat neuromedin S (NMS) significantly reduced food intake in lean mice, whereas NMU-8, an active fragment of the octapeptide sequence conserved in porcine, human and mouse NMU, had no effect. When rat NMU-23, NMU-8, and rat NMS were covalently conjugated to polyethylene glycol (PEG) (PEGylation) at the N-terminus of these peptides, PEGylated NMU-8 showed the most long-lasting and robust anorectic activity. The exploration of the linker between NMU-8 and PEG using hetero-bifunctional chemical cross-linkers led to an identification of PEGylated NMU-8 analogs with higher affinity for NMU receptors and with more potent anorectic activity in lean mice. The PEGylated NMU-8 showed potent and robust anorectic activity and anti-obesity effect in diet-induced obesity (DIO) mice by once-daily subcutaneous (s.c.) administration. These results suggest that PEGylated NMU-8 has the therapeutic potential for treatment of obesity.  相似文献   

15.
16.
Central effects of neuromedin U in the regulation of energy homeostasis   总被引:12,自引:0,他引:12  
Neuromedin U (NMU) is a brain-gut peptide whose peripheral activities are well-understood but whose central actions have yet to be clarified. The recent identification of two NMU receptors in rat brain has provided a springboard for further investigation into its role in the central nervous system. Intracerebroventricular administration of NMU to free-feeding rats decreased food intake and body weight. Conversely, NMU increased gross locomotor activity, body temperature, and heat production. NMU, a potent endogenous anorectic peptide, serves as a catabolic signaling molecule in the brain. Further investigation of the biochemical and physiological functions of NMU will help our better understanding of the mechanisms of energy homeostasis.  相似文献   

17.
Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.  相似文献   

18.
EtOH exposure in male rats increases corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus (PVN), a brain region responsible for coordinating stress and anxiety responses. In this study we identified the molecular mechanisms involved in mediating these effects by examining the direct effects of EtOH on CRH promoter activity in a neuronal cell line derived from the PVN (IVB). In addition, we investigated the potential interactions of EtOH and glucocorticoids on the CRH promoter by concomitantly treating cells with EtOH and the glucocorticoid receptor (GR) antagonist RU486, and by sequentially deleting GR binding sites within glucocorticoid response element (GRE) on the CRH promoter. Cells were transiently transfected with a firefly luciferase reporter construct containing 2.5 kb of the rat wild type (WT) or mutated CRH promoter. Our results showed that EtOH treatment induced a biphasic response in CRH promoter activity. EtOH exposure for 0.5 h significantly decreased promoter activity compared to vehicle treated controls, whereas promoter activity was significantly increased after 2.0 h of EtOH exposure. Treatment with RU486, or deletion of the GR binding sites 1 and 2 within the GRE, abolished the EtOH-induced increase in the promoter activity, however did not affect EtOH-induced decrease in CRH promoter activity at an earlier time point. Overall, our data suggest that alcohol exposure directly regulates CRH promoter activity by interfering with the normal feedback mechanisms of glucocorticoids mediated by GR signaling at the GRE site of the CRH promoter.  相似文献   

19.
20.
Following our recent observations of inactivity and slowed movement in neuromedin U knockout (NMU KO) mice, we compared nociceptive reflexes and environmental adaptation in NMU KO and wild-type mice. Hot plate and formalin tests revealed that reflexes to heat and pain were significantly decreased in NMU KO mice. Conversely, intracerebroventricular injection of NMU into wild-type mice stimulated nociceptive reflexes in a dose-dependent manner. After NMU injection, increased c-Fos expression was observed in a wide range of locations in hypothalamus, brainstem, and spinal cord. NMU mRNA expression increased in the spinal cord, but not in the hypothalamus, 2 and 4 h after formalin injection. When their light-dark cycle was advanced or retarded by 5 h, NMU KO mice required a longer time to re-entrain into the new light-dark cycle than did wild-type mice. Wild-type mice displayed increased blood pressure after their environmental temperature was changed from 23 to 37 degrees C, whereas no such increase was observed in NMU KO mice. Blood corticosterone levels were significantly increased after 10 min of immobilization stress in wild-type mice, but not in NMU KO mice. These results suggest that endogenous NMU may be involved in reflexes and adaptation to environmental stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号