首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin (CaM) is a Ca(2+)-binding protein that functions as a ubiquitous Ca(2+)-signaling molecule, through conformational changes from the "closed" apo conformation to the "open" Ca(2+)-bound conformation. Mg(2+) also binds to CaM and stabilizes its folded structure, but the NMR signals are broadened by slow conformational fluctuations. Using the E104D/E140D mutant, designed to decrease the signal broadening in the presence of Mg(2+) with minimal perturbations of the overall structure, the solution structure of the Mg(2+)-bound form of the CaM C-terminal domain was determined by multidimensional NMR spectroscopy. The Mg(2+)-induced conformational change mainly occurred in EF hand IV, while EF-hand III retained the apo structure. The helix G and helix H sides of the binding sequence undergo conformational changes needed for the Mg(2+) coordination, and thus the helices tilt slightly. The aromatic rings on helix H move to form a new cluster of aromatic rings in the hydrophobic core. Although helix G tilts slightly to the open orientation, the closed conformation is maintained. The fact that the Mg(2+)-induced conformational changes in EF-hand IV and the hydrophobic core are also seen upon Ca(2+) binding suggests that the Ca(2+)-induced conformational changes can be divided into two categories, those specific to Ca(2+) and those common to Ca(2+) and Mg(2+).  相似文献   

2.
A mutant (M48Y) of chicken skeletal muscle troponin C was prepared in which Tyr replaced Met-48 of the recombinant protein (rTnC). Since Tyr and Trp are normally absent, spectral properties could be unambiguously assigned to the site of substitution. In the crystal structure, this residue lies at the COOH-terminal end of the B-helix of the N domain in a region postulated to undergo a significant conformational change to a more polar environment upon Ca2+ binding [Herzberg et al. (1986) J. Biol. Chem. 261, 2638-2644]. Comparison of the far-UV CD spectra of M48Y and rTnC in the absence and presence of Ca2+ indicated no overall structural alteration due to the mutation. However, Ca2+ titration of the ellipticity change showed a reduction in Ca2+ affinity and cooperativity of sites I and II. A Ca(2+)-induced increase in the near-UV ellipticity of M48Y at pH 7.12 and a red shift in its UV absorbance spectrum occurred over a range of free [Ca2+] attributable to the N-domain transition only. This was largely abolished at pH 5.3 where Ca2+ no longer binds to sites I and II. That region of the 1H NMR spectrum attributable to Tyr was broadened upon Ca2+ binding. These Ca(2+)-induced changes are consistent with the environment of the Tyr side chain becoming chiral, less polar, and more immobile, all in a direction opposite to that predicted. These observations indicate that while the general features of the postulated model are valid, it is unlikely to be correct in detail.  相似文献   

3.
Ueki S  Nakamura M  Komori T  Arata T 《Biochemistry》2005,44(1):411-416
Calcium-induced structural transition in the amino-terminal domain of troponin C (TnC) triggers skeletal and cardiac muscle contraction. The salient feature of this structural transition is the movement of the B and C helices, which is termed the "opening" of the N-domain. This movement exposes a hydrophobic region, allowing interaction with the regulatory domain of troponin I (TnI) as can be seen in the crystal structure of the troponin ternary complex [Takeda, S., Yamashita, A., Maeda, K., and Maeda, Y. (2003) Nature 424, 35-41]. In contrast to skeletal TnC, Ca(2+)-binding site I (an EF-hand motif that consists of an A helix-loop-B helix motif) is inactive in cardiac TnC. The question arising from comparisons with skeletal TnC is how both helices move according to Ca(2+) binding or interact with TnI in cardiac TnC. In this study, we examined the Ca(2+)-induced movement of the B and C helices relative to the D helix in a cardiac TnC monomer state and TnC-TnI binary complex by means of site-directed spin labeling electron paramagnetic resonance (EPR). Doubly spin-labeled TnC mutants were prepared, and the spin-spin distances were estimated by analyzing dipolar interactions with the Fourier deconvolution method. An interspin distance of 18.4 A was estimated for mutants spin labeled at G42C on the B helix and C84 on the D helix in a Mg(2+)-saturated monomer state. The interspin distance between Q58C on the C helix and C84 on the D helix was estimated to be 18.3 A under the same conditions. Distance changes were observed by the addition of Ca(2+) ions and the formation of a complex with TnI. Our data indicated that the C helix moved away from the D helix in a distinct Ca(2+)-dependent manner, while the B helix did not. A movement of the B helix by interaction with TnI was observed. Both Ca(2+) and TnI were also shown to be essential for the full opening of the N-domain in cardiac TnC.  相似文献   

