首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We have previously shown that cloned rat multidrug resistance-associated protein 3 (Mrp3) has the ability to transport organic anions such as 17beta-estradiol 17-beta-D-glucuronide (E(2)17betaG) and has a different substrate specificity from MRP1 and MRP2 in that glutathione conjugates are poor substrates for Mrp3 (Hirohashi, T., Suzuki, H., and Sugiyama, Y. (1999) J. Biol. Chem. 274, 15181-15185). In the present study, the involvement of Mrp3 in the transport of endogenous bile salts was investigated using membrane vesicles from LLC-PK1 cells transfected with rat Mrp3 cDNA. The ATP-dependent uptake of [(3)H]taurocholate (TC), [(14)C]glycocholate (GC), [(3)H]taurochenodeoxycholate-3-sulfate (TCDC-S), and [(3)H]taurolithocholate-3-sulfate (TLC-S) was markedly stimulated by Mrp3 transfection in LLC-PK1 cells. The extent of Mrp3-mediated transport of bile salts was in the order, TLC-S > TCDC-S > TC > GC. The K(m) and V(max) values for the uptake of TC and TLC-S were K(m) = 15.9 +/- 4.9 microM and V(max) = 50.1 +/- 9.3 pmol/min/mg of protein and K(m) = 3.06 +/- 0.57 microM and V(max) = 161.9 +/- 21.7 pmol/min/mg of protein, respectively. At 55 nM [(3)H]E(2)17betaG and 1.2 microM [(3)H]TC, the apparent K(m) values for ATP were 1.36 and 0.66 mM, respectively. TC, GC, and TCDC-S inhibited the transport of [(3)H]E(2)17betaG and [(3)H]TC to the same extent with an apparent IC(50) of approximately 10 microM. TLC-S inhibited the uptake of [(3)H]E(2)17betaG and [(3)H]TC most potently (IC(50) of approximately 1 microM) among the bile salts examined, whereas cholate weakly inhibited the uptake (IC(50) approximately 75 microM). Although TC and GC are transported by bile salt export pump/sister of P-glycoprotein, but not by MRP2, and TCDC-S and TLC-S are transported by MRP2, but not by bile salt export pump/sister of P-glycoprotein, it was found that Mrp3 accepts all these bile salts as substrates. This information, together with the finding that MRP3 is extensively expressed on the basolateral membrane of human cholangiocytes, suggests that MRP3/Mrp3 plays a significant role in the cholehepatic circulation of bile salts.  相似文献   

2.
We have previously cloned rat MRP3 as an inducible transporter in the liver (Hirohashi, T., Suzuki, H., Ito, K., Ogawa, K., Kume, K., Shimizu, T., and Sugiyama, Y. (1998) Mol. Pharmacol. 53, 1068-1075). In the present study, the function of rat MRP3 was investigated using membrane vesicles isolated from LLC-PK1 and HeLa cell population transfected with corresponding cDNA. The ATP-dependent uptake of both 17beta estradiol 17-beta-D-glucuronide ([3H]E217betaG) and glucuronide of [14C] 6-hydroxy-5, 7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole (E3040), but not that of [3H]leukotriene C4 and [3H]2, 4-dinitrophenyl-S-glutathione, was markedly stimulated by MRP3 transfection in both cell lines. The Km and Vmax values for the uptake of [3H]E217betaG were 67 +/- 14 microM and 415 +/- 73 pmol/min/mg of protein, respectively, for MRP3-expressing membrane vesicles and 3.0 +/- 0.7 microM and 3.4 +/- 0.4 pmol/min/mg of protein, respectively, for the endogenous transporter expressed on HeLa cells. [3H]E217betaG had also a similar Km value for MRP3 when LLC-PK1 cells were used as the host. All glucuronide conjugates examined (E3040 glucuronide, 4-methylumbelliferone glucuronide, and naphthyl glucuronide) and methotrexate inhibited MRP3-mediated [3H]E217betaG transport in LLC-PK1 cells. Moreover, [3H]methotrexate was transported via MRP3. The inhibitory effect of estrone sulfate, [3H]2,4-dinitrophenyl-S-glutathione, and [3H]leukotriene C4 was moderate or minimal, whereas N-acetyl-2,4-dinitrophenylcysteine had no effect on the uptake of [3H]E217betaG. The uptake of [3H]E217betaG was enhanced by E3040 sulfate and 4-methylumbelliferone sulfate. Thus we were able to demonstrate that several kinds of organic anions are transported via MRP3, although the substrate specificity of MRP3 differs from that of MRP1 and cMOAT/MRP2 in that glutathione conjugates are poor substrates for MRP3.  相似文献   

