首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of iron(III) complexes with five polyaminocarboxylates and hydrogen peroxide in an alkaline solution were investigated. Iron(III) complexes of which the ring including two nitrogen and iron atoms is five-membered formed a well-known stable side-on peroxo adduct. On the other hand, iron(III) complexes which have a six-membered ring formed a short-lived side-on peroxo adduct and then changed to iron(II) complex and superoxide. Electrochemical measurements showed that the redox potentials of the iron complexes having a six-membered ring are higher than those of the complexes having a five-membered ring. These results indicate that the chelate size is an important factor for tuning the redox potential of the iron center and for the reactivity toward hydrogen peroxide.  相似文献   

2.
Superoxide reductases (SORs) are superoxide (O2-)-detoxifying enzymes that catalyse the reduction of O2- into hydrogen peroxide. Three different classes of SOR have been reported on the basis of the presence or not of an additional N-terminal domain. They all share a similar active site, with an unusual non-heme Fe atom coordinated by four equatorial histidines and one axial cysteine residues. Crucial catalytic reaction intermediates of SOR are purported to be Fe(3+)-(hydro)peroxo species. Using resonance Raman spectroscopy, we compared the vibrational properties of the Fe3+ active site of two different classes of SOR, from Desulfoarculus baarsii and Treponema pallidum, along with their ferrocyanide and their peroxo complexes. In both species, rapid treatment with H2O2 results in the stabilization of a side-on high spin Fe(3+)-(eta(2)-OO) peroxo species. Comparison of these two peroxo species reveals significant differences in vibrational frequencies and bond strengths of the Fe-O2 (weaker) and O-O (stronger) bonds for the T. pallidum enzyme. Thus, the two peroxo adducts in these two SORs have different stabilities which are also seen to be correlated with differences in the Fe-S coordination strengths as gauged by the Fe-S vibrational frequencies. This was interpreted from structural variations in the two active sites, resulting in differences in the electron donating properties of the trans cysteine ligand. Our results suggest that the structural differences observed in the active site of different classes of SORs should be a determining factor for the rate of release of the iron-peroxo intermediate during enzymatic turnover.  相似文献   

3.
Raman and IR studies are carried out on carnosine (beta-alanyl-L-histidine, Carnos) and its complexes with cobalt(II) at different metal/ligand ratios and basic pH. Binuclear complexes that bind molecular oxygen are formed and information regarding the O-O bridge is obtained from the Raman spectra. When the Co(II)/Carnos ratio is 相似文献   

4.
The reactivity of previously reported peroxo adducts [Fe(mu-O2)(mu-L)(O2CPhCy)2(1-Bu-Im)2] (1), and [Fe(mu-O2)(mu-L)(O2CPhCy)2(py)2] (2), where L is a dinucleating ligand based on the m-xylylenediamine bis(Kemp's triacid imide), toward a variety of substrates is described. These studies were performed to probe the electronic properties of 1 and 2 and evaluate their potential as selective hydrocarbon oxidants. Compound 1 is nucleophilic at -77 degrees C, reacting with phenols and carboxylic acids to liberate hydrogen peroxide, whereas the less electron-rich pyridine analogue 2 is unreactive toward both reagents. By contrast, neither reacts at -77 degrees C with electrophilic reagents such as olefins or triphenylphosphine, or with weak hydrogen atom donors such as dimethylbenzylamine. When solutions of 1 are warmed to room temperature in solvents such as THF, toluene, and cyclopentane, mixtures of alcohol and ketone products derived from the solvent are formed. A detailed investigation of cyclopentane oxidation strongly points to a radical autoxidation pathway. These results are discussed in the context of the selective hydroxylation chemistry that occurs at the carboxylate-bridged diiron centers in soluble methane monooxygenase.  相似文献   

5.
A mononuclear side-on peroxo managanese (III) complex, TpiPr2Mn(η2-O2)(imMeH) (3) was prepared by the reaction of [TpiPr2Mn(O)]2 with excess amount of H2O2 in the presence of 2-methylimidazole (imMeH). Its X-ray structure clearly demonstrated the involvement of intermolecular hydrogen bonding interaction between η2-peroxide and imidazolyl N-H functional group. Complex 3 was stable, green in color and unable to oxygenate triphenylphosphine and ethyl vinyl ether.  相似文献   

