首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Chlorophyll degradation is a complex phenomenon that often accompanies insect feeding damage to plants. Loss of chlorophyll can be initiated by several reactions, including oxidative bleaching, chlorophyllase activity, and Mg-dechelatase activity. Extracts from the Russian wheat aphid [Diuraphis noxia (Mordvilko)], the bird cherry-oat aphid [Rhopalosiphum padi (L.)], and aphid-infested and uninfested wheat plants were assayed in vitro for activities involved in chlorophyll degradation. Although the initial infestation was the same (10 apterous adults) for both aphid species, D. noxia weight was significantly higher than R. padi after feeding for 12 days. Consequently, D. noxia feeding caused greater fresh leaf weight reduction than R. padi feeding. Chlorophyll degradation assays showed no activity from either D. noxia or R. padi extracts. Plant extract assays showed a significant difference in Mg-dechelatase activity, while no difference was detected in either the chlorophyllase or oxidative bleaching pathways among the aphid-infested or uninfested plant extracts. Diuraphis noxia-infested leaf extracts showed a greater increase of Mg-dechelatase activity than either R. padi-infested or the uninfested plants. The findings suggest that leaf chlorosis elicited by D. noxia feeding is different from the chlorophyll degradation that occurs in natural plant senescence. Aphid-elicited chlorosis might be the result of a Mg-dechelatase-driven catabolism of chlorophyll in challenged wheat seedlings, however, the factor(s) from D. noxia that elicited the increase of Mg-dechelatase activity still remain to be determined.  相似文献   

2.
The concentration of photosynthetic pigments (i.e., chlorophylls a and b, and carotenoids) and chlorophyll degradation enzyme (i.e., chlorophyllase, oxidative bleaching, and Mg-dechelatase) activities on aphid-damaged and non-damaged regions of the infested leaves were determined with two infestation periods (6 and 12 days). Russian wheat aphid [Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae)] feeding caused significant losses of chlorophylls a and b and carotenoids in the damaged regions. However, bird cherry-oat aphid [Rhopalosiphum padi (L.) (Hemiptera: Aphididae)] feeding did not, except a significantly lower level of carotenoids was observed in the damaged regions from the short-infestation (6-day) samples. Interestingly, the non-damaged regions of D. noxia-infested leaves on both sampling dates had a significant increase of chlorophylls a and b and carotenoid concentrations when compared with the uninfested leaves. Although D. noxia feeding did not cause any changes in either chlorophyll a/b or chlorophyll (a+b)/carotenoid ratio between the damaged and non-damaged leaf regions on short-infestation (6-day) samples, a significantly lower chlorophyll a/b ratio was detected in long-infestation (12-day) samples. The assays of chlorophyllase and oxidative bleaching activities showed no significant differences between the damaged and non-damaged regions of the infested leaves on either sampling date. Mg-dechelatase activity, however, was significantly higher in D. noxia-damaged than non-damaged leaf regions from the short-infestation samples, while no differences were detected from the long-infestation samples. Furthermore, the long-infestation samples showed that Mg-dechelatase activity from both D. noxia-damaged and non-damaged regions increased significantly in comparison with the respective regions of either uninfested or R. padi-infested leaves. We infer that non-damaged regions of D. noxia-infested leaves compensate for the pigment losses in the damaged regions, and that Mg-dechelatase activity changed dynamically from a localized response to a systemic response as infestation duration extends. The findings from this study on cereal aphid-elicited chlorosis (or desistance) would help us to elucidate plant resistance mechanisms, in particular plant tolerance to non-defoliating herbivory.  相似文献   

3.
In South Africa a new biotype of the Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), RWASA2, has appeared which exhibits an improved performance compared to the original biotype (RWASA1) on wheat containing the Dn1 resistance gene. We examined population growth rates as well as damage caused by RWASA1 and RWASA2, in addition to a different aphid species, the bird cherry‐oat aphid (BCA), Rhopalosiphum padi L. (Hemiptera: Aphididae), on three RWA‐resistant barley [Hordeum vulgare L. (Poaceae)] lines (STARS‐9577B, STARS‐0502B, and STARS‐9301B) and one susceptible control (PUMA). RWASA2 had a higher reproductive rate than RWASA1 on all barley lines tested, which is consistent with previous results on wheat. Two of the RWA‐resistant lines (STARS‐0502B and STARS‐9301B) also exhibited a similar resistance phenotype against BCA. In our experiments, severe chlorosis and leaf roll appeared earlier on the control PUMA barley variety as a result of RWASA2 feeding than was the case with RWASA1, probably due to the differences in reproductive rate. Although chlorosis appeared earlier on resistant plants after RWASA2 feeding, this symptom developed much faster during RWASA1 feeding on all three resistant lines tested. As chlorosis did not correlate well with aphid population numbers, we surmise that the differential chlorosis effects may be related to differences in the amount of saliva introduced by the two aphid clones during feeding. Our results indicate that the difference between RWASA2 and RWASA1 are broader than a ‘gene for gene’ interaction with the Dn1 resistance (R) gene in wheat, and that these biotypes also differ in important aspects of their biology.  相似文献   