4.
Spectroscopic methods such as circular dichroism and F?rster resonance energy transfer are current approaches for monitoring protein conformational changes. Those analyses require special equipment and expertise. The need for fluorescence labeling of the protein may interfere with the native structure. We have developed a microtiter plate-based monoclonal antibody (mAb) epitope analysis to detect protein conformational changes in a high throughput manner. This method is based on the concept that the affinity of the antigen-binding site of an antibody for the specific antigenic epitope will change when the 3-D structure of the epitope changes. The effectiveness of this approach was demonstrated in the present study on troponin C (TnC), an allosteric protein in the Ca(2+) regulatory system of striated muscle. Using TnC purified by a highly effective rapid procedure and mAbs developed against epitopes in the N- and C-domains of TnC enzyme-linked immunosorbant assay (ELISA) clearly detected Ca(2+)-induced conformational changes in both the N-terminal regulatory domain and the C-terminal structural domain of TnC. On the other hand, Mg(2+)-binding to the C-domain of TnC resulted in a long-range effect on the N-domain conformation, indicating a functional significance of Ca(2+)-Mg(2+) exchange at the C-domain metal ion-binding sites. In addition to further understanding of the structure-function relationship of TnC, the data demonstrate that the mAb epitope analysis provides a simple high throughput method for monitoring 3-D structural changes in native proteins under physiological condition and has broad applications in protein structure-function relationship studies.  相似文献   

5.
Tikunova SB  Rall JA  Davis JP 《Biochemistry》2002,41(21):6697-6705
Troponin C (TnC) is an EF-hand Ca(2+) binding protein that regulates skeletal muscle contraction. The mechanisms that control the Ca(2+) binding properties of TnC and other EF-hand proteins are not completely understood. We individually substituted 27 Phe, Ile, Leu, Val, and Met residues with polar Gln to examine the role of hydrophobic residues in Ca(2+) binding and exchange with the N-domain of a fluorescent TnC(F29W). The global N-terminal Ca(2+) affinities of the TnC(F29W) mutants varied approximately 2340-fold, while Ca(2+) association and dissociation rates varied less than 70-fold and more than 45-fold, respectively. Greater than 2-fold increases in Ca(2+) affinities were obtained primarily by slowing of Ca(2+) dissociation rates, while greater than 2-fold decreases in Ca(2+) affinities were obtained by slowing of Ca(2+) association rates and speeding of Ca(2+) dissociation rates. No correlation was found between the Ca(2+) binding properties of the TnC(F29W) mutants and the solvent accessibility of the hydrophobic amino acids in the apo state, Ca(2+) bound state, or the difference between the two states. However, the effects of these hydrophobic mutations on Ca(2+) binding were contextual possibly because of side chain interactions within the apo and Ca(2+) bound states of the N-domain. These results demonstrate that a single hydrophobic residue, which does not directly ligate Ca(2+), can play a crucial role in controlling Ca(2+) binding and exchange within a coupled and functional EF-hand system.  相似文献   

6.
We have determined solution structures of the N-terminal half domain (N-domain) of yeast calmodulin (YCM0-N, residues 1-77) in the apo and Ca(2+)-saturated forms by NMR spectroscopy. The Ca(2+)-binding sites of YCM0-N consist of a pair of helix-loop-helix motifs (EF-hands), in which the loops are linked by a short beta-sheet. The binding of two Ca(2+) causes large rearrangement of the four alpha-helices and exposes the hydrophobic surface as observed for vertebrate calmodulin (CaM). Within the observed overall conformational similarity in the peptide backbone, several significant conformational differences were observed between the two proteins, which originated from the 38% disagreement in amino acid sequences. The beta-sheet in apo YCM0-N is strongly twisted compared with that in the N-domain of CaM, while it turns to the normal more stable conformation on Ca(2+) binding. YCM0-N shows higher cooperativity in Ca(2+) binding than the N-domain of CaM, and the observed conformational change of the beta-sheet is a possible cause of the highly cooperative Ca(2+) binding. The hydrophobic surface on Ca(2+)-saturated YCM0-N appears less flexible due to the replacements of Met51, Met71, and Val55 in the hydrophobic surface of CaM with Leu51, Leu71, and Ile55, which is thought to be one of reasons for the poor activation of target enzymes by yeast CaM.  相似文献   