6.
New copper(II) complexes with sulfonamide ligands have been prepared and characterized. Sulfonamide ligands were prepared through a reaction between 8-aminoquinoline and either 2-mesitylene (Hqmesa), 4-tert-butylbenzene (Hqtbsa), or alpha-toluene (Halphaqtsa) sulfonyl chlorides. The structural analysis carried out for complex [Cu(alphaqtsa)(2)] indicated that the local environment of the Cu(II) cation is between a square planar and a tetrahedral geometry, with stacking of the benzene rings of the sulfonyl ligands between neighbor molecules. Powder EPR spectra at room temperature gave rhombic spectra for the [Cu(alphaqtsa)(2)] and [Cu(qmesa)(2)] complexes and an axial spectrum for the [Cu(qtbsa)(2)] complex, probably due to the steric hindrance of the methyl groups. Complexes [Cu(alphaqtsa)(2)] and [Cu(qmesa)(2)] are artificial chemical nucleases that degrade DNA in the presence of sodium ascorbate. A study of the radical scavengers revealed that the ROS (reactive oxygen species) involved in the DNA damage were hydroxyl, singlet oxygen-like species, and superoxide anion.  相似文献   

7.
Copper(II) complexes of the β-cyclodextrin (β-CD) functionalized with homocarnosine (HC) in the primary (CDHC6) and secondary rim (CDHC3) were characterized by means of different spectroscopic techniques such as UV-Vis absorption, circular dichroism, electron paramagnetic resonance and electron-spray mass spectrometry. Taken together, all the spectroscopic parameters indicate the formation of different copper(II) complex species at various pH values. In the CDHC3 copper(II) complex species, a direct involvement of the secondary hydroxyl group 2 of functionalized β-CD’s ring has been pointed out.The antioxidant activity of the copper(II) complexes of the two derivatives was determined through pulse radiolysis measurements. The results obtained provide direct evidence for a high catalytic activity of both complexes towards the dismutation of the superoxide anion radical. It is also demonstrated that the complex formation is not detrimental to the excellent scavenger activity exhibited by the ligands alone towards hydroxyl radicals. These copper complexes then represent very intriguing antioxidant agents against well known toxic reactive oxygen species.  相似文献   

8.
New molecular peroxotungstate(VI) complexes with dipeptides as ancillary ligands of the type, [WO(O(2))(2)(dipeptide)(H(2)O)].3H(2)O, dipeptide = glycyl-glycine or glycyl-leucine, have been synthesized and characterized by elemental analysis, spectral and physico-chemical methods including thermal analysis. The complexes contain side-on bound peroxo groups and a peptide zwitterion bonded to the metal centre unidentately through an O(carboxylate) atom. Investigations on certain biologically important key properties of these compounds and a set of dimeric compounds in analogous co-ligand environment, Na(2)[W(2)O(3)(O(2))(4)(dipeptide)(2)].3H(2)O, dipeptide = glycyl-glycine and glycyl-leucine, reported previously by us revealed interesting features of the compounds. Each of the compounds despite having a 7 co-ordinated metal centre exerts a strong inhibitory effect on alkaline phosphatase activity with a potency higher than that of the free dipeptide, tungstate or peroxotungstate. The compounds exhibit remarkable stability in solutions of acidic as well as physiological pH and are weaker as substrate to the enzyme catalase, compared to H(2)O(2). The mononuclear and dinuclear peroxotungsten compounds are efficient oxidants of reduced glutathione (GSH), a reaction in which only one of the peroxo groups of a diperoxotungsten moiety of the complexes was found to be active.  相似文献   