4.
Although aphids are among the most injurious of all agronomic insect pests, much remains unknown about how their feeding alters plant physiology. Two experiments were conducted to examine the physiological responses of wheat, Triticum aestivum L. and barley, Hordeum vulgare L. to injury by Diuraphis noxia (Mordvilko) and Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Gas-exchange parameters, chlorophyll fluorescence, and chlorophyll content were examined at 3, 6, and 9 days post-infestation on control and aphid (D. noxia and R. padi) infested treatments. In general, chlorophyll content and chlorophyll fluorescence parameters (non-variable minimal fluorescence, maximal fluorescence, and variable fluorescence) were not significantly affected by either aphid species. Photochemical and non-photochemical quenching coefficients were significantly impacted by both aphid species, suggesting that aphid feeding may influence the photoprotective xanthophyll cycle altering the thylakoid membrane pH gradient. Feeding by both aphid species resulted in an increase in electron transport rate, but at different time periods. Wheat plants infested with D. noxia had accelerated declines in photosynthetic capacity when compared to R. padi-infested and control plants. These plants exhibited decreased values for Amax, which was accompanied by decreased values for Vcmax and Jmax Neither aphid species negatively affected the photosynthetic capacity of the barley plants until day 9. At this time, aphid-infested plants had decreased values for Amax which was accompanied by decreased values in Jmax. Although R. padi feeding does not typically result in visual damage symptoms as previously demonstrated, clearly this aphid does have an impact on the gas-exchange and chlorophyll fluorescence of its host plants. Handling editor: Heikki Hokkanen  相似文献   

5.
Surveys were conducted in the summer andwinter rainfall wheat producing regions of SouthAfrica in a first attempt to investigate theidentity and impact of entomopathogenic fungi withinthe cereal aphid complex. Wheat produced underdryland and irrigated conditions was surveyed duringthe 1996 and 1997 seasons. Six cereal aphid specieswere recorded of which the Russian wheat aphid, Diuraphis noxia, was the most abundantunder dryland conditions in the summer rainfallregion as opposed to the oat aphid, Rhopalosiphum padi, in the winter rainfallregion. Rose grain aphid, Metopolophiumdirhodum, was most prevalent underirrigated conditions in the summer rainfall region.Five species of entomopathogenic fungi were recordedincluding four entomophthorales and the hyphomycete,Beauveria bassiana. TheEntomophthorales included Pandora neoaphidis, Conidiobolus obscurus, C.thromboides, and Entomophthoraplanchoniana. Pandora neoaphidis wasthe most important etiological agent recorded fromD. noxia, with up to 50% mycosis recordedunder dryland conditions in the Bethlehem summerrainfall region. Similarly, P. neoaphidis wasthe most prevalent species within populations ofM. dirhodum. under irrigated conditions in theBergville/Winterton summer rainfall region (up to77% mycosis). However, mycoses of R. padi didnot exceed 1.7% in samples from these areas,suggesting that R. padi may be lesssusceptible to P. neoaphidis than M.dirhodum. Epizootics in populations of D.noxia under dryland conditions in both the winterand summer rainfall regions indicated a high levelof susceptibility to P. neoaphidis.Occurrences of hymenopterous parasitoids andpredators in populations of D. noxia were low,although a parasitism level of 25% was recorded inone small sample of R. padi collected from anirrigated field in the summer rainfall region.  相似文献   

