首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
A 5.2-kb NotI DNA fragment isolated from a genomic library of Acremonium chrysogenum by hybridization with a probe internal to the Penicillium chrysogenum lys2 gene, was able to complement an alpha-aminoadipate reductase-deficient mutant of P. chrysogenum (lysine auxotroph L-G-). Enzyme assays showed that the alpha-aminoadipate reductase activity was restored in all the transformants tested. The lys2-encoded enzyme catalyzed both the activation and reduction of alpha-aminoadipic acid to its semialdehyde, as shown by reaction of the product with p-dimethylaminobenzaldehyde. The reaction required NADPH, and was not observed in the presence of NADH. Sequence analysis revealed that the gene encodes a protein with relatively high similarity to members of the superfamily of acyladenylate-forming enzymes. The Lys2 protein contained all nine motifs that are conserved in the adenylating domain of this enzyme family, a peptidyl carrier domain, and a reduction domain. In addition, a new NADP-binding motif located at the N-terminus of the reduction domain that may form a Rossmann-like betaalphabeta-fold has been identified and found to be shared by all known Lys2 proteins. The lys2 gene was mapped to chromosome I (2.2 Mb, the smallest chromosome) of A. chrysogenum C10 (the chromosome that contains the "late" cephalosporin cluster) and is transcribed as a monocistronic 4.5-kb mRNA although at relatively low levels compared with the beta-actin gene.  相似文献   

5.
The alpha-aminoadipate reductase, a novel enzyme in the alpha-aminoadipic acid pathway for the biosynthesis of lysine in fungi, catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde in the presence of ATP, NADPH and MgCl(2). This reaction requires two distinct gene products, Lys2p and Lys5p. In the presence of CoA, Lys5p posttranslationally activates Lys2p for the alpha-aminoadipate reductase activity. Sequence alignments indicate the presence of all functional domains required for the activation, adenylation, dehydrogenation and alpha-aminoadipic acid binding in the Lys2p. In this report we present the results of site-directed mutational analysis of the conserved amino acid residues in the catalytic domains of Lys2p from the pathogenic yeast Candida albicans. Mutants were generated in the LYS2 sequence of pCaLYS2SEI by PCR mutagenesis and expressed in E. coli BL21 cells. Recombinant mutants and the wild-type Lys2p were analyzed for their alpha-aminoadipate reductase activity. Substitution of threonine 416, glycine 418, serine 419, and lysine 424 of the adenylation domain (TXGSXXXXK, residues 416-424) resulted in a significant reduction in alpha-aminoadipate reductase activity compared to the unmutagenized Lys2p control. Similarly replacement of glycine 978, threonine 980, glycine 981, phenylalanine 982, leucine 983 and glycine 984 of the NADPH binding domain (GXTGFLG, residues 978-984) caused a drastic decrease in alpha-aminoadipate reductase activity. Finally, substitution of histidine 460, aspartic acid 461, proline 462, isoleucine 463, glutamine 464, arginine 465, and aspartic acid 466 of the putative alpha-aminoadipic acid binding domain (HDPIQRD, residues 460-466) resulted in a highly reduced alpha-aminoadipate reductase activity. These results confirm the hypothesis that specific amino acid residues in highly conserved catalytic domains of Lys2p are essential for the alpha-aminoadipate reductase activity.  相似文献   

6.
7.
The alpha-aminoadipate pathway for lysine biosynthesis is present only in fungi. The alpha-aminoadipate reductase (AAR) of this pathway catalyzes the conversion of alpha-aminoadipic acid to alpha-aminoadipic-delta-semialdehyde by a complex mechanism involving two gene products, Lys2p and Lys5p. The LYS2 and LYS5 genes encode, respectively, a 155-kDa inactive AAR and a 30-kDa phosphopantetheinyl transferase (PPTase) which transfers a phosphopantetheinyl group from coenzyme A (CoA) to Lys2p for the activation of Lys2p and AAR activity. In the present investigation, we have confirmed the posttranslational activation of the 150-kDa Lys2p of Candida albicans, a pathogenic yeast, in the presence of CoA and C. albicans lys2 mutant (CLD2) extract as a source of PPTase (Lys5p). The recombinant Lys2p or CLD2 mutant extract exhibited no AAR activity with or without CoA. However, the recombinant 150-kDa Lys2p, when incubated with CLD2 extract and CoA, exhibited significant AAR activity compared to that of wild-type C. albicans CAI4 extract. The PPTase in the CLD2 extract was required only for the activation of Lys2p and not for AAR reaction. Site-directed mutational analysis of G882 and S884 of the Lys2p activation domain (LGGHSI) revealed no AAR activity, indicating that these two amino acids are essential for the activation. Replacement of other amino acid residues in the domain resulted in partial or full AAR activity. These results demonstrate the posttranslational activation and the requirement of specific amino acid residues in the activation domain of the AAR of C. albicans.  相似文献   