9.
Superoxide reductase (SOR) is an Fe protein that catalyzes the reduction of superoxide to give H(2)O(2). Recently, the mutation of the Glu47 residue into alanine (E47A) in the active site of SOR from Desulfoarculus baarsii has allowed the stabilization of an iron-peroxo species when quickly reacted with H(2)O(2) [Mathé et al. (2002) J. Am. Chem. Soc. 124, 4966-4967]. To further investigate this non-heme peroxo-iron species, we have carried out a M?ssbauer study of the (57)Fe-enriched E47A SOR from D. baarsii reacted quickly with H(2)O(2). Considering the M?ssbauer data, we conclude, in conjunction with the other spectroscopic data available and with the results of density functional calculations on related models, that this species corresponds to a high-spin side-on peroxo-Fe(3+) complex. This is one of the first examples of such a species in a biological system for which M?ssbauer parameters are now available: delta(/Fe) = 0.54 (1) mm/s, DeltaE(Q) = -0.80 (5) mm/s, and the asymmetry parameter eta = 0.60 (5) mm/s. The M?ssbauer and spin Hamiltonian parameters have been evaluated on a model from the side-on peroxo complex (model 2) issued from the oxidized iron center in SOR from Pyrococcus furiosus, for which structural data are available in the literature [Yeh et al. (2000) Biochemistry 39, 2499-2508]. For comparison, similar calculations have been carried out on a model derived from 2 (model 3), where the [CH(3)-S](1)(-) group has been replaced by the neutral [NH(3)](0) group [Neese and Solomon (1998) J. Am. Chem. Soc. 120, 12829-12848]. Both models 2 and 3 contain a formally high-spin Fe(3+) ion (i.e., with empty minority spin orbitals). We found, however, a significant fraction ( approximately 0.6 for 2, approximately 0.8 for 3) of spin (equivalently charge) spread over two occupied (minority spin) orbitals. The quadrupole splitting value for 2 is found to be negative and matches quite well the experimental value. The computed quadrupole tensors are rhombic in the case of 2 and axial in the case of 3. This difference originates directly from the presence of the thiolate ligand in 2. A correlation between experimental isomer shifts for Fe(3+) mononuclear complexes with computed electron densities at the iron nucleus has been built and used to evaluate the isomer shift values for 2 and 3 (0.56 and 0.63 mm/s, respectively). A significant increase of isomer shift value is found upon going from a methylthiolate to a nitrogen ligand for the Fe(3+) ion, consistent with covalency effects due to the presence of the axial thiolate ligand. Considering that the isomer shift value for 3 is likely to be in the 0.61-0.65 mm/s range [Horner et al. (2002) Eur. J. Inorg. Chem., 3278-3283], the isomer shift value for a high-spin eta(2)-O(2) Fe(3+) complex with an axial thiolate group can be estimated to be in the 0.54-0.58 mm/s range. The occurrence of a side-on peroxo intermediate in SOR is discussed in relation to the recent data published for a side-on peroxo-Fe(3+) species in another biological system [Karlsson et al. (2003) Science 299, 1039-1042].  相似文献   

10.
The oxygen activation mechanisms proposed for nonheme iron systems generally follow the heme paradigm in invoking the involvement of iron-peroxo and iron-oxo species in their catalytic cycles. However, the nonheme ligand environments allow for end-on and side-on dioxygen coordination and impart greater flexibility in the modes of dioxygen activation. The currently available evidence for nonheme iron-peroxo and iron-oxo intermediates is summarized and discussed in light of the ongoing discussion on the nature of the oxidant(s) in heme enzymes.  相似文献   

11.
Prompted by the recently reported capacity of the physiologically occurring Cu(I)-[glutathione]2 complex (Cu(I)-[GSH)]2) to reduce oxygen, the effect of various GSH-binding metals (Co2+, Cd2+, Zn2+, Pb2+, Al3+, Hg2+ and Ni2+) on the superoxide-generating capacity of such complex was investigated. Amongst all tested metals, only Hg2+ was able to substantially affect the capacity of Cu(I)-[GSH]2 to generate superoxide. When Hg2+ and Cu(I)-[GSH]2 were mixed equimolarly, the superoxide formation, assessed through the cytochrome c reduction and dihydroethidium oxidation, was increased by over 50%. Such effect was totally inhibitable by SOD. Based on the reportedly higher affinity of Hg2+ for GSH and the observed ability of Hg2+ to lower the concentration of Cu(I)-[GSH]2 (spectroscopically assessed), we suggest that Hg2+ displaces Cu(I) from Cu(I)-[GSH]2, to release Cu(I) ions and form a Hg(II)-[GSH]2 complex. The latter species would account for the Hg2+-induced exacerbation of the superoxide production. In fact, the present study provides first time evidence that a preformed Hg(II)-[GSH]2 complex is able to concentration-dependently reduce oxygen. Such redox-activity was evidenced using cytochrome c and confirmed by EPR studies using DMPO (5,5-dimethyl-1-pyrroline N-oxide, a spin-trapping agent). Considering this novel ability of Hg(II)-[GSH]2 to generate superoxide, a further characterization of its redox-activity and its potential to affect superoxide-susceptible biological targets appears warranted.  相似文献   

12.
The complex formation of Co(II) with N-donor ligands in dimethylsulfoxide (DMSO) is investigated by means of calorimetric and spectroscopic methods. The ligands considered in this work are tripodal polyamines and polypyridines: 2,2′,2′′-triaminotriethylamine (TREN), tris(2-(methylamino)ethyl)amine (Me3TREN), tris(2-(dimethylamino)ethyl)amine (Me6TREN), tris[(2-pyridyl)methyl]amine (TPA) and 6,6′-bis-[bis-(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine (BTPA).These ligands are characterized by a systematic modification of the donor groups in order to study how their structure is related to the stability of the complexes formed and to their ability to bind oxygen. A comparison with thermodynamic data for similar Cd(II) systems as well as with data referred to linear tetra-amines in DMSO is also made. The solvent effect on the nature and stability of the species formed is discussed. DFT calculations are carried out to explain the trend in thermodynamic parameters for Me6TREN. Only Co(TREN)2+ is able to bind oxygen and two successive species (μ-superoxo and μ-peroxo) are formed. The kinetics of oxygen uptake by Co(TREN)2+ is found to be less solvent-dependent than other Co(II)-polyamine complexes when the formation of the mononuclear μ-superoxo complex is considered.  相似文献   