3.
The multidrug resistance proteins MRP2 (ABCC2) and MRP3 (ABCC3) are key primary active transporters involved in anionic conjugate and drug extrusion from the human liver. The major physiological role of MRP2 is to transport conjugated metabolites into the bile canaliculus, whereas MRP3 is localized in the basolateral membrane of the hepatocytes and transports similar metabolites back to the bloodstream. Both proteins were shown to interact with a large variety of transported substrates, and earlier studies suggested that MRPs may work as co-transporters for different molecules. In the present study we expressed the human MRP2 and MRP3 proteins in insect cells and examined their transport and ATPase characteristics in isolated, inside-out membrane vesicles. We found that the primary active transport of estradiol-17-beta-d-glucuronide (E217betaG), a major product of human steroid metabolism, was differently modulated by bile acids and organic anions in the case of human MRP2 and MRP3. Active E217betaG transport by MRP2 was significantly stimulated by the organic anions indomethacin, furosemide, and probenecid and by several conjugated bile acids. In contrast, all of these agents inhibited E217betaG transport by MRP3. We found that in the case of MRP2, ATP-dependent vesicular bile acid transport was increased by E217betaG, and the results indicated an allosteric cross-stimulation, probably a co-transport of bile acids and glucuronate conjugates through this protein. There was no such stimulation of bile acid transport by MRP3. In conclusion, the different transport modulation of MRPs by bile acids and anionic drugs could play a major role in regulating physiological and pathological metabolite fluxes in the human liver.  相似文献   

4.
Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) play a crucial role in the induction of lung cancer, and NNAL-O-glucuronide formation and elimination are important steps in detoxification of these compounds. In the present study, we investigated the ATP-binding cassette (ABC) protein, MRP1 (ABCC1), as a candidate transporter responsible for NNAL-O-glucuronide export. MRP1 mediates the active transport of numerous GSH-, sulfate-, and glucuronide-conjugated organic anions and can transport certain xenobiotics by a mechanism that may involve co-transport with GSH. Using membrane vesicles prepared from transfected cells, we found that MRP1 transports [3H]NNAL-O-glucuronide but is dependent on the presence of GSH (Km 39 microm, Vmax 48 pmol x mg(-1) x min(-1)). We also found that the sulfur atom in GSH was dispensable because transport was supported by the GSH analog, gamma-glutamyl-alpha-aminobutyryl-glycine. Despite stimulation of NNAL-O-glucuronide transport by GSH, there was no detectable reciprocal stimulation of [3H]GSH transport. Moreover, whereas the MRP1 substrates leukotriene C4 (LTC4) and 17beta-estradiol 17beta-(d-glucuronide) (E(2)17betaG) inhibited GSH-dependent uptake of [3H]NNAL-O-glucuronide, only [3H]LTC4 transport was inhibited by NNAL-O-glucuronide (+GSH) and the kinetics of inhibition were complex. A mutant form of MRP1, which transports LTC4 but not E(2)17betaG, also did not transport NNAL-O-glucuronide suggesting a commonality in the binding elements for these two glucuronidated substrates, despite their lack of reciprocal transport inhibition. Finally, the related MRP2 transported NNAL-O-glucuronide with higher efficiency than MRP1 and unexpectedly, GSH inhibited rather than stimulated uptake. These studies provide further insight into the complex interactions of the MRP-related proteins with GSH and their conjugated organic anion substrates, and extend the range of xenotoxins transported by MRP1 and MRP2 to include metabolites of known carcinogens involved in the etiology of lung and other cancers.  相似文献   

5.
The mechanism for the cellular extrusion of organic anions across the intestinal basolateral membrane was examined using isolated membrane vesicles from rat jejunum, ileum, and colon. It was found that 17beta-estradiol 17beta-D-glucuronide (E217betaG) is taken up in an ATP-dependent manner into the basolateral membrane vesicles (BLMVs) but not into the brush-border or microsomal counterparts. The ATP-dependent uptake of E217betaG into BLMVs from jejunum and ileum was described by a single component with a Km value of 23.5 and 8.31 microM, respectively, whereas that into the BLMVs from colon was described by assuming the presence of high (Km=0.82 microM)- and low-affinity (Km=35.4 microM) components. Taurocholate, 6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl) benzothiazole glucuronide and taurolithocholate sulfate, but not leukotriene C4, were significantly taken up by the BLMVs. In addition to such substrate specificity, the inhibitor sensitivity of the ATP-dependent transport in BLMVs was similar to that of rat multidrug resistance-associated protein 3 (Mrp3), which is located on the basolateral membrane of enterocytes. Together with the fact that the rank order of the extent of the expression of Mrp3 (jejunum < ileum < colon) is in parallel with that of the extent of the transport of ligands, these results suggest that the ATP-dependent uptake of organic anions into isolated intestinal BLMVs is at least partly mediated by Mrp3.  相似文献   