8.
9.
10.
The LYS2 and LYS5 genes of the pathogenic yeast Candida albicans are required for the alpha-aminoadipate reductase (AAR) reaction in the lysine biosynthetic pathway. The LYS2 encodes an apo-AAR (Lys2p) and the LYS5 encodes a phosphopantetheinyl transferase (PPTase) for the post-translational activation of AAR. Our cloned C. albicans LYS5 gene encodes a 38.4 kDa PPTase which is 27% identical and 43% similar to the Saccharomyces cerevisiae Lys5p. Sequence alignment of Lys5p with other PPTases reveals highly conserved putative PPTase domains including the Core 3, WXXKESXXK (residues 194-202). Recombinant Lys5p expressed in Escherichia coli activates C. albicans Lys2p for the AAR activity and also activates AARs from S. cerevisiae and to a lesser extent Schizosaccharomyces pombe. Site-directed mutational analyses reveal glutamic acid 198 in the Lys5p Core 3 as essential for the activation of recombinant Lys2p AAR activity. Other conserved amino acids were also analyzed for their influence on Lys5p PPTase activity. Our results demonstrate cloning of the LYS5 gene, expression of Lys5p, in vitro Lys2p activation model and characterization of the functional motifs of the C. albicans PPTase.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. Until now, this unique metabolic pathway has never been investigated in the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Five of the eight enzymes (homocitrate synthase, homoisocitrate dehydrogenase, alpha-aminoadipate reductase, saccharopine reductase, and saccharopine dehydrogenase) of the alpha-aminoadipate pathway and glucose-6-phosphate dehydrogenase, a glycolytic enzyme used as a control, were demonstrated in wild-type cells of these organisms. All enzymes were present in Saccharomyces cerevisiae and the pathogenic organisms except C. neoformans 32608 serotype C, which exhibited no saccharopine reductase activity. The levels of enzyme activity varied considerably from strain to strain. Variation among organisms was also observed for the control enzyme. Among the pathogens, C. albicans exhibited much higher homocitrate synthase, homoisocitrate dehydrogenase, and alpha-aminoadipate reductase activities. Seven lysine auxotrophs of C. albicans and one of Candida tropicalis were characterized biochemically to determine the biochemical blocks and gene-enzyme relationships. Growth responses to alpha-aminoadipate- and lysine-supplemented media, accumulation of alpha-aminoadipate semialdehyde, and the lack of enzyme activity revealed that five of the mutants (WA104, WA153, WC7-1-3, WD1-31-2, and A5155) were blocked at the alpha-aminoadipate reductase step, two (STN57 and WD1-3-6) were blocked at the saccharopine dehydrogenase step, and the C. tropicalis mutant (X-16) was blocked at the saccharopine reductase step. The cloned LYS1 gene of C. albicans in the recombinant plasmid YpB1078 complemented saccharopine dehydrogenase (lys1) mutants of S. cerevisiae and C. albicans. The Lys1+ transformed strains exhibited significant saccharopine dehydrogenase activity in comparison with untransformed mutants. The cloned LYS1 gene has been localized on a 1.8-kb HindIII DNA insert of the recombinant plasmid YpB1041RG1. These results established the gene-enzyme relationship in the second half of the alpha-aminoadipate pathway. The presence of this unique pathway in the pathogenic fungi could be useful for their rapid detection and control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号