首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paracoccus pantotrophus cytochrome cd(1) is a physiological nitrite reductase and an in vitro hydroxylamine reductase. The oxidised "as isolated" form of the enzyme has bis-histidinyl coordinated c-heme and upon reduction its coordination changes to histidine/methionine. Following treatment of reduced enzyme with hydroxylamine, a novel, oxidised, conformer of the enzyme is obtained. We have devised protocols for freeze-quench near-ir-MCD spectroscopy that have allowed us to establish unequivocally the c-heme coordination of this species as His/Met. Thus it is shown that the catalytically competent, hydroxylamine reoxidised, form of P. pantotrophus cytochrome cd(1) has different axial ligands to the c-heme than "as isolated" enzyme.  相似文献   

2.
The oxidized "as isolated" form of Paracoccus pantotrophus cytochrome cd1 nitrite reductase has a bis-histidinyl coordinated c heme and a histidine/tyrosine coordinated d1 heme. This form of the enzyme has previously been shown to be kinetically incompetent. Upon reduction, the coordination of both hemes changes and the enzyme is kinetically activated. Here, we show that P. pantotrophus NapC, a tetraheme c-type cytochrome belonging to a large family of such proteins, is capable of reducing, and hence activating, "as isolated" cytochrome cd1. NapC is the first protein from P. pantotrophus identified as being capable of this activation step and, given the periplasmic co-location and co-expression of the two proteins, is a strong candidate to be a physiological activation partner.  相似文献   

3.
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction.  相似文献   

4.
Cytochrome cd1 nitrite reductase (cd1) from Paracoccus pantotrophus is a respiratory enzyme capable of using nitrite, hydroxylamine and oxygen as electron accepting substrates. Structural studies have shown that when the enzyme is reduced there is a change in the axial ligation of both hemes, which has been proposed to form part of the catalytic cycle. Here we report the use of a physiological electron donor, pseudoazurin, to investigate the relationship between heme ligation and catalysis. A combination of visible absorption and electron paramagnetic resonance spectroscopies reveals the formation of a catalytically competent state of oxidized cd1 with 'switched' axial ligands immediately after complete reoxidation of reduced cd1 with hydroxylamine. This activated conformer returns over 20 min at 25 degrees C to the state previously observed for oxidized 'as isolated' cd1, which is catalytically inactive towards the same substrates.  相似文献   

5.
Cytochrome cd(1) is a respiratory nitrite reductase found in the periplasm of denitrifying bacteria. When fully reduced Paracoccus pantotrophus cytochrome cd(1) is mixed with nitrite in a stopped-flow apparatus in the absence of excess reductant, a kinetically stable complex of enzyme and product forms, assigned as a mixture of cFe(II) d(1)Fe(II)-NO(+) and cFe(III) d(1)Fe(II)-NO (cd(1)-X). However, in order for the enzyme to achieve steady-state turnover, product (NO) release must occur. In this work, we have investigated the effect of a physiological electron donor to cytochrome cd(1), the copper protein pseudoazurin, on the mechanism of nitrite reduction by the enzyme. Our data clearly show that initially oxidized pseudoazurin causes rapid further turnover by the enzyme to give a final product that we assign as all-ferric cytochrome cd(1) with nitrite bound to the d(1) heme (i.e. from which NO had dissociated). Pseudoazurin catalyzed this effect even when present at only one-tenth the stoichiometry of cytochrome cd(1). In contrast, redox-inert zinc pseudoazurin did not affect cd(1)-X, indicating a crucial role for electron movement between monomers or individual enzyme dimers rather than simply a protein-protein interaction. Furthermore, formation of cd(1)-X was, remarkably, accelerated by the presence of pseudoazurin, such that it occurred at a rate consistent with cd(1)-X being an intermediate in the catalytic cycle. It is clear that cytochrome cd(1) functions significantly differently in the presence of its two substrates, nitrite and electron donor protein, than in the presence of nitrite alone.  相似文献   