6.
Multidrug resistance protein 1 (MRP1/ABCC1) belongs to the ATP-binding cassette transporter superfamily and is capable of conferring resistance to a broad range of chemotherapeutic agents and transporting structurally diverse conjugated organic anions. In this study, we found that substitution of a highly conserved tryptophan at position 1246 with cysteine (W1246C-MRP1) in the putative last transmembrane segment (TM17) of MRP1 eliminated 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) transport by membrane vesicles prepared from transiently transfected human embryonic kidney cells while leaving the capacity for leukotriene C(4)- and verapamil-stimulated glutathione transport intact. In addition, in contrast to wild-type MRP1, leukotriene C(4) transport by the W1246C-MRP1 protein was no longer inhibitable by E(2)17betaG, indicating that the mutant protein had lost the ability to bind the glucuronide. A similar phenotype was observed when Trp(1246) was replaced with Ala, Phe, and Tyr. Confocal microscopy of cells expressing Trp(1246) mutant MRP1 molecules fused at the C terminus with green fluorescent protein showed that they were correctly routed to the plasma membrane. In addition to the loss of E(2)17betaG transport, HeLa cells stably transfected with W1246C-MRP1 cDNA were not resistant to the Vinca alkaloid vincristine and accumulated levels of [(3)H]vincristine comparable to those in vector control-transfected cells. Cells expressing W1246C-MRP1 were also not resistant to cationic anthracyclines (doxorubicin, daunorubicin) or the electroneutral epipodophyllotoxin VP-16. In contrast, resistance to sodium arsenite was only partially diminished, and resistance to potassium antimony tartrate remained comparable to that of cells expressing wild-type MRP1. This suggests that the structural determinants required for transport of heavy metal oxyanions differ from those for chemotherapeutic agents. Our results provide the first example of a tryptophan residue being so critically important for substrate specificity in a eukaryotic ATP-binding cassette transporter.  相似文献   

7.
The multidrug resistance protein, MRP1 (ABCC1), is an ATP-binding cassette transporter that confers resistance to chemotherapeutic agents. MRP1 also mediates transport of organic anions such as leukotriene C(4) (LTC(4)), 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), estrone 3-sulfate, methotrexate (MTX), and GSH. We replaced three charged amino acids, Lys(332), His(335), and Asp(336), predicted to be in the sixth transmembrane (TM6) helix of MRP1 with neutral and oppositely charged amino acids and determined the effect on substrate specificity and transport activity. All mutants were expressed in transfected human embryonic kidney cells at levels comparable with wild-type MRP1, and confocal microscopy showed that they were correctly routed to the plasma membrane. Vesicular transport studies revealed that the MRP1-Lys(332) mutants had lost the ability to transport LTC(4), and GSH transport was reduced; whereas E(2)17betaG, estrone 3-sulfate, and MTX transport were unaffected. E(2)17betaG transport was not inhibited by LTC(4) and could not be photolabeled with [(3)H]LTC(4), indicating that the MRP1-Lys(332) mutants no longer bound this substrate. Substitutions of MRP1-His(335) also selectively diminished LTC(4) transport and photolabeling but to a lesser extent. Kinetic analyses showed that V(max) (LTC(4)) of these mutants was decreased but K(m) was unchanged. In contrast to the selective loss of LTC(4) transport in the Lys(332) and His(335) mutants, the MRP1-Asp(336) mutants no longer transported LTC(4), E(2)17betaG, estrone 3-sulfate, or GSH, and transport of MTX was reduced by >50%. Lys(332), His(335), and Asp(336) of TM6 are predicted to be in the outer leaflet of the membrane and are all capable of forming intrahelical and interhelical ion pairs and hydrogen bonds. The importance of Lys(332) and His(335) in determining substrate specificity and of Asp(336) in overall transport activity suggests that such interactions are critical for the binding and transport of LTC(4) and other substrates of MRP1.  相似文献   

