首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha- and gamma-tocopherol are the major vitamin E compounds found in human blood and tissues. The metabolites are 2,5,7, 8-tetramethyl-2-(2'-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2,7,8-trimethyl-2-(2'-carboxyethyl)-6-hydroxychroman (gamma-CEHC, LLU-alpha), respectively. alpha-CEHC is excreted mainly as glucuronide or sulfate conjugates in the urine. Here we describe a sensitive and reliable method to analyze alpha- and gamma-CEHC in human serum. The concentration of alpha-CEHC in human serum is in the range of 5-10 pmol/ml but increases significantly up to 200 pmol/ml upon supplementation with RRR-alpha-tocopherol. About one-third of the alpha-CEHC circulating in the blood is present as a glucuronide conjugate. Baseline levels of gamma-CEHC are about 50 to 85 pmol/ml.  相似文献   

2.
A method for the direct extraction and routine analysis of the vitamin E metabolites gamma- and alpha-carboxyethyl hydroxychroman (gamma- and alpha-CEHC) from human urine has been developed. A relatively small sample volume (5 ml) can be used and, after enzymatic hydrolysis of the conjugated forms and acidification, the metabolites are extracted with diethyl ether. Recovery of alpha- and gamma-CEHC was compared to that of trolox, used as an internal standard, added to 24-h urine collections from vitamin E-unsupplemented volunteers. Various solvent conditions were initially tested; acidification and ether extraction gave the highest recovery. It was found that after addition and extraction from urine, trolox, alpha- and gamma-CEHC are recovered to a similar extent, hence trolox is viable as an internal standard. The samples were analyzed by both GC and HPLC with electrochemical detection (ECD). HPLC-ECD was found to give higher selectivity and higher sensitivity compared to GC or HPLC with UV detection at 290 nm. The HPLC-ECD detection limit was 10 fmol, linearity (r(2) > 0.98) was achieved in the range of 40 to 200 fmol, which was found to be optimal for 24-h urines from unsupplemented subjects. Inter-sample variability was typically 2-5%. This greater sensitivity and selectivity means that vitamin E metabolites can be analyzed even in unsupplemented subjects. It is also possible to measure unconjugated forms of the metabolites. Typically these were found to represent approximately 10% of the total alpha- and gamma-CEHC. This method can be used routinely for the determination of vitamin E metabolites in urine. The new extraction and detection methods described are relatively quick, less laborious, and more cost-effective than previously available methods.  相似文献   

3.
Gamma-tocopherol (gammaT) is one of the major forms of vitamin E consumed in the diet. Previous reports have suggested increased levels of nitrated gamma-tocopherol (5-NO2-gammaT) in smokers and individuals with conditions associated with elevated nitrative stress. The monitoring of 5-NO2-gammaT and its possible metabolite(s) may be a useful marker of reactive nitrogen species generation in vivo. The major pathway for the metabolism of gammaT is the cytochrome P450 dependent oxidation to its water-soluble metabolite gamma-CEHC, which is excreted in urine. In order to determine if 5-NO2-gammaT could be metabolised via the same route and detected in urine we developed a sensitive gas chromatography-mass spectrometry assay for 5-NO2-gamma-CEHC. 5-NO2-gamma-CEHC was synthesised and its structure confirmed by proton nuclear magnetic resonance and mass spectrometry. While gamma-CEHC was abundant in urine from healthy volunteers, as well as patients with coronary heart disease and type 2 diabetes, 5-NO2-gamma-CEHC was undetectable (limit of detection of 5 nM). To understand this observation we examined the uptake and metabolism of gammaT and 5-NO2-gammaT by HepG2 cells. gammaT was readily incorporated into cells and metabolised to gamma-CEHC over a period of 48 hours. In contrast, 5-NO2-gammaT was poorly incorporated into HepG2 cells and not metabolised to 5-NO2-gamma-CEHC over the same time period. We conclude that nitration of gammaT prevents its incorporation into liver cells and therefore its metabolism to the water-soluble metabolite. Whether 5-NO2-gammaT could be metabolised via other pathways in vivo requires further investigation.  相似文献   