6.
The Russian wheat aphid Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae) is a global pest of wheat and barley. This arthropod is difficult to manage with pesticides or biological control agents due to the aphid’s ability to seek shelter in rolled leaves and also to develop virulent biotypes. During the past 20 years, the use of aphid-resistant cereal cultivars has proven to be an economically and ecologically beneficial method of protecting crops from D. noxia damage. Our research reports the results of experiments to determine the categories of D. noxia biotype 2 resistance present in Cereal Introduction Triticeae (CItr) 2401, and a barley genotype (IBRWAGP4-7), compared to control resistant and susceptible wheat and barley genotypes. CItr2401 and IBRWAGP4-7 exhibit no antixenosis, but both genotypes demonstrated antibiosis to D. noxia in the form of reduced aphid populations. Reduced leaf dry weight change, a measure of plant tolerance of D. noxia feeding, was significantly less in CItr2401 and IBRWAGP4-7 plants than in plants of susceptible control varieties. However, tolerance was negated when a tolerance index was calculated to correct for differences in aphid populations. Barley IBRWAGP4-7 is a new source of D. noxia biotype 2 resistance. D. noxia foliar leaf damage and population growth were significantly less on IBRWAGP4-7 plants than on plants of the susceptible barley variety Morex. IBRWAGP4-7 plants were equal in resistance to plants of the resistant barley STARS 9301 and wheat genotype CItr2401. Handling editor: Heikki Hokkanen  相似文献   

7.
The potential for exploiting natural wheat resistance to control the cereal aphid Rhopalosiphum padi, the most important aphid pest of small grain cereals in the UK, was investigated as an alternative approach to the use of insecticides. The investigation focussed on a group of secondary metabolites, the hydroxamic acids or benzoxazinones, present naturally as glucosides, but which hydrolyse on tissue damage to give biologically active aglycones, e.g. 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one (DIMBOA) which are associated with natural plant defence. These can be important for resistance against insects, fungi, bacteria and nematodes for a range of cultivated monocotyledonous plants and could ultimately be combined with other defence mechanisms to provide a general approach to cereal aphid control. Levels of hydroxamic acids, particularly DIMBOA‐glucoside, were determined in hexaploid (Triticum aestivum) and tetraploid (Triticum durum) wheat varieties and differences were found between species and varieties. The effect of feeding by R. padi on the level of hydroxamic acids in the leaf tissue was also investigated. Thus, after 24 h of aphid feeding, as an apparently localised hydrolytic defence reaction in the leaf, levels of DIMBOA‐glucoside decreased noticeably. When aphids were fed on sucrose solution containing low doses of DIMBOA there was a significant mortality compared to the sucrose control. However, the levels of and variation in hydroxamic acids in the wheat varieties investigated were insufficient for significant differences in aphid behaviour and development.  相似文献   

8.
The impact of the leaf-chlorosis-eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and the nonchlorosis-eliciting bird cherry-oat aphid, Rhopalosiphum padi (L.), feeding on D. noxia-susceptible and -resistant cereals was examined during the period (i.e., 3, 6, and 9 d after aphid infestation) that leaf chlorosis developed. After aphid number, leaf rolling and chlorosis ratings, and fresh leaf weight were recorded on each sampling date, total protein content, peroxidase, catalase, and polyphenol oxidase activities of each plant sample were determined spectrophotometrically. Although R. padi and D. noxia feeding caused significant increase of total protein content in comparison with the control cereal leaves, the difference in total protein content between R. padi and D. noxia-infested leaves was not significant. Although R. padi-feeding did not elicit any changes of peroxidase specific activity in any of the four cereals in comparison with the control leaves, D. noxia feeding elicited greater increases of peroxidase specific activity only on resistant 'Halt' wheat (Triticum aestivum L.) and susceptible 'Morex' barley (Hordeum vulgare L.), but not on susceptible 'Arapahoe' and resistant 'Border' oat (Avena sativa L.). D. noxia-feeding elicited a ninefold increase in peroxidase specific activity on Morex barley and a threefold on Halt wheat 9 d after the initial infestation in comparison with control leaves. Furthermore, D. noxia feeding did not elicit any differential changes of catalase and polyphenol oxidase activities in comparison with either R. padi feeding or control leaves. The findings suggest that D. noxia feeding probably results in oxidative stress in plants. Moderate increase of peroxidase activity (approximately threefold) in resistant Halt compared with susceptible Arapahoe wheat might have contributed to its resistance to D. noxia, whereas the ninefold peroxidase activity increase may have possibly contributed to barley's susceptibility. Different enzymatic responses in wheat, barley, and oat to D. noxia and R. padi feeding indicate the cereals have different mechanisms of aphid resistance.  相似文献   