8.
Biliary secretion of bile salts in mammals is mediated in part by the liver-specific ATP-dependent canalicular membrane protein Bsep/Spgp, a member of the ATP-binding cassette superfamily. We examined whether a similar transport activity exists in the liver of the evolutionarily primitive marine fish Raja erinacea, the little skate, which synthesizes mainly sulfated bile alcohols rather than bile salts. Western blot analysis of skate liver plasma membranes using antiserum raised against rat liver Bsep/Spgp demonstrated a dominant protein band with an apparent molecular mass of 210 kDa, a size larger than that in rat liver canalicular membranes, approximately 160 kDa. Immunofluorescent localization with anti-Bsep/Spgp in isolated, polarized skate hepatocyte clusters revealed positive staining of the bile canaliculi, consistent with its selective apical localization in mammalian liver. Functional characterization of putative ATP-dependent canalicular bile salt transport activity was assessed in skate liver plasma membrane vesicles, with [(3)H]taurocholate as the substrate. [(3)H]taurocholate uptake into the vesicles was mediated by ATP-dependent and -independent mechanisms. The ATP-dependent component was saturable, with a Michaelis-Menten constant (K(m)) for taurocholate of 40+/-7 microM and a K(m) for ATP of 0.6+/-0.1 mM, and was competitively inhibited by scymnol sulfate (inhibition constant of 23 microM), the major bile salt in skate bile. ATP-dependent uptake of taurocholate into vesicles was inhibited by known substrates and inhibitors of Bsep/Spgp, including other bile salts and bile salt derivatives, but not by inhibitors of the multidrug resistance protein-1 or the canalicular multidrug resistance-associated protein, indicating a distinct transport mechanism. These findings provide functional and structural evidence for a Bsep/Spgp-like protein in the canalicular membrane of the skate liver. This transporter is expressed early in vertebrate evolution and transports both bile salts and bile alcohols.  相似文献   

9.
Recent investigations have established that Arabidopsis thaliana contains a family of genes encoding ATP-binding cassette transporters belonging to the multidrug resistance-associated protein (MRP) family. So named because of the phenotypes conferred by their animal prototypes, many MRPs are MgATP-energized pumps active in the transport of glutathione (GS) conjugates and other bulky amphipathic anions across membranes. Here we show that Arabidopsis MRP2 (AtMRP2) localizes to the vacuolar membrane fraction from seedlings and is not only competent in the transport of GS conjugates but also glucuronate conjugates after heterologous expression in yeast. Based on the stimulatory action of the model GS conjugate 2,4-dinitrophenyl-GS (DNP-GS) on uptake of the model glucuronide 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) and vice versa, double-label experiments demonstrating that the two substrates are subject to simultaneous transport by AtMRP2 and preloading experiments suggesting that the effects seen result from cis, not trans, interactions, it is inferred that some GS conjugates and some glucuronides reciprocally activate each other's transport via distinct but coupled binding sites. The results of parallel experiments on AtMRP1 and representative yeast and mammalian MRPs indicate that these properties are specific to AtMRP2. The effects exerted by DNP-GS on AtMRP2 are not, however, common to all GS conjugates and not simulated by oxidized glutathione or reduced glutathione. Decyl-GS, metolachlor-GS, and oxidized glutathione, although competitive with DNP-GS, do not promote E(2)17betaG uptake by AtMRP2. Reduced glutathione, although subject to transport by AtMRP2 and able to markedly promote E(2)17betaG uptake, neither competes with DNP-GS for uptake nor is subject to E(2)17betaG-promoted uptake. A multisite model comprising three or four semi-autonomous transport pathways plus distinct but tightly coupled binding sites is invoked for AtMRP2.  相似文献   

10.
ABCG2 transports sulfated conjugates of steroids and xenobiotics   总被引:11,自引:0,他引:11  
The mechanism for the cellular extrusion of sulfated conjugates is still unknown. In the present study, we investigated whether human wild type ABCG2 transports estrone 3-sulfate (E1S) using membrane vesicles from cDNA-transfected mouse lymphoma cell line (P388 cells). The uptake of [3H]E1S into ABCG2-expressing membrane vesicles was stimulated by ATP, and the Km value for [3H]E1S was determined to be 16.6 microm. The ABCG2-mediated transport of [3H]E1S was potently inhibited by SN-38 and many sulfate conjugates but not by glucuronide and glutathione conjugates or other anionic compounds. Other sulfate conjugates such as [3H]dehydroepiandrosterone sulfate (DHEAS) and [35S]4-methylumbelliferone sulfate (Km = 12.9 microm) and [35S]6-hydroxy-5,7-dimethyl-2-methylamino-4-(3-pyridylmethyl)benzothiazole (E3040) sulfate (Km = 26.9 microm) were also transported by ABCG2. Although [3H]methotrexate, [3H]17beta-estradiol-17beta-D-glucuronide, [3H]2,4-dinitrophenyl-S-glutathione, and [14C]4-methylumbelliferone glucuronide were transported by ABCG2, this took place to a much lesser extent compared with [3H]E1S. It was suggested that ABCG2 preferentially transports sulfate conjugates and that E1S and DHEAS are the potential physiological substrates for this transporter.  相似文献   