6.
Cytochrome cd(1) is a respiratory enzyme that catalyzes the physiological one-electron reduction of nitrite to nitric oxide. The enzyme is a dimer, each monomer containing one c-type cytochrome center and one active site d(1) heme. We present stopped-flow Fourier transform infrared data showing the formation of a stable ferric heme d(1)-NO complex (formally d(1)Fe(II)-NO(+)) as a product of the reaction between fully reduced Paracoccus pantotrophus cytochrome cd(1) and nitrite, in the absence of excess reductant. The Fe-(14)NO nu(NO) stretching mode is observed at 1913 cm(-1) with the corresponding Fe-(15)NO band at 1876 cm(-1). This d(1) heme-NO complex is still readily observed after 15 min. EPR and visible absorption spectroscopic data show that within 4 ms of the initiation of the reaction, nitrite is reduced at the d(1) heme, and a cFe(III) d(1)Fe(II)-NO complex is formed. Over the next 100 ms there is an electron redistribution within the enzyme to give a mixed species, 55% cFe(III) d(1)Fe(II)-NO and 45% cFe(II) d(1)Fe(II)-NO(+). No kinetically competent release of NO could be detected, indicating that at least one additional factor is required for product release by the enzyme. Implications for the mechanism of P. pantotrophus cytochrome cd(1) are discussed.  相似文献   

7.
Intramolecular electron transfer over 12 A from heme c to heme d(1) was investigated in cytochrome cd(1) nitrite reductase from Pseudomonas aeruginosa, following reduction of the c heme by pulse radiolysis. The rate constant for the transfer is relatively slow, k = 3 s(-1). The present observations contrast with a corresponding rate of electron transfer, 1.4 x 10(3) s(-1), measured for cytochrome cd(1) from Paracoccus pantotrophus, though the relative positions of the two heme groups are the same in both enzymes. The rate of intramolecular electron transfer within the enzyme from P. aeruginosa was accelerated 10(4)-fold (1.4 x 10(4) s(-1)) by the binding of cyanide to the d(1) heme. A coordination change at the d(1) heme upon its reduction is suggested to be a major factor in determining the slow rate of electron transfer in the P. aeruginosa enzyme in the absence of cyanide.  相似文献   

8.
9.
The 1.4-A crystal structure of the oxidized state of a Y25S variant of cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is described. It shows that loss of Tyr(25), a ligand via its hydroxy group to the iron of the d(1) heme in the oxidized (as prepared) wild-type enzyme, does not result in a switch at the c heme of the unusual bishistidinyl coordination to the histidine/methionine coordination seen in other conformations of the enzyme. The Ser(25) side chain is seen in two positions in the d(1) heme pocket with relative occupancies of approximately 7:3, but in neither case is the hydroxy group bound to the iron atom; instead, a sulfate ion from the crystallization solution is bound between the Ser(25) side chain and the heme iron. Unlike the wild-type enzyme, the Y25S mutant is active as a reductase toward nitrite, oxygen, and hydroxylamine without a reductive activation step. It is concluded that Tyr(25) is not essential for catalysis of reduction of any substrate, but that the requirement for activation by reduction of the wild-type enzyme is related to a requirement to drive the dissociation of this residue from the active site. The Y25S protein retains the d(1) heme less well than the wild-type protein, suggesting that the tyrosine residue has a role in stabilizing the binding of this cofactor.  相似文献   

10.
The cytochrome c nitrite reductases perform a key step in the biological nitrogen cycle by catalyzing the six-electron reduction of nitrite to ammonium. Graphite electrodes painted with Escherichia coli cytochrome c nitrite reductase and placed in solutions containing nitrite (pH 7) exhibit large catalytic reduction currents during cyclic voltammetry at potentials below 0 V. These catalytic currents were not observed in the absence of cytochrome c nitrite reductase and were shown to originate from an enzyme film engaged in direct electron exchange with the electrode. The catalytic current-potential profiles observed on progression from substrate-limited to enzyme-limited nitrite reduction revealed a fingerprint of catalytic behavior distinct from that observed during hydroxylamine reduction, the latter being an alternative substrate for the enzyme that is reduced to ammonium in a two electron process. Cytochrome c nitrite reductase clearly interacts differently with these two substrates. However, similar features underlie the development of the voltammetric response with increasing nitrite or hydroxylamine concentration. These features are consistent with coordinated two-electron reduction of the active site and suggest that the mechanisms for reduction of both substrates are underpinned by common rate-defining processes.  相似文献   

11.
Cytochrome cd1 nitrite reductase is a haem-containing enzyme responsible for the reduction of nitrite into NO, a key step in the anaerobic respiratory process of denitrification. The active site of cytochrome cd1 contains the unique d1 haem cofactor, from which NO must be released. In general, reduced haems bind NO tightly relative to oxidized haems. In the present paper, we present experimental evidence that the reduced d1 haem of cytochrome cd1 from Paracoccus pantotrophus releases NO rapidly (k=65-200 s(-1)); this result suggests that NO release is the rate-limiting step of the catalytic cycle (turnover number=72 s(-1)). We also demonstrate, using a complex of the d1 haem and apomyoglobin, that the rapid dissociation of NO is largely controlled by the d1 haem cofactor itself. We present a reaction mechanism proposed to be applicable to all cytochromes cd1 and conclude that the d1 haem has evolved to have low affinity for NO, as compared with other ferrous haems.  相似文献   