13.
In this commentary the challenges faced in the application of wavefunction-based ab initio methods to (open-shell) transition metal complexes of (bio)inorganic interest are briefly touched on. Both single-reference and multireference methods are covered. It is stressed that the generation and nature of the reference wavefunction is a subject of major importance. How erroneous results can be easily obtained even with coupled-cluster theory is illustrated through the example of the septet–quintet separation in iron(IV)–oxo complexes. Second, the interplay between relativistic and correlation effects is important. This is demonstrated with coupled-cluster calculations on models for dinuclear copper active sites, where relativity has a major influence on the relative stabilities of the bis(μ-oxo) and side-on peroxo species.  相似文献   

14.
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and M?ssbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and M?ssbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.  相似文献   

15.
New molecular peroxotungstate(VI) complexes with dipeptides as ancillary ligands of the type, [WO(O2)2(dipeptide)(H2O)].3H2O, dipeptide = glycyl-glycine or glycyl-leucine, have been synthesized and characterized by elemental analysis, spectral and physico-chemical methods including thermal analysis. The complexes contain side-on bound peroxo groups and a peptide zwitterion bonded to the metal centre unidentately through an O(carboxylate) atom. Investigations on certain biologically important key properties of these compounds and a set of dimeric compounds in analogous co-ligand environment, Na2[W2O3(O2)4(dipeptide)2].3H2O, dipeptide = glycyl-glycine and glycyl-leucine, reported previously by us revealed interesting features of the compounds. Each of the compounds despite having a 7 co-ordinated metal centre exerts a strong inhibitory effect on alkaline phosphatase activity with a potency higher than that of the free dipeptide, tungstate or peroxotungstate. The compounds exhibit remarkable stability in solutions of acidic as well as physiological pH and are weaker as substrate to the enzyme catalase, compared to H2O2. The mononuclear and dinuclear peroxotungsten compounds are efficient oxidants of reduced glutathione (GSH), a reaction in which only one of the peroxo groups of a diperoxotungsten moiety of the complexes was found to be active.  相似文献   

16.
The reaction of lead(II) nitrate with trisodium citrate Na3(C6H5O7) in a 1:22.5 ratio at pH 4.8 provides crystals of {Na(H2O)3}[Pb5(H2O)3(C6H5O7)3(C6H6O7)]·9.5H2O (1). The structure of 1 is two-dimensional and exhibits five distinct Pb(II) sites and four different modes of citrate bonding. The five lead sites all display hemidirected coordination geometries, that is, irregular distribution of neighboring oxygen atoms resulting in obvious gaps in the coordination spheres. Consequently, the lead coordination geometries exhibit proximal bonding to a number of oxygen donors, as well as distal interactions with nearest neighbors. The coordination numbers vary from 8 to 10, with ‘5+3’, ‘5+4’, ‘6+4’ and ‘7+3’ coordination modes where the first number refers to the proximal ligands and the second to the distal set. The four crystallographically distinct citrate groups include three with deprotonated carboxylate groups (C6H5O7)3− and one with a single protonated carboxyl group (C6H6O7)2. The citrate ligands bridge 3, 5, 7 and 7 lead sites. Three of the citrate groups exhibit tridentate chelation coordination to a lead site through two carboxylate oxygen donors and the hydroxyl groups. One citrate group projects an uncoordinated -OH group and a pendant protonated carboxyl group into the interlamellar domain. This latter carboxyl group coordinates to a sodium cation, which exhibits five coordinate geometry defined by three aqua ligands and the carbonyl oxygen of the -CO2H groups in the basal plane and a citrate -OH donor in the apical position.  相似文献   