11.
Biliary excretion of certain bile acids is mediated by multidrug resistance associated protein 2 (Mrp2) and the bile salt export pump (Bsep). In the present study, the transport properties of several bile acids were characterized in canalicular membrane vesicles (CMVs) isolated from Sprague--Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) whose Mrp2 function is hereditarily defective and in membrane vesicles isolated from Sf9 cells infected with recombinant baculovirus containing cDNAs encoding Mrp2 and Bsep. ATP-dependent uptake of [(3)H]taurochenodeoxycholate sulfate (TCDC-S) (K(m)=8.8 microM) and [(3)H]taurolithocholate sulfate (TLC-S) (K(m)=1.5 microM) was observed in CMVs from SD rats, but not from EHBR. In addition, ATP-dependent uptake of [(3)H]TLC-S (K(m)=3.9 microM) and [(3)H]taurocholate (TC) (K(m)=7.5 microM) was also observed in Mrp2- and Bsep-expressing Sf9 membrane vesicles, respectively. TCDC-S and TLC-S inhibited the ATP-dependent TC uptake into CMVs from SD rats with IC(50) values of 4.6 microM and 1.2 microM, respectively. In contrast, the corresponding values for Sf9 cells expressing Bsep were 59 and 62 microM, respectively, which were similar to those determined in CMVs from EHBR (68 and 33 microM, respectively). By co-expressing Mrp2 with Bsep in Sf9 cells, IC(50) values for membrane vesicles from these cells shifted to values comparable with those in CMVs from SD rats (4.6 and 1.2 microM). Moreover, in membrane vesicles where both Mrp2 and Bsep are co-expressed, preincubation with the sulfated bile acids potentiated their inhibitory effect on Bsep-mediated TC transport. These results can be accounted for by assuming that the sulfated bile acids trans-inhibit the Bsep-mediated transport of TC.  相似文献   

12.
The aim of the present research was to study the uptake of DHEAS, and to establish the intracrine capacity of human platelets to produce sex steroid hormones. The DHEAS transport was evaluated through the uptake of [(3)H]-DHEAS in the presence or absence of different substrates through the organic anion transporting polypeptide (OATP) family. The activity of sulfatase enzyme was evaluated, and the metabolism of DHEAS was measured by the conversion of [(3)H]-DHEAS to [(3)H]-androstenedione, [(3)H]-testosterone, [(3)H]-estrone and [(3)H]-17beta-estradiol. Results indicated the existence in the plasma membrane of an OATP with high affinity for DHEAS and estrone sulphate (E(1)S). The platelets showed the capacity to convert DHEAS to active DHEA by the steroid-sulfatase activity. The cells resulted to be a potential site for androgens production, since they have the capacity to produce androstenedione and testosterone; in addition, they reduced [(3)H]-estrone to [(3)H]-17beta-estradiol. This is the first demonstration that human platelets are able to import DHEAS and E(1)S using the OATP family and to convert DHEAS to active DHEA, and to transform E(1)S to 17beta-estradiol.  相似文献   