4.
Little is known of the post-absorptive, metabolic fate of gamma-tocopherol, the major form of vitamin E in North American diets. The objective of this study was to determine the extent of urinary excretion of 2,7, 8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), a recently identified metabolite of gamma-tocopherol. A method for measurement of urinary gamma-CEHC was developed, using gas chromatography-mass spectrometry (GC-MS) with a deuterated internal standard, 2,7,8-trimethyl-2-(beta-carboxyethyl)-(3, 4-2H2)-6-hydroxychroman (d2-gamma-CEHC). This standard was synthesized by dehydrogenation of 6-acetyl-gamma-CEHC followed by deuteration of the resulting 3,4-double bond. The use of d2-gamma-CEHC resulted in accurate determinations of the concentration of d0-gamma-CEHC in human urine. Urine samples containing added d2-gamma-CEHC were treated with beta-glucuronidase, extracted with an organic solvent, and analyzed by GC-MS. Analysis of 24-h urine pools from healthy subjects revealed gamma-CEHC concentrations, normalized against creatinine, ranging from 2.5 to 31.5 micromol/g creatinine, or a total of 4.6 to 29.8 micromol per day. These results correspond to 2-12 mg gamma-tocopherol excreted daily as gamma-CEHC in the urine. Given an estimated mean intake of gamma-tocopherol of 20 mg/day, catabolism of gamma-tocopherol to gamma-CEHC, followed by glucuronide conjugation and urinary excretion, is a major pathway for elimination of gamma-tocopherol in humans.  相似文献   

5.
Alpha- and gamma-tocopherol (alpha- and gamma-T, respectively) metabolite analysis is of key relevance in the study of vitamin E metabolism. Whilst there is information on urinary excretion of the two major metabolites of these vitamin E homologues, namely the 2,5,7,8-tetramethyl-2-(beta-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), their concentration and response to supplements in plasma remains poorly investigated. In this study we describe a gas chromatography-mass spectrometry (GC/MS)-based assay to measure both alpha- and gamma-T and their corresponding CEHC metabolites in human plasma. As an example of the application of this method we report data obtained following the supplemention of two healthy volunteers with 100 mg of deuterium-labeled gamma-T acetate (d(2)-gamma-TAC). Under routine analytical conditions a good linearity in the range 0.0025--1 microM was observed for both the alpha- and gamma-CEHC deuterated standards. In plasma samples, the detection limit for alpha- and gamma-CEHC was 2.5 and 5 nmol/l, respectively. The minimum amount of plasma required for the assay was 500 microl. The plasma concentrations of alpha-CEHC and gamma-CEHC in unsupplemented healthy subjects were 12.6 +/-7.5 and 160.7 +/- 44.9 nmol/l, respectively. In the two volunteers supplemented with 100 mg of d(2)-gamma-TAC, plasma d(2)-gamma-T concentrations increased 250 to 450-fold 6 h postsupplementation. Plasma and urinary d(2)-gamma-CEHC concentrations increased 20 to 40-fold 9--12 h postsupplementation. Interestingly, the acute increase in d(2) gamma-T did not significantly affect the baseline plasma concentrations of d(0)-gamma-T and only slight lowered alpha-T concentrations. Likewise, plasma alpha-CEHC levels were not influenced and urinary excretion of alpha-CEHC were unaltered. This GC/MS method provides a versatile and accurate mean for assessing carboxyethyl-hydroxychroman metabolites of vitamin E in plasma.  相似文献   