17.
Beryllium speciation at physiological conditions is critical to understanding chronic beryllium disease (CBD). The MHC-class II receptor alleles that have been linked to CBD have more than six carboxylates in a short 20 amino acid segment of the binding pocket and it has been suggested that beryllium may bind within the MHC-class II receptor via the carboxylates. Previous reports also show that citric acid binds beryllium significantly stronger than similar carboxylate ligands such as tartaric acid and is one of the few ligands that can compete with hydrolysis to solubilize beryllium across the entire pH range at molar concentrations. We have characterized the binding of Be to citric acid and shown using a combination of NMR, mass spectrometry and ligand competition studies that Be2L and Be4L2 species dominate. A Be-O-Be linkage with the bridging oxygen coming from the aliphatic alcohol is critical to the stability of the complex. We show through competition experiments that the most stable Be-O-Be arrangement has one Be in a five-member ring and the other Be in a six-member ring. The unusual deprotonation of an aliphatic alcohol (pK(a) = 18) at neutral pH has significant ramifications on the potential interactions of Be with biological ligands such as carbohydrates and Ser and Thr residues.  相似文献   

18.
[PtMe3(Me2CO)3]BF4 (1) reacts in acetone with 1,2,3,4-tetraacetyl-beta-D-glucopyranose (C2), pentaacetyl-alpha-D-glucopyranose (C3), pentaacetyl-beta-D-mannopyranose (C4) and pentaacetyl-beta-D-galactopyranose (C5) to give trimethyl(carbohydrate)platinum tetrafluoroborate complexes [PtMe3L]BF4 (2-5) (2, L=C2; 3, L=C3; 4, L=C4; 5, L=C5). The platinum-carbohydrate complexes were isolated as white, air and moisture sensitive powders in moderate to good yields (26-87%), and their identities were confirmed by microanalysis, 1H-, 13C- and 195Pt-NMR spectroscopy and ESI mass spectrometry. The coordination modes of the tridentately bound carbohydrate ligands (2, OH+Oring+Oacetyl; 3, Oring+Oether+Oacetyl; 4,5, Oring+Oether+Oether where Oring is the oxygen of a pyranose ring and Oacetyl/ether is the acetyl and ether oxygen of an acetoxy substituent, respectively) were established by evaluating the chemical shifts and the 2J(Pt,H) coupling constants of the methyl ligands and by 2D-NOE experiments. Evaluation of the 3J(H,H) coupling constants shows that the pyranose rings are present in their 4C1 conformation. The results show that carbohydrates without anchoring groups and even without hydroxyl groups can coordinate to the metal center only through very weak donors such as oxygen atoms of pyranose rings and acetoxy substituents.  相似文献   

19.
New partially N-hydroxyethylated 14-membered tetraaza macrocycles 1,8-bis(2-hydroxyethyl)-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (L2) and 1-(2-hydroxyethyl))-3,5,7,7,10,12,14,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (L3) have been synthesized selectively by the one-step reaction of 2,5,5,7,9,12,12,14-octamethyl-1,4,8,11-tetraazacyclotetradecane (L1) with 2-hydroxyethyl bromide. The complexes [NiL3]2+, [CuL2]2+, and [CuL3]2+ have been prepared and characterized. The complex [CuL2](ClO4)2 has a square-pyramidal coordination geometry with one apical oxygen atom; only one of the two hydroxyethyl groups is coordinated to the metal ion. Electronic absorption spectra of [CuL3](ClO4)2 containing one hydroxyethyl pendant arm indicate that the geometry is similar to that of [CuL2](ClO4)2. Unexpectedly, the nickel(II) complex [NiL3](ClO4)2 has a severely distorted trigonal bipyramidal coordination geometry with the oxygen atom of the pendant arm at the equatorial position. The Ni---O bond distance of the nickel(II) complex is shorter, or not longer, than the Ni---N bond distances. The ligand in [CuL2]2+ is in the RRSS (trans-III) configuration, as usual, whereas that in [NiL3]2+ has the RRRR (trans-V) conformation. The coordination geometry and properties of [NiL3]2+ are quite different from those reported for other related nickel(II) complexes containing one functional pendant arm.  相似文献   

20.
The tetranuclear aggregate (enH(2))[Fe(4)(mu(3)-O)(heidi)(4)(mu-O,O'-O(2)CNHC(2)H(4)NH(3))] x 4H(2)O contains a novel bidentate zwitterionic carbamic acid ligand. Magnetic studies indicate that the unsymmetrical Fe(4) core is ferrimagnetic with an S=4 ground state. Similar ligands have been obtained on rectangular tetranuclear aggregates [M(4)(mu-O)(mu-OH)(hpdta)(2)(mu-X)(2)](n-) (M[double bond]Fe, Al, Ga). The carbamic acid ligands are considered to result from the hydrolytic activation (fixation) of atmospheric CO(2) by the aggregate precursor to give a carbonato intermediate, which then reacts with the organic diamine used as base in the synthesis. Similar aggregates with acetate ligands result from hydrolytic activation of the DMA used as cosolvent. Closely related mechanisms for these two activation processes are proposed, which are also related to the accepted mechanisms for carbonic anhydrase and urease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号