13.
Murine multidrug resistance protein 1 (mrp1), differs from its human ortholog (MRP1) in that it fails to confer anthracycline resistance and transports the MRP1 substrate, 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), very poorly. By mutating variant residues in mrp1 to those present in MRP1, we identified Glu(1089) of MRP1 as being critical for anthracycline resistance. However, Glu(1089) mutations had no effect on E(2)17betaG transport. We have now identified a nonconserved amino acid within the highly conserved COOH-proximal transmembrane helix of MRP1/mrp1 that is important for transport of the conjugated estrogen. Converting Ala(1239) in mrp1 to Thr, as in the corresponding position (1242) in MRP1, increased E(2)17betaG transport 3-fold. Any mutation of mrp1 Ala(1239), including substitution with Thr, decreased resistance to vincristine and VP-16 without altering anthracycline resistance. However, introduction of a second murine to human mutation, Q1086E, which alone selectively increases anthracycline resistance, into mrp1A1239T restored resistance to both vincristine and VP-16. To confirm the importance of MRP1 Thr(1242) for E(2)17betaG transport and drug resistance, we mutated this residue to Ala, Cys, Ser, Leu, and Lys. These mutations decreased E(2)17betaG transport 2-fold. Conversion to Asp eliminated transport of the estrogen conjugate and also decreased leukotriene C(4) transport approximately 2-fold. The mutations also reduced the ability of MRP1 to confer resistance to all drugs tested. As with mrp1, introduction of a second mutation based on the murine sequence to create MRP1E1089Q/T1242A restored resistance to vincristine and VP-16, but not anthracyclines, without affecting transport of leukotriene C(4) and E(2)17betaG. These results demonstrate the important role of Thr(1242) for E(2)17betaG transport. They also reveal a highly specific functional relationship between nonconserved amino acids in TM helices 14 and 17 of both mrp1 and MRP1 that enables both proteins to confer similar levels of resistance to vincristine and VP-16.  相似文献   

14.
Fluorescence titrations of the alpha(3)(betaG(156)C/Y(345)W)(3)gamma, alpha(3)(betaE(199)V/Y(345)W)(3)gamma, and alpha(3)(betaY(345)W)(3)gamma subcomplexes of TF(1) with nucleotides show that the betaG(156)C substitution substantially lowers the affinity of catalytic sites for ATP and ADP with or without Mg(2+), whereas the betaE(199)V substitution increases the affinity of catalytic sites for nucleotides. Whereas the alpha(3)(betaG(156)C)(3)gamma and alpha(3)(betaE(199)V)(3)gamma subcomplexes hydrolyze 2 mM ATP at 2% and 0.7%, respectively, of the rate exhibited by the wild-type enzyme, the alpha(3)(betaG(156)C/E(199)V)(3)gamma hydrolyzes 2 mM ATP at 9% the rate exhibited by the wild-type enzyme. The alpha(3)(betaG(156)C)(3)gamma, alpha(3)(betaG(156)C/E(199)V)(3)gamma, and alpha(3)(betaG(156)C/E(199)V/Y(345)W)(3)gamma subcomplexes resist entrapment of inhibitory MgADP in a catalytic site during turnover. Product [(3)H]ADP remains tightly bound to a single catalytic site when the wild-type, betaE(199)V, betaY(345)W, and betaE(199)V/Y(345)W subcomplexes hydrolyze substoichiometric [(3)H]ATP, whereas it is not retained by the betaG(156)C and betaG(156)C/Y(345)W subcomplexes. Less firmly bound, product [(3)H]ADP is retained when the betaG(156)C/E(199)V and betaG(156)C/E(199)V/Y(345)W mutants hydrolyze substoichiometric [(3)H]ATP. The Lineweaver-Burk plot obtained with the betaG(156)C mutant is curved downward in a manner indicating that its catalytic sites act independently during ATP hydrolysis. In contrast, the betaG(156)C/E(199)V and betaG(156)C/E(199)V/Y(345)W mutants hydrolyze ATP with linear Lineweaver-Burk plots, indicating cooperative trisite catalysis. It appears that the betaG(156)C substitution destabilizes the closed conformation of a catalytic site hydrolyzing MgATP in a manner that allows release of products in the absence of catalytic site cooperativity. Insertion of the betaE(199)V substitution into the betaG(156)C mutant restores cooperativity by restricting opening of the catalytic site hydrolyzing MgATP for product release until an open catalytic site binds MgATP.  相似文献   