9.
10.
Knowledge of the physiological responses of barley, Hordeum vulgare L., to the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae) is critical to understanding the defense response of barley to aphid injury and identifying resistance mechanisms. This study documented the impact of D. noxia feeding on resistant (‘Sidney’) and susceptible (‘Otis’) barley through chlorophyll fluorescence measurements, chlorophyll content, and carbon assimilation (A–Ci) curves recorded at 1, 3, 6, 10, and 13 days after aphid introduction. All chlorophyll fluorescence parameters evaluated were similar between aphid-infested and control plants for both cultivars. A–Ci curves showed that D. noxia feeding negatively impacts the photosynthetic capacity in both cultivars, but this effect was greater in the susceptible plants. From the A–Ci curves, it is apparent that compensation occurs in resistant barley by day 10, but by the conclusion of the experiment, aphid populations reached levels that overwhelmed the resistant barley seedlings. Differences observed in carbon assimilation curves between control and infested plants show that D. noxia feeding impacts the dark reaction, specifically rubisco activity and RuBP regeneration. It is likely that declines in the photochemical efficiency and chlorophyll content of the plants may be a secondary effect and not the primary trigger of declines in host plant function.  相似文献   

11.
1. Although both endogenous and exogenous processes regulate populations, the current understanding of the contributions from density dependence and climate to the population dynamics of eruptive herbivores remains limited. 2. Using a 17‐year time series of three cereal aphid species [Rhopalosiphum padi L., Metopolophium dirhodum (Walker), and Diuraphis noxia (Kurdumov)] compiled from a trapping network spanning the northwestern U.S.A., temporal and spatial patterns associated with population fluctuations, and modelled density dependence in aphid abundances were tested. These models were used to analyse correlations between climate and aphid abundances in the presence and absence of residual variance as a result of density‐dependent effects. 3. The temporal dynamics of aphid population fluctuations indicated periodicity, with no clear evidence for a spatial pattern underlying population fluctuations. 4. Aphid abundances oscillated in a manner consistent with delayed density dependence for all three aphid species, although the strength of these feedbacks differed among species. 5. Diuraphis noxia abundances were negatively correlated with increasing temperatures in the absence of density‐dependent effects, whereas M. dirhodum abundances were positively correlated with increasing cumulative precipitation in the presence of density‐dependent effects; yet, R. padi abundances were unrelated to climate variables irrespective of population feedbacks. 6. Our analysis suggests that endogenous feedbacks differentially regulate aphid populations in the northwestern U.S.A., and these feedbacks may operate at an expansive spatial scale. It is concluded that the contributions of density dependence and climate to aphid population dynamics are species‐specific in spite of similar ecological niches, with implications for assessing species responses to climate variability.  相似文献   

12.
The spotted alfalfa aphid,Therioaphis trifolii maculata (Buckton), caused local browning of cells surrounding feeding sites on lucerne plants (cv. Hunter River). Aqueous extracts of infested leaves underwent a marked browning process that did not occur in extracts of healthy leaves. The process was accelerated by addition of tyrosinase and peroxidase and reversed by reducing agents such as ascorbate and glutathione. In the presence of added reducing agents, the extracts produced brown precipitates, probably conjugates of phenolics with leaf proteins similar to those involved in the sealing of damaged tissuesin vivo. Partially autoxidised catechin (PAC) solutions showed an absorbance peak at 438 nm that was increased by polyphenol oxidase and decreased by ascorbate and glutathione. When extraction of tissues into PAC was used to assess redox activities, healthy tissues showed a rapid, short lived oxidising activity combined with a much more persistent reducing activity, whereas infested leaves had even greater oxidising activity and no detectable reducing activity. Soluble phenolics increased in infested leaves and stems. Total protein decreased, but the specific activity of peroxidase, catechol oxidase and superoxide dismutase relative to protein content increased. The ability of extracts to reduce cytochrome c increased, indicating an overall increase in superoxide radicals in attacked tissues. These results are consistent with a general disturbance of redox balance induced in tissues by aphid feeding, including accumulation of oxidases and phenolic substrates and loss of reducing activity and protein.  相似文献   