6.
BACKGROUND: The uptake and biotransformation of gamma-tocopherol (gamma-T) in humans is largely unknown. Using a stable isotope method we investigated these aspects of gamma-T biology in healthy volunteers and their response to gamma-T supplementation. METHODS: A single bolus of 100 mg of deuterium labeled gamma-T acetate (d(2)-gamma-TAC, 94% isotopic purity) was administered with a standard meal to 21 healthy subjects. Blood and urine (first morning void) were collected at baseline and a range of time points between 6 and 240 h post-supplemetation. The concentrations of d(2) and d(0)-gamma-T in plasma and its major metabolite 2,7,8-trimethyl-2-(b-carboxyethyl)-6-hydroxychroman (-gamma-CEHC) in plasma and urine were measured by GC-MS. In two subjects, the total urine volume was collected for 72 h post-supplementation. The effects of gamma-T supplementation on alpha-T concentrations in plasma and alpha-T and gamma-T metabolite formation were also assessed by HPLC or GC-MS analysis. RESULTS: At baseline, mean plasma alpha-T concentration was approximately 15 times higher than gamma-T (28.3 vs. 1.9 micromol/l). In contrast, plasma gamma-CEHC concentration (0.191 micromol/l) was 12 fold greater than alpha-CEHC (0.016 micromol/l) while in urine it was 3.5 fold lower (0.82 and 2.87 micromol, respectively) suggesting that the clearance of alpha-CEHC from plasma was more than 40 times that of gamma-CEHC. After d(2)-gamma-TAC administration, the d(2) forms of gamma-T and gamma-CEHC in plasma and urine increased, but with marked inter-individual variability, while the d(0) species were hardly affected. Mean total concentrations of gamma-T and gamma-CEHC in plasma and urine peaked, respectively, between 0-9, 6-12 and 9-24 h post-supplementation with increases over baseline levels of 6-14 fold. All these parameters returned to baseline by 72 h. Following challenge, the total urinary excretion of d(2)-gamma-T equivalents was approximately 7 mg. Baseline levels of gamma-T correlated positively with the post-supplementation rise of (d(0) + d(2)) - gamma - T and gamma-CEHC levels in plasma, but correlated negatively with urinary levels of (d(0) + d(2))-gamma-CEHC. Supplementation with 100 mg gamma-TAC had minimal influence on plasma concentrations of alpha-T and alpha-T-related metabolite formation and excretion. CONCLUSIONS: Ingestion of 100mg of gamma-TAC transiently increases plasma concentrations of gamma-T as it undergoes sustained catabolism to CEHC without markedly influencing the pre-existing plasma pool of gamma-T nor the concentration and metabolism of alpha-T. These pathways appear tightly regulated, most probably to keep high steady-state blood ratios alpha-T to gamma-T and gamma-CEHC to alpha-CEHC.  相似文献   

7.
Carboxyethyl-6-hydroxychromans (CEHC), the major metabolites of both tocopherols (Toc) and tocotrienols (Toc-3), have been found in human plasma. In the present study, the antioxidant properties of alpha- and gamma-CEHC were measured and compared with alpha- and gamma- tocopherols. Following results were obtained: (1)alpha- and gamma-CEHC have the same reactivities toward radicals and exert the same antioxidant activities against lipid peroxidation in organic solution as the corresponding parent tocopherols respectively; (2) the partition coefficient decreased in the order alpha-Toc (3.36) > gamma-Toc (3.14) > alpha-CEHC (2.26) > pentamethyl-6-chromanol (1.92) > gamma-CEHC (1.83) > 0 > Trolox (-0.97); (3) alpha- and gamma-CEHC scavenge aqueous radicals more efficiently but they inhibit the lipid peroxidation within the membranes less efficiently than the corresponding alpha- and gamma-Toc, respectively; (4) alpha-CEHC inhibits the oxidation synergistically with ascorbate; and (5) alpha- and gamma-CEHC reduce Cu(II) to give Cu(I) and corresponding quinones as major product, but the prooxidant effect of CEHC in the presence of cupric ion was small. These results imply that CEHC may act as an antioxidant in vivo especially for those who take tocopherol supplement.  相似文献   

8.
2,7,8-Trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), a metabolite of gamma-tocopherol and gamma-tocotrienol, was identified as a new endogenous natriuretic factor. However, gamma-tocopherol and gamma-tocotrienol, both precursors of gamma-CEHC, have never directly been observed to have natriuretic potency. Thus, we investigated whether gamma-tocotrienol could cause natriuresis and diuresis in rats. The rats were divided into two groups that were given a control or a high-sodium diet for 4 weeks, and then subdivided into placebo and gamma-tocotrienol subgroups given only corn oil-removed vitamin E and oil supplemented with gamma-tocotrienol, respectively. After oral administration of three experimental doses, rat urine was collected and gamma-CEHC, urine volume, sodium, and potassium content were determined. Only in rats given a high-NaCl diet did gamma-tocotrienol accelerate and increase sodium excretion, showing no effect on potassium excretion. Sodium excretion in the high-NaCl group given gamma-tocotrienol was 5.06 +/- 2.70 g/day, and in the control group given gamma-tocotrienol, 0.11 +/- 0.06 g/day. Furthermore, gamma-tocotrienol affected urine volume in the specific condition of high-NaCl body stores and gamma-tocotrienol supplementation. In this study, we found that gamma-tocotrienol, one of the natural vitamin E homologs, stimulates sodium excretion in vivo, suggesting that gamma-tocotrienol possesses a hormone-like natriuretic function.  相似文献   