7.
Troponin C (TnC) is an 18-kDa acidic protein of the EF-hand family that serves as the trigger for muscle contraction. In this study, we investigated the thermodynamic stability of the C-domain of TnC in all its occupancy states (apo, Mg (2+)-, and Ca (2+)-bound states) using a fluorescent mutant with Phe 105 replaced by Trp (F105W/C-domain, residues 88-162) and (1)H NMR spectroscopy. High hydrostatic pressure was employed as a perturbing agent, in combination with urea or without it. On the basis of changes in Trp emission, the C-domain apo state was denatured by pressure (in the range of 1-1000 bar) in the absence of urea. The fluorescence data were corroborated by following the changes in the (1)H NMR signal of Histidine 128. Addition of Ca (2+) or Mg (2+) increased the C-domain stability so that complete denaturation was attained only by the combined use of high hydrostatic pressure and either 7-8 M or 1.5-2 M urea, respectively. The (1)H NMR spectra in the presence of Ca (2+) was typical of a highly structured protein and allowed us to follow the changes in the local environment of several amino-acid residues as a function of pressure at 4 M Urea. Different residues presented different volume changes, but those that are in the hydrophobic core portrayed values very similar to that obtained for tryptophan 105 as measured by fluorescence, indicating that it is indeed a good probe for the overall tertiary structure. From these experiments, we calculated the thermodynamic parameters (Delta G degrees atm and Delta V) that govern the folding of the C-domain in all its possible physiological states and constructed a thermodynamic cycle. Furthermore, a comparison of the volume and free-energy changes of folding of isolated C-domain with those of intact TnC (F105W) revealed that the N-domain has little effect on the structure of the C-domain, even in the presence of Ca (2+). The volume and free-energy diagrams reveal a landscape of different conformations from the less structured, denatured apo form to the highly structured, Ca (2+)-bound form. The large change in folding free energy of the C-domain that takes place when Ca (2+) binds may explain the much higher Ca (2+) affinity of sites III and IV, 2 orders of magnitude higher than the affinity of sites I and II.  相似文献   

8.
Molecular dynamics analyses were performed to examine conformational changes in the C-domain of calmodulin and the N-domain of troponin C induced by binding of Ca(2+) ions. Analyses of conformational changes in calmodulin and troponin C indicated that the shortening of the distance between Ca(2+) ions and Ca(2+) binding sites of helices caused widening of the distance between Ca(2+) binding sites of helices on opposite sides, while the hydrophobic side chains in the center of helices hardly moved due to their steric hindrance. This conformational change acts as the clothespin mechanism.  相似文献   

9.
To investigate the roles of site I and II invariant Glu residues 41 and 77 in the functional properties and calcium-induced structural opening of skeletal muscle troponin C (TnC) regulatory domain, we have replaced them by Ala in intact F29W TnC and in wild-type and F29W N domains (TnC residues 1-90). Reconstitution of intact E41A/F29W and E77A/F29W mutants into TnC-depleted muscle skinned fibers showed that Ca(2+)-induced tension is greatly reduced compared with the F29W control. Circular dichroism measurements of wild-type N domain as a function of pCa (= -log[Ca(2+)]) demonstrated that approximately 90% of the total change in molar ellipticity at 222 nm ([theta](222 nm)) could be assigned to site II Ca(2+) binding. With E41A, E77A, and cardiac TnC N domains this [theta](222 nm) change attributable to site II was reduced to < or =40% of that seen with wild type, consistent with their structures remaining closed in +Ca(2+). Furthermore, the Ca(2+)-induced changes in fluorescence, near UV CD, and UV difference spectra observed with intact F29W are largely abolished with E41A/F29W and E77A/F29W TnCs. Taken together, the data indicate that the major structural change in N domain, including the closed to open transition, is triggered by site II Ca(2+) binding, an interpretation relevant to the energetics of the skeletal muscle TnC and cardiac TnC systems.  相似文献   