12.
Three c-type cytochromes, NirM, NirC, and NirN, are encoded in the nirSMCFDLGHJEN gene cluster for cytochrome cd(1)-type nitrite reductase (NIR) of Pseudomonas aeruginosa. nirS is the structural gene for NIR. NirM (cytochrome c(551)) is reported to be a physiological electron donor for nitrite reductase. The respective functions of NirC and NirN have remained unclear. In this study, we produced recombinant NirC and NirN in P. aeruginosa, and purified them from the periplasmic fraction. N-terminal amino acid sequences of the purified proteins showed that the N-terminal 31 and 18 residues of NirC and NirN precursors were cleaved, respectively, indicating that cleaved peptides act as signals for membrane translocation. In addition, the ability of NirC for electron donation to nitrite reductase was investigated. NirC, as well as NirM, was able to mediate the electron donation from the membrane electron pathway to NIR, suggesting that the structural gene for NIR is followed by the genes for two electron donors for NIR.  相似文献   

13.
Nitrite reductase (cytochrome cd1) was purified to electrophoretic homogeneity from the soluble extract of the marine denitrifying bacterium Pseudomonas nautica strain 617. Cells were anaerobically grown with 10 mM nitrate as final electron acceptor. The soluble fraction was purified by four successive chromatographic steps and the purest cytochrome cd1 exhibited an A280 nm(oxidized)/A410nm(oxidized) coefficient of 0.90. In the course of purification, cytochrome cd1 specific activity presented a maximum value of 0.048 units/mg of protein. This periplasmic enzyme is a homodimer and each 60 kDa subunit contains one heme c and one heme d1 as prosthetic moieties, both in a low spin state. Redox potentials of hemes c and d1 were determined at three different pH values (6.6, 7.6 and 8.6) and did not show any pH dependence. The first 20 amino acids of the NH2-terminal region of the protein were identified and the sequence showed 45% identity with the corresponding region of Pseudomonas aeruginosa nitrite reductase but no homology to Pseudomonas stutzeri and Paracoccus denitrificans enzymes. Spectroscopic properties of Pseudomonas nautica 617 cytochrome cd1 in the ultraviolet-visible range and in electron paramagnetic resonance are described. The formation of a heme d1 -nitric-oxide complex as an intermediate of nitrite reduction was demonstrated by electron paramagnetic resonance experiments.  相似文献   

14.
Paracoccus pantotrophus cytochrome cd(1) is a nitrite reductase found in the periplasm of many denitrifying bacteria. It catalyzes the reduction of nitrite to nitric oxide during the denitrification part of the biological nitrogen cycle. Previous studies of early millisecond intermediates in the nitrite reduction reaction have shown, by comparison with pH 7.0, that at the optimum pH, approximately pH 6, the earliest intermediates were lost in the dead time of the instrument. Access to early time points (approximately 100 micros) through use of an ultra-rapid mixing device has identified a spectroscopically novel intermediate, assigned as the Michaelis complex, formed from reaction of fully reduced enzyme with nitrite. Spectroscopic observation of the subsequent transformation of this species has provided data that demand reappraisal of the general belief that the two subunits of the enzyme function independently.  相似文献   

15.
The integrated rate law for the reaction of the nitrite reductase of Paracoccus denitrificans, a cytochrome cd, has been established for turnover assays using donor ferrocytochromes c and either nitrite or molecular oxygen as the ultimate acceptor. The time course for the concentration of ferrocytochrome follows the law: formula: (see text), where S is the concentration of donor ferrocytochrome c, So is the initial concentration, t is time, and u1, u2, and u3 are empirical parameters that are constant for a given experiment but depend upon the initial substrate concentration. In particular, all the u1 increase with decreasing initial ferrocytochrome concentration. Saturation of reaction rates at high donor ferrocytochrome concentrations was not observed. The parameter u1 was proportional to the enzyme concentration while u2 and u3 were not. The form of the integrated rate law and the behavior of the u1 impose severe restrictions on possible kinetic schemes for the activity of the enzyme. Contemporary mechanisms that have been proposed for mitochondrial oxidase aa3 are examined and found to be inadequate to explain the reactivity of cytochrome cd. The simplest interpretations of the cytochrome cd data suggest that the enzyme does not bind the ferri and ferro forms of donor cytochromes c with equal affinity and that the enzyme is subject to inhibition by a product of reaction. Eucaryotic horse cytochrome c reacts with the Paracoccus cytochrome cd with 77% of the activity when Paracoccus cytochrome c550 is used as the electron donor.  相似文献   