13.
Russian wheat aphid,Diuraphis noxia(Mordvilko), as a pest of small grains, has prompted research into biological control and host plant resistance. In the presence of Russian wheat aphid, leaves of a susceptible barley (Morex) are curled and chlorotic and sustain large densities of this aphid, while leaves of a resistant barley (STARS-9301B) remain flat and green and sustain fewer aphids. Might parasitism of Russian wheat aphid byAphelinus albipodusHayat & Fatima andDiaeretiella rapaeMcIntosh be affected differently by these plant types? When presented the plants separately and based on parasitism rate relative to aphid density, the largerD. rapaewas more effective in parasitizing relatively high densities of aphids within curled leaves of Morex than relatively low densities of aphids on uncurled leaves of STARS-9301B. Parasitism byA. albipodusdid not significantly differ among the plants. When given a choice of plants, approximately equal rates of parasitism occurred on the two plant lines for both parasitoid species, and parasitism byD. rapaewas greater thanA. albipodus.These data indicate that using parasitoid size as an indicator of success in a physically restricted environment may be misleading, when considered in a plant environment responsive in several manners to aphids (chlorosis, curling, and ability to sustain Russian wheat aphid). We expect that use of resistant barley will result in decreased parasitoid abundance as aphid densities decrease. However, parasitism rates are expected to be approximately equal on resistant and susceptible barley. In this system, plant resistance and biocontrol are compatible management strategies.  相似文献   

14.
The species composition, relativeabundance, and seasonal dynamics of selectednatural enemies of cereal aphids were monitoredin spring wheat fields in Moscow, Idaho in 1997and 1998. Trials also examined the potentialimpact of resistance to Russian wheat aphid(RWA), Diuraphis noxia (Mordvilko)(Homoptera: Aphididae) in wheat, on aphidbiological control agents. Natural enemypopulations were monitored on two springwheats: D. noxia susceptible variety`Centennial' and resistant genotype `IDO488'. Field plots were artificially infested withadult D. noxia, and sampled for cerealaphids and parasitoids weekly. Coccinellidpredators were monitored once in 1997 and twicein 1998. The coccinellids Hippodamiaconvergens Guerin, Coccinellaseptempunctata L., C. transversoguttataBrown and C. trifasciata Mulsant weredetected. No significant differences in adultor immature coccinellid densities were observedbetween the D. noxia resistant andsusceptible genotypes. During both years, themost abundant primary hymenopteran parasitoidswere Diaeretiella rapae (M'Intosh), Aphidius ervi Haliday, A. avenaphis(Fitch), and Lysiphlebus testaceipes(Cresson), Aphelinus varipes (Foerster),Aphidius colemani Viereck, Aphidiuspicipes (Nees), Aphidius sp., Monoctonus washingtonensis Pike & Stary, Praon gallicum Stary, Praon occidentaleBaker, and Praon sp. were also detected. Numbers of both D. noxia and D.rapae were significantly greater on Centennialthan on IDO488 in both years. When all speciesof cereal aphids and parasitoids areconsidered, the total percentage parasitism wasnot significantly different between thegenotypes. There was no interaction betweenD. noxia resistance and the populationdensity of the predators or parasitoidsmonitored. These results suggest that the D. noxia resistant line had no adverse impacton natural enemies under the conditions ofthese field experiments.  相似文献   

15.
Herbivory damage leads to induction of rapid signals and responses in plants such as oxidative burst, accumulation of secondary metabolites and defensive proteins. Response of various defensive enzymes and secondary metabolites in flag leaf samples of six bread wheat varieties against aphid feeding was investigated. Six bread wheat varieties, namely PBW 621 and HD 2967 (timely sown irrigated), PBW 590 and PBW 658 (late sown irrigated), and PBW 644 and PBW 660 (timely sown rainfed) were grown under the aphid infested and uninfested conditions and were sampled at a regular interval to analyze the biochemical changes caused by aphid feeding. A tremendous increase in the overall activity of various enzymes namely superoxide dismutase, glutathione reductase, phenylalanine ammonia lyase and polyphenol oxidase was observed, all of which play an important role in plants defense towards aphid feeding. Each wheat genotype showed an overall difference in their defensive activity towards aphid feeding. However, certain genotypes under different conditions showed significantly less susceptibility towards aphid damage.