10.
We have determined the solution structure of calmodulin (CaM) from yeast (Saccharomyces cerevisiae) (yCaM) in the apo state by using NMR spectroscopy. yCaM is 60% identical in its amino acid sequence with other CaMs, and exhibits its unique biological features. yCaM consists of two similar globular domains (N- and C-domain) containing three Ca(2+)-binding motifs, EF-hands, in accordance with the observed 3 mol of Ca(2+) binding. In the solution structure of yCaM, the conformation of the N-domain conforms well to the one of the expressed N-terminal half-domains of yCaM [Ishida, H., et al. (2000) Biochemistry 39, 13660-13668]. The conformation of the C-domain basically consists of a pair of helix-loop-helix motifs, though a segment corresponding to the forth Ca(2+)-binding site of CaM deviates in its primary structure from a typical EF-hand motif and loses the ability to bind Ca(2+). Thus, the resulting conformation of each domain is essentially identical to the corresponding domain of CaM in the apo state. A flexible linker connects the two domains as observed for CaM. Any evidence for the previously reported interdomain interaction in yCaM was not observed in the solution structure of the apo state. Hence, the interdomain interaction possibly occurs in the course of Ca(2+) binding and generates a cooperative Ca(2+) binding among all three sites. Preliminary studies on a mutant protein of yCaM, E104Q, revealed that the Ca(2+)-bound N-domain interacts with the apo C-domain and induces a large conformational change in the C-domain.  相似文献   

11.
Jaren OR  Kranz JK  Sorensen BR  Wand AJ  Shea MA 《Biochemistry》2002,41(48):14158-14166
Calmodulin (CaM) is an intracellular calcium-binding protein essential for many pathways in eukaryotic signal transduction. Although a structure of Ca(2+)-saturated Paramecium CaM at 1.0 A resolution (1EXR.pdb) provides the highest level of detail about side-chain orientations in CaM, information about an end state alone cannot explain driving forces for the transitions that occur during Ca(2+)-induced conformational switching and why the two domains of CaM are saturated sequentially rather than simultaneously. Recent studies focus attention on the contributions of interdomain linker residues. Electron paramagnetic resonance showed that Ca(2+)-induced structural stabilization of residues 76-81 modulates domain coupling [Qin and Squier (2001) Biophys. J. 81, 2908-2918]. Studies of N-domain fragments of Paramecium CaM showed that residues 76-80 increased thermostability of the N-domain but lowered the Ca(2+) affinity of sites I and II [Sorensen et al. (2002) Biochemistry 41, 15-20]. To probe domain coupling during Ca(2+) binding, we have used (1)H-(15)N HSQC NMR to monitor more than 40 residues in Paramecium CaM. The titrations demonstrated that residues Glu78 to Glu84 (in the linker and cap of helix E) underwent sequential phases of conformational change. Initially, they changed in volume (slow exchange) as sites III and IV titrated, and subsequently, they changed in frequency (fast exchange) as sites I and II titrated. These studies provide evidence for Ca(2+)-dependent communication between the domains, demonstrating that spatially distant residues respond to Ca(2+) binding at sites I and II in the N-domain of CaM.  相似文献   

12.
With the recent advances in structure determination of the troponin complex, it becomes even more important to understand the dynamics of its components and how they are affected by the presence or absence of Ca(2+). We used NMR techniques to study the backbone dynamics of skeletal troponin C (TnC) in the complex. Transverse relaxation-optimized spectroscopy pulse sequences and deuteration of TnC were essential to assign most of the TnC residues in the complex. Backbone amide (15)N relaxation times were measured in the presence of Ca(2+) or EGTA/Mg(2+). T(1) relaxation times could not be interpreted precisely, because for a molecule of this size, the longitudinal backbone amide (15)N relaxation rate due to chemical shift anisotropy and dipole-dipole interactions becomes too small, and other relaxation mechanisms become relevant. T(2) relaxation times were of the expected magnitude for a complex of this size, and most of the variation of T(2) times in the presence of Ca(2+) could be explained by the anisotropy of the complex, suggesting a relatively rigid molecule. The only exception was EF-hand site III and helix F immediately after, which are more flexible than the rest of the molecule. In the presence of EGTA/Mg(2+), relaxation times for residues in the C-domain of TnC are very similar to values in the presence of Ca(2+), whereas the N-domain becomes more flexible. Taken together with the high flexibility of the linker between the two domains, we concluded that in the absence of Ca(2+), the N-domain of TnC moves independently from the rest of the complex.  相似文献   