15.
Murine multidrug resistance protein 1 (mrp1), unlike human MRP1, does not confer resistance to anthracyclines. Previously, we have shown that a human/murine hybrid protein containing amino acids 959-1187 of MRP1 can confer resistance to these drugs. We have now examined the functional characteristics of mutant proteins in which we have converted individual amino acids in the comparable region of mrp1 to those present at the respective locations in MRP1. These mutations had no effect on the drug resistance profile conferred by mrp1 with the exception of converting glutamine 1086 to glutamate, as it is in the corresponding position (1089) in MRP1. This mutation created a protein that conferred resistance to doxorubicin without affecting vincristine resistance, or the ability of mrp1 to transport leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG). Furthermore, mutation Q1086D conferred the same phenotype as mutation Q1086E while the mutation Q1086N did not detectably alter the drug resistance profile of mrp1, suggesting that an anionic side chain was required for anthracycline resistance. To confirm the importance of MRP1 E1089 for conferring resistance to anthracyclines, we mutated this residue to Gln, Asp, Ala, Leu, and Lys in the human protein. The mutation E1089D showed the same phenotype as MRP1, while the E1089Q substitution markedly decreased resistance to anthracyclines without affecting LTC(4) and E(2)17betaG transport. Conversion of Glu-1089 to Asn, Ala, or Leu had a similar effect on resistance to anthracyclines, while conversion to a positive amino acid, Lys, completely eliminated resistance to anthracyclines and vincristine without affecting transport of LTC(4), E(2)17betaG, and the GSH-dependent substrate, estrone-3-sulfate. These results demonstrate that an acidic amino acid residue at position 1089 in predicted TM14 of MRP1 is critical for the ability of the protein to confer drug resistance particularly to the anthracyclines, but is not essential for its ability to transport conjugated organic anions such as LTC(4) and E(2)17betaG.  相似文献   

16.
Multidrug resistance protein 3 (MRP3) is an ATP-dependent transporter of 17beta-estradiol 17beta(d-glucuronide) (E(2)17betaG), leukotriene C(4) (LTC(4)), methotrexate, and the bile salts taurocholate and glycocholate. In the present study, the role of a highly conserved Trp residue at position 1242 on MRP3 transport function was examined by expressing wild-type MRP3 and Ala-, Cys-, Phe-, Tyr-, and Pro-substituted mutants in human embryonic kidney 293T cells. Four MRP3-Trp(1242) mutants showed significantly increased E(2)17betaG uptake, whereas transport by the Pro mutant was undetectable. Similarly, the Pro mutant did not transport LTC(4). By comparison, LTC(4) transport by the Ala, Cys, Phe, and Tyr mutants was reduced by approximately 35%. The Ala, Cys, Phe, and Tyr mutants all showed greatly reduced methotrexate and leucovorin transport, except the Tyr mutant, which transported leucovorin at levels comparable with wild-type MRP3. In contrast, the MRP3-Trp(1242) substitutions did not significantly affect taurocholate transport or taurocholate and glycocholate inhibition of E(2)17betaG uptake. Thus Trp(1242) substitutions markedly alter the substrate specificity of MRP3 but leave bile salt binding and transport intact.  相似文献   

17.
Drug metabolism in liver is the major pathway for xenobiotic elimination from the body. Access to intracellular metabolising enzymes is possible through passive diffusion of lipophilic drugs through cell membrane or active uptake of more polar drugs by specific uptake transporters. Organic Anion Transporting Polypeptides (OATP/SLCO) and Organic Cation Transporters (OCT/SLC22A) are among the most important transporters involved in xenobiotic transport into hepatocytes. Isolated hepatocytes are the model of choice for drug metabolism and drug transport investigations. These primary cells are used either as fresh directly after isolation from liver biopsies, or after subsequent cryopreservation in liquid nitrogen. While cryopreserved hepatocytes are a more convenient and flexible tool for in vitro investigations, information on the functionality of transporter activity after cryopreservation is still sparse. The present study investigated the effect of cryopreservation of human hepatocytes on the uptake of [(3)H]-estradiol-17β-glucuronide (E(2)17βG, substrate of OATP1B1/3/SLCO1B1/3) and [(3)H]-1-methyl-4-phenylpyridinium (MPP+, substrate of OCT1/SLC22A1) into hepatocytes from 6 and 5 human donors, respectively. The results showed that cryopreserved human hepatocytes display carrier-mediated uptake of E(2)17βG and MPP+. While the affinity of E(2)17βG for OATP1B1/3/SLCO1B1/3 was not affected by cryopreservation (Km unchanged, the Wilcoxon signed pair t test gave p=1), V(max) and CL(uptake) values decreased in average by 47% (p=0.06). The passive diffusion of E(2)17βG decreased significantly after cryopreservation (p=0.03). Cryopreservation did not affect Km, V(max) or the passive diffusion of MPP+ in human hepatocytes. In conclusion, the present study showed that cryopreserved human hepatocytes are useful tool to investigate hepatic uptake mediated by OATP1B1/3/SLCO1B1/3 or OCT1/SLC22A1, two of the most important hepatic uptake transporters.  相似文献   