Abbreviations: GR: glutathione reductase; HPR: host plant resistance; PAL: phenylalanine ammonia lyase; PPO: poly phenol oxidase; POD: peroxidase; SOD: superoxide dismutase  相似文献   


16.
Effective pest management is greatly facilitated by knowledge of the genetic structure and host adaptation of the pest species in question. The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) (Homoptera: Aphididae: Macrosiphini), is an important economic pest in many cereal‐growing areas of the world, and in this study we investigated these aspects of its populations, using microsatellite markers and host plant response assays. Diuraphis noxia was sampled from 38 locations in Iran and genotyped at four polymorphic microsatellite loci that had been isolated from various Sitobion species. We identified 50 multilocus genotypes in 376 individuals. The overall observed heterozygosity was 0.134. F‐statistics showed a regional partitioning in D. noxia populations with overall FST = 0.231. In addition, there was a significant correlation between genetic and geographic distances. In order to test for the ecological consequences of genetic variability in D. noxia, biotypic variation amongst the isolates collected from wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) was evaluated on a number of resistant and susceptible wheat varieties. The plant variables we measured were damage rating (based on leaf chlorosis, leaf rolling, wilting, and death of the host plant), host plant dry weight, and root length. Damage rating was the best criterion for detecting biotypic variation in D. noxia. Discriminant analysis correctly classified the isolates in respective groups in 80–91.8% of the cases. The barley isolate showed no differences in performance on resistant and susceptible wheat, indicating a lack of gene‐by‐gene relationship with wheat plants. In contrast, wheat isolates differentially damaged the resistant and susceptible plants and showed moderate to severe virulence.  相似文献   

17.
Of 15 species of grass, including cereals, alate exules and emigrants of Rhopalosiphum padi preferred to colonise Lolium perenne. Emigrants colonised cereals twice as readily as alate exules. Apterous exules also preferred L. perenne to cereals. Although small when reared on L. perenne, R. padi was more fecund per unit weight than on any of the other grasses tested. On the later growth stages of Dactylis glomerata and L. perenne, R. padi developed faster and were more fecund than on Phleum pratense at the same growth stages. At low temperatures R. padi were more fecund on P. pratense than on L. perenne and D. glomerata and vice versa at high temperatures. The secondary host preferences and reproductive activity of R. padi are discussed in relation to possible suitable hosts for viviparous overwintering and the pest status of this aphid in Britain.  相似文献   

18.
Some cereal seedlings exhibit antibiotic and antixenotic resistance to the aphids Metopolophium dirhodum (Walker) and Rhopalosiphum padi (L.), because the seedlings contain hydroxamic acids or gramine. The association between tolerance to aphids and aphid antibiosis was investigated for three cereals, Dollarbird wheat Vulcan wheat and Yagan barley. The dry biomass gained by the aphids and the simultaneous reduction in the biomass of the plants (biomass conversion ratio) quantified tolerance. Biomass production and the density dependence of biomass production by the aphids quantified antibiosis more effectively than fecundity. Vulcan wheat, which has more hydroxamic acid than Dollarbird wheat showed the highest level of antibiosis, and the barley was not antibiotic for either aphid. The biomass conversion ratio was a constant; the biomass of an infested plant was reduced by 3 mg for each mg of aphid biomass gained, regardless of aphid species, plant cultivar, or aphid density. The three plants showed no differential tolerance to the aphids, and therefore tolerance is not associated with antibiosis in this case.  相似文献   

19.
20.
Only few studies are available dealing with the relation between winter host density and spatial distribution and spring colonization of winter cereals by the host‐alternating cereal aphid species Rhopalosiphum padi and Metopolophium dirhodum. Large‐scale studies in climatically different agroecosystems in Germany from 2004 to 2006 revealed for R. padi and M. dirhodum larger spring/summer populations in landscapes with higher densities of winter hosts. A small‐scale study was performed in winter wheat fields adjacent to a large hedge with several typical winter hosts plants, bird cherry (Prunus padus) and wild rose species (Rosa spp.) to indentify distance effects (0–8, 8–24 and 24–60 m). Weekly measurements of aphid density between May to July showed significantly higher densities of R. padi compared with those of other aphids. Statistical analysis (Tukey–Kramer test and regression analyses) revealed significant gradients from the hedge to the field centre for R. padi and M. dirhodum. In comparative studies, winged R. padi from winter and adjacent summer hosts were genotyped using four microsatellite markers. The results showed that individuals from a certain winter host were not genetically similar with individuals from neighbouring summer hosts; it, therefore, seems that winter host clones did not significantly contribute to population built‐up in cereal fields over short distances. It could be concluded that on a regional scale, the density of sources for early migrants of R. padi is important for colonization intensity of surrounding summer hosts, but that the high local movement intensity and the relative small proportion of aphids that could be analysed in such tracking studies are blurring close spatial relations within short time periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号