13.
1H-NMR spectroscopy is employed to study the interaction between rabbit skeletal muscle troponin (C (TnC) and wasp venom tetradecapeptide mastoparan. We monitored the spectral change of the following species of TnC as a function of mastoparan concentration: apoTnC, Ca(2+)-saturated TnC (Ca4TnC) and Ca(2+)-half loaded TnC (Ca2TnC). When apo-TnC is titrated with mastoparan, line-broadening is observed for the ring-current shifted resonance of Phe-23, Ile-34, Val-62 and Phe-72 and the downfield-shifted CH alpha-resonances of Asp-33, Thr-69 and Asp-71; these residues are located in the N-domain. When Ca4TnC is titrated with mastoparan, chemical shift change is observed for the ring-current shifted resonances of Phe-99, Ile-110 and Phe-148 and the downfield-shifted CH alpha-resonances of Asn-105, Ala-106, Ile-110 and Ile-146 and aromatic resonance of Tyr-109 and His-125; these residues are located in the C-domain. The resonance of Phe-23, Asp-33, Asp-71, Phe-72, Phe-99, Tyr-109, Ile-146, His-125 and Phe-148 in both N- and C-domains changes when Ca2TnC is titrated with mastoparan. These results suggest that mastoparan binds to the N-domain of apo-TnC, the C-domain of Ca4TnC and the N- and C-domains of Ca2TnC; the hydrophobic cluster in each domain is involved in binding. As mastoparan binds to TnC, the above resonances shift to their normal chemical shift positions. The stability of the cluster and the beta-sheet is reduced by mastoparan-binding. These results suggest that the conformation of the hydrophobic cluster and the neighboring beta-sheet change to a loose form. The stability of the N-domain of Ca2TnC and Ca4TnC increases when these species bind 1 mol of mastoparan at the C-domain. These results suggest a mastoparan-induced interaction between the N- and C-domains of TnC.  相似文献   

14.
15.
Calcium activation of fast striated muscle results from an opening of the regulatory N-terminal domain of fast skeletal troponin C (fsTnC), and a substantial exposure of a hydrophobic patch, essential for Ca(2+)-dependent interaction with fast skeletal troponin I (fsTnI). This interaction is obligatory to relieve the inhibition of strong, force-generating actin-myosin interactions. We have determined intersite distances in the N-terminal domain of cardiac TnC (cTnC) by fluorescence resonance energy transfer measurements and found negligible increases in these distances when the single regulatory site is saturated with Ca(2+). However, in the presence of bound cardiac TnI (cTnI), activator Ca(2+) induces significant increases in the distances and a substantial opening of the N-domain. This open conformation within the cTnC.cTnI complex has properties favorable for the Ca(2+)-induced interaction with an additional segment of cTnI. Thus, the binding of cTnI to cTnC is a prerequisite to achieve a Ca(2+)-induced open N-domain similar to that previously observed in fsTnC with no bound fsTnI. This role of cardiac TnI has not been previously recognized. Our results also indicate that structural information derived from a single protein may not be sufficient for inference of a structure/function relationship.  相似文献   

16.
Contractile activity of skeletal muscle is triggered by a Ca2+-induced "opening" of the regulatory N-domain of troponin C (apo-NTnC residues 1-90). This structural transition has become a paradigm for large-scale conformational changes that affect the interaction between proteins. The regulatory domain is comprised of two basic structural elements: one contributed by the N-, A-, and D-helices (NAD unit) and the other by the B- and C-helices (BC unit). The Ca2+-induced opening is characterized by a movement of the BC unit away from the NAD unit with a concomitant change in conformation at two hinges (Glu41 and Val65) of the BC unit. To examine the effect of low temperatures on this Ca2+-induced structural change and the implications for contractile regulation, we have examined nuclear magnetic resonance (NMR) spectral changes of apo-NTnC upon decreasing the temperature from 30 to 4 degrees C. In addition, we have determined the solution structure of apo-NTnC at 4 degrees C using multinuclear multidimensional NMR spectroscopy. Decreasing temperatures induce a decrease in the rates and amplitudes of pico to nanosecond time scale backbone dynamics and an increase in alpha-helical content for the terminal helices of apo-NTnC. In addition, chemical shift changes for the Halpha resonances of Val65 and Asp66, the hinge residues of the BC, unit were observed. Compared to the solution structure of apo-NTnC determined at 30 degrees C, the BC unit packs more tightly against the NAD unit in the solution structure determined at 4 degrees C. Concomitant with the tighter packing of the BC and NAD structural units, a decrease in the total exposed hydrophobic surface area is observed. The results have broad implications relative to structure determination of proteins in the presence of large domain movements, and help to elucidate the relevance of structures determined under different conditions of physical state and temperature, reflecting forces ranging from crystal packing to solution dynamics.  相似文献   