18.
The ATP-binding cassette (ABC) proteins comprise a large superfamily of transmembrane transporters that utilize the energy of ATP hydrolysis to translocate their substrates across biological membranes. Multidrug resistance protein (MRP) 2 (ABCC2) belongs to subfamily C of the ABC superfamily and, when overexpressed in tumor cells, confers resistance to a wide variety of anticancer chemotherapeutic agents. MRP2 is also an active transporter of organic anions such as methotrexate (MTX), estradiol glucuronide (E217betaG), and leukotriene C4 and is located on the apical membrane of polarized cells including hepatocytes where it acts as a biliary transporter. We recently identified a highly conserved tryptophan residue in the related MRP1 that is critical for the substrate specificity of this protein. In the present study, we have examined the effect of replacing the analogous tryptophan residue at position 1254 of MRP2. We found that only nonconservative substitutions (Ala and Cys) of Trp1254 eliminated [3H]E217betaG transport by MRP2, whereas more conservative substitutions (Phe and Tyr) had no effect. In addition, only the most conservatively substituted mutant (W1254Y) transported [3H]leukotriene C4, whereas all other substitutions eliminated transport of this substrate. On the other hand, all substitutions of Trp1254 eliminated transport of [3H]MTX. Finally, we found that sulfinpyrazone stimulated [3H]E217betaG transport by wild-type MRP2 4-fold, whereas transport by the Trp1254 substituted mutants was enhanced 6-10-fold. In contrast, sulfinpyrazone failed to stimulate [3H]MTX transport by either wild-type MRP2 or the MRP2-Trp1254 mutants. Taken together, our results demonstrate that Trp1254 plays an important role in the ability of MRP2 to transport conjugated organic anions and identify this amino acid in the putative last transmembrane segment (TM17) of this ABC protein as being critical for transport of MTX.  相似文献   

19.
Multidrug resistance protein 2 (MRP2) belongs to the ATP binding cassette family of transporters. Its substrates include organic anions and anticancer drugs. We have used transport assays with vesicles derived from Sf9 insect cells overproducing MRP2 to study the interactions of drugs, organic anions, and bile acids with three MRP2 substrates: estradiol-17-beta-d-glucuronide (E217betaG), methotrexate, and glutathione-S-dinitrophenol. Complex inhibition and stimulation patterns were obtained, different from those observed with the related transporters MRP1 and MRP3. In contrast to a previous report, we found that the rate of E217betaG transport by MRP2 increases sigmoidally with substrate concentration indicative of homotropic cooperativity. Half-maximal transport was obtained at 120 microm E217betaG, in contrast to values < 20 microm for MRP1 and 3. MRP2 stimulators, such as indomethacin and sulfanitran, strongly increased the affinity of MRP2 for E217betaG (half-maximal transport rates at 65 and 16 microm E217betaG, respectively) and shifted the sigmoidal dependence of transport rate on substrate concentration to a more hyperbolic one, without substantially affecting the maximal transport rate. Sulfanitran also stimulated MRP2 activity in cells, i.e. the transport of saquinavir through monolayers of Madin-Darby canine kidney II cells. Some compounds that stimulate E217betaG transport, such as penicillin G or pantoprazole, are not detectably transported by MRP2, suggesting that they allosterically stimulate transport without being cotransported with E217betaG. We propose that MRP2 contains two similar but nonidentical ligand binding sites: one site from which substrate is transported and a second site that regulates the affinity of the transport site for the substrate.  相似文献   

20.
Hypoxia and amino acid deprivation downregulate expression of extracellular matrix genes in lung fibroblasts. We examined the effect of hypoxia on amino acid uptake and protein formation in human lung fibroblasts. Low O(2) tension (0% O(2)) suppressed incorporation of [(3)H]proline into type I collagen without affecting [(35)S]methionine labeling of other proteins. Initial decreases in intracellular [(3)H]proline incorporation occurred after 2 h of exposure to 0% O(2), with maximal suppression of intracellular [(3)H]proline levels at 6 h of treatment. Hypoxia significantly inhibited the uptake of radiolabeled proline, 2-aminoisobutyric acid (AIB), and 2-(methylamino)isobutyric acid (methyl-AIB) while inducing minor decreases in leucine transport. Neither cycloheximide nor indomethacin abrogated hypoxia-related suppression of methyl-AIB uptake. Efflux studies demonstrated that hypoxia inhibited methyl-AIB transport in a bidirectional fashion. The downregulation of amino acid transport was not due to a toxic effect; function recovered on return to standard O(2) conditions. Kinetic analysis of AIB transport revealed a 10-fold increase in K(m) accompanied by a small increase in maximal transport velocity among cells exposed to 0% O(2). These data indicate that low O(2) tension regulates the system A transporter by decreasing transporter substrate affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号