16.
Tyr25 is a ligand to the active site d1 heme in as isolated, oxidized cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. This form of the enzyme requires reductive activation, a process that involves not only displacement of Tyr25 from the d1 heme but also switching of the ligands at the c heme from bis-histidinyl to His/Met. A Y25S variant retains this bis-histidinyl coordination in the crystal of the oxidized state that has sulfate bound to the d1 heme iron. This Y25S form of the enzyme does not require reductive activation, an observation previously interpreted as meaning that the presence of the phenolate oxygen of Tyr25 is the critical determinant of the requirement for activation. This interpretation now needs re-evaluation because, unexpectedly, the oxidized as prepared Y25S protein, unlike the wild type, has different heme iron ligands in solution at room temperature, as judged by magnetic circular dichroism and electron spin resonance spectroscopies, than in the crystal. In addition, the binding of nitrite and cyanide to oxidized Y25S cytochrome cd1 is markedly different from the wild type enzyme, thus providing insight into the affinity of the oxidized d1 heme ring for anions in the absence of the steric barrier presented by Tyr25.  相似文献   

17.
18.
Cytochrome cd(1) nitrite reductase from Paracoccus pantotrophus is a dimer; within each monomer there is a largely alpha-helical domain that contains the c-type cytochrome centre. The structure of this domain changes significantly upon reduction of the heme iron, for which the ligands change from His17/His69 to Met106/His69. Overproduction, using an improved Escherichia coli expression system, of this c-type cytochrome domain as an independent monomer is reported here. The properties of the independent domain are compared with those when it is part of dimeric holo or semi-apo cytochrome cd(1).  相似文献   

19.
In the denitrification pathway, Pseudomonas aeruginosa cytochrome cd1 nitrite reductase catalyzes the reduction of nitrite to nitric oxide; in vitro, this enzyme is also competent in the reduction of O2 to 2H2O. In this article, we present a comparative kinetic study of the O2 reaction in the wild-type nitrite reductase and in three site-directed mutants (Tyr10-->Phe, His369-->Ala and His327-->Ala/His369-->Ala) of the amino acid residues close to the d1 heme on the distal side. The results clearly indicate that His369 is the key residue in the control of reactivity, as its substitution with Ala, previously shown to affect the reduction of nitrite, also impairs the reaction with O2, affecting both the properties and lifespan of the intermediate species. Our findings allow the presentation of an overall picture for the reactivity of cytochrome cd1 nitrite reductase and extend our previous conclusion that the conserved distal histidines are essential for the binding to reduced d1 heme of different anions, whether a substrate such as nitrite, a ligand such as cyanide, or an intermediate in the O2 reduction. Moreover, we propose that His369 also exerts a protective role against degradation of the d1 heme, by preventing the formation and adverse effects of the reactive O2 species (never present in significant amounts in wild-type cytochrome cd1 nitrite reductase), a finding with clear physiological implications.  相似文献   

20.
Bali S  Warren MJ  Ferguson SJ 《The FEBS journal》2010,277(23):4944-4955
The cytochrome cd? nitrite reductase from Paracoccus pantotrophus catalyses the one electron reduction of nitrite to nitric oxide using two heme cofactors. The site of nitrite reduction is the d? heme, which is synthesized under anaerobic conditions by using nirECFD-LGHJN gene products. In vivo studies with an unmarked deletion strain, ΔnirF, showed that this gene is essential for cd? assembly and consequently for denitrification, which was restored when the ΔnirF strain was complemented with wild-type, plasmid-borne, nirF. Removal of a signal sequence and deletion of a conserved N-terminal Gly-rich motif from the NirF coded on a plasmid resulted in loss of in vivo NirF activity. We demonstrate here that the product of the nirF gene is a periplasmic protein and, hence, must be involved in a late stage of the cofactor biosynthesis. In vitro studies with purified NirF established that it could bind d? heme. It is concluded that His41 of NirF, which aligns with His200 of the d? heme domain of cd?, is essential both for this binding and for the production of d? heme; replacement of His41 by Ala, Cys, Lys and Met all gave nonfunctional proteins. Potential functions of NirF are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号