17.
The Ca2+-induced transition in the troponin complex (Tn) regulates vertebrate striated muscle contraction. Tn was reconstituted with recombinant forms of troponin I (TnI) containing a single intrinsic 5-hydroxytryptophan (5HW). Fluorescence analysis of these mutants of TnI demonstrate that the regions in TnI that respond to Ca2+ binding to the regulatory N-domain of TnC are the inhibitory region (residues 96-116) and a neighboring region that includes position 121. Our data confirms the role of TnI as a modulator of the Ca2+ affinity of TnC; we show that point mutations and incorporation of 5HW in TnI can affect both the affinity and the cooperativity of Ca2+ binding to TnC. We also discuss the possibility that the regulatory sites in the N-terminal domain of TnC might be the high affinity Ca2+-binding sites in the troponin complex.  相似文献   

18.
Troponin C (TnC) is the Ca(2+)-binding subunit of the troponin complex of vertebrate skeletal muscle. It consists of two structurally homologous domains, N and C, connected by an exposed alpha-helix. The C-domain has two high-affinity sites for Ca(2+) that also bind Mg(2+), whereas the N-domain has two low-affinity sites for Ca(2+). Previous studies using isolated N- and C-domains showed that the C-domain apo form was less stable than the N-domain. Here we analyzed the stability of isolated N-domain (F29W/N-domain) against urea and pressure denaturation in the absence and in the presence of glycerol using fluorescence spectroscopy. Increasing the glycerol concentration promoted an increase in the stability of the protein to urea (0-8 M) in the absence of Ca(2+). Furthermore, the ability to expose hydrophobic surfaces normally promoted by Ca(2+) binding or low temperature under pressure was partially lost in the presence of 20% (v/v) glycerol. Glycerol also led to a decrease in the Ca(2+) affinity of the N-domain in solution. From the ln K(obs) versus ln a(H)2(O), we obtained the number of water molecules (63.5 +/- 8.7) involved in the transition N <=>N:Ca(2) that corresponds to an increase in the exposed surface area of 571.5 +/- 78.3 A(2). In skinned fibers, the affinity for Ca(2+) was also reduced by glycerol, although the effect was much less pronounced than in solution. Our results demonstrate quantitatively that the stability of this protein and its affinity for Ca(2+) are critically dependent on protein hydration.  相似文献   

19.
1H NMR is used to study the solution structure of vitamin-D-induced bovine intestinal calcium-binding protein. The study of the native protein is aided by the recently published crystal structure; it is shown that the conformations of the molecule in the crystal and in solution are very similar. The effect of pH and temperature on the native structure is described. The structure of the apo protein is then described, and the effect of pH and temperature on its fold is outlined. A comparison between apo and native protein folds is made which indicates that the folds are very similar. The two folds are related by a calcium titration, which indicates that the protein binds two calcium ions sequentially. Both steps in the Ca2+ titration occur under conditions of slow exchange (kex 80 s-1). The effect of binding Ca2+ ions is to cause twisting motions of helices, with the helices acting as rods, relaying the conformational change induced by Ca2+ binding to the linker regions of the protein.  相似文献   

20.
Ward DG  Brewer SM  Cornes MP  Trayer IP 《Biochemistry》2003,42(34):10324-10332
Phosphorylation of the unique N-terminal extension of cardiac troponin I (TnI) by PKA modulates Ca(2+) release from the troponin complex. The mechanism by which phosphorylation affects Ca(2+) binding, however, remains unresolved. To investigate this question, we have studied the interaction of a fragment of TnI consisting of residues 1-64 (I1-64) with troponin C (TnC) by isothermal titration microcalorimetry and cross-linking. I1-64 binds extremely tightly to the C-terminal domain of TnC and weakly to the N-terminal domain. Binding to the N-domain is weakened further by phosphorylation. Using the heterobifunctional cross-linker benzophenone-4-maleimide and four separate cysteine mutants of I1-64 (S5C, E10C, I18C, R26C), we have probed the protein-protein interactions of the N-terminal extension. All four I1-64 mutants cross-link to the N-terminal domain of TnC. The cross-linking is enhanced by Ca(2+) and reduced by phosphorylation. By introducing the same monocysteine mutations into full-length TnI, we were able to probe the environment of the N-terminal extension in intact troponin. We find that the full length of the extension lies in close proximity to both TnC and troponin T (TnT). Ca(2+) enhances the cross-linking to TnC. Cross-linking to both TnC and TnT is reduced by prior phosphorylation of the TnI. In binary complexes the mutant TnIs cross-link to both the isolated TnC N-domain and whole TnC. Cyanogen bromide digestion of the covalent TnI-TnC complex formed from intact troponin demonstrates that cross-linking is predominantly to the N-terminal domain of TnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号