9.
The sodium salt of 6-hydroxy-5-(phenylazo)-2-naphthalenesulfonic acid (SS-AN), which is a subsidiary color present in Food Yellow No. 5 [Sunset Yellow FCF, disodium salt of 6-hydroxy-5-(4-sulfophenylazo)-2-naphthalenesulfonic acid], was orally administered to Sprague–Dawley rats. Metabolite A, metabolite B, and unaltered SS-AN were detected as colored metabolites in the rat urine. Analysis of the chemical structures showed that metabolite A (major peak) was 6-hydroxy-5-(4-sulfooxyphenylazo)-2-naphthalenesulfonic acid, the sulfuric acid conjugate of SS-AN, and metabolite B (minor peak) was 6-hydroxy-5-(4-hydroxyphenylazo)-2-naphthalenesulfonic acid (SS-PAP), which is a derivative of metabolite A without the sulfuric acid. The colorless metabolites p-aminophenol, o-aminophenol, and aniline present in the urine were analyzed by liquid chromatography–mass spectrometry. The orally administered SS-AN had been metabolized to the colorless metabolites (p-aminophenol 45.3%, o-aminophenol 9.4%, aniline 0.4%) in the 24-h urine samples. Analysis of the colored metabolites by high-performance liquid chromatography with detection at 482 nm indicated the presence of metabolite A (0.29%), SS-PAP (0.01%), and SS-AN (0.02%) were detected in the 24-h urine samples. Approximately 56% of SS-AN was excreted into the urine and the rest is probably excreted into feces.  相似文献   

10.
Anti-inflammatory effects of tocopherol metabolites   总被引:7,自引:0,他引:7  
Our objective was to assess the anti-inflammatory effects of alpha-tocopherol, gamma-tocopherol, and their metabolites 2,5,7,8-tetramethyl-2-(beta-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC) in defined cell culture systems. Rat aortic endothelial cells and mouse microglial cultures were treated with tumor necrosis factor TNFalpha or bacterial lipopolysaccharide (LPS) and nitrite and prostaglandin E(2) (PGE(2)) were measured. alpha-CEHC suppressed TNFalpha-stimulated nitrite production in both cell types, whereas both CEHC derivatives inhibited LPS-stimulated microglial nitrite efflux. Both alpha-CEHC and gamma-CEHC inhibited microglial PGE(2) production, but neither alpha- nor gamma-tocopherol was effective at inhibiting cytokine-stimulated inflammatory processes. These results show that the anti-inflammatory effects of tocopherols are highly cell type-, stimulus-, and endpoint-dependent.  相似文献   

11.
A high-performance liquid chromatographic method for the determination of N-1-hydroxyethylflurazepam, the major urinary metabolite of flurazepam, in human urine is described. Urine specimens were incubated enzymatically to deconjugate N-1-hydroxyethylflurazepam glucuronide (metabolite) and were then extracted at pH 9.0 to extract the metabolite. The extracts were chromatographed on a microparticulate silica gel column using automatic sample injection, isocratic elution at ambient temperature and UV monitoring at 254 nm. The internal stanard was 7-chloro-5-(2′-chlorophenyl)-1,3-dihydro-1-2-dimethylaminoethyl-2H-1,4-benzodiazepine-2-one. The recovery from urine, in the 0.5–25.0 μg/ml range, was 96.5 ± 11.5% (S.D.), and the sensitivity limit was 0.5 μg/ml. The method was found to be specific for N-1-hydroxyethylflurazepam in the presence of intact flurazepam and other possible urinary metabolites of flurazepam. The method was successfully applied to urine specimens collected from human subjects following the administration of 30-mg single oral doses of flurazepam dihydrochloride.  相似文献   

12.
We hypothesized that human plasma alpha- and gamma-tocopherol concentrations reflect differences in their kinetics, especially influenced by gamma-tocopherol metabolism. Vitamin E kinetics were evaluated in humans (n=14) using approximately 50 mg each of an equimolar ratio of d6-alpha- and d2-gamma-tocopheryl acetates administered orally. Mass spectrometry was used to measure deuterated plasma tocopherols, as well as plasma and urinary vitamin E metabolites, alpha- and gamma-carboxyethylhydroxychromans (CEHCs). Plasma d2-gamma-tocopherol fractional disappearance rates (FDR; 1.39+/-0.44 pools/day, mean+/-SD) were more than three times greater than those of d6-alpha-tocopherol (0.33+/-0.11, p<0.001). The d2-gamma-tocopherol half-life was 13+/-4 h compared with 57+/-19 for d6-alpha-tocopherol. Whereas neither plasma nor urinary d6-alpha-CEHC was detectable (limit of detection 1 nmol/L), gamma-CEHC (labeled plus unlabeled) increased from 129+/-20 to 258+/-40 nmol/L by 12 h and returned to baseline by 48 h; at 12 h d2-gamma-CEHC represented 54+/-4% of plasma gamma-CEHC. Women compared with men had a greater d2-gamma-tocopherol FDR (p<0.004) and a greater maximal plasma d2-gamma-CEHC concentration (p<0.02) and CEHC FDR (p<0.007), as well as excreting four times as much d2-gamma-CEHC (p<0.04) in urine. Thus, gamma-tocopherol is rapidly metabolized to gamma-CEHC, and to a greater degree in women than in men, whereas alpha-tocopherol is maintained in the plasma and little is metabolized to alpha-CEHC.  相似文献   

13.
Exemestane is an aromatase enzyme complex inhibitor. Its metabolism in humans is not fully described and there is only one known metabolite: 17β-hydroxyexemestane. In this work, excretion studies were performed with four volunteers aiming at the detection of new exemestane metabolites in human urine by gas chromatography coupled to mass spectrometry (GC-MS) after enzymatic hydrolysis and liquid-liquid extraction. Urine samples collected from four volunteers were analyzed separately. The targets of the study were mainly the 6-exomethylene oxidized metabolites. Two unreported metabolites were identified in both free and glucuconjugated urine fractions from all four volunteers, both of them were the result of the 6-exomethylene moiety oxidation: 6ξ-hydroxy-6ξ-hydroxymethylandrosta-1,4-diene-3,17-dione (metabolite 1) and 6ξ-hydroxyandrosta-1,4-diene-3,17-dione (metabolite 2). Furthermore, only in glucoconjugated fractions from all volunteers, one metabolite arising from the A-ring reduction was identified as well, 3ξ-hydroxy-5ξ-androst-1-ene-6-methylene-17-one (metabolite 3). The molecular formulae of all these metabolites were ascertained by the determination of exact masses using gas chromatography coupled to high resolution mass spectrometry (GC-HRMS). Moreover, all metabolites were confirmed using an alternative derivatization with methoxyamine and MSTFA/TMS-imidazole.  相似文献   

14.
New metabolites of mesterolone, methenolone and stenbolone bearing a C18 hydroxyl group were isolated from the steroid glucuronide fraction of urine specimens collected after administration of single 50 mg doses of these steroids to human subjects. Mesterolone gave rise to four metabolites which were identified by gas chromatography/mass spectrometry as 18-hydroxy-1 alpha-methyl-5 alpha-androstan-3,17-dione 1, 3 alpha,18-dihydroxy-1 alpha-methyl-5 alpha-androstan-17-one 2, 3 beta,18-dihydroxy-1-alpha-methyl-5 alpha-androstan-17-one 3 and 3 alpha,6 xi,18-trihydroxy-1 alpha-methyl-5 alpha-androstan-17-one 4. These data suggest that mesterolone itself was not hydroxylated at C18, but rather 1 alpha-methyl-5 alpha-androstan-3,17-dione, an intermediate metabolite which results from oxidation of mesterolone 17-hydroxyl group. In addition to hydroxylation at C18, reduction of the 3-keto group and further hydroxylation at C6 were other reactions that led to the formation of these metabolites. It is of interest to note that in the case of both methenolone and stenbolone, only one 18-hydroxylated urinary metabolite namely 18-hydroxy-1-methyl-5 alpha-androst-1-ene-3,17-dione 5 and 18-hydroxy-1-methyl-5 alpha-androst-1-ene-3,17-dione 6 were both detected in post-administration urine specimens. These data indicate that the presence of a methyl group at the C1 or C2 positions in the steroids studied is a structural feature that seems to favor interaction of hepatic 18-hydroxylases with these steroids. These data provide further evidence that 18-hydroxylation of endogenous steroids can also occur in extra-adrenal sites in man.  相似文献   

15.
[G-3H]Dopamine (3,4-dihydroxyphenethylamine) metabolism in human skin fibroblasts and rat hepatoma cells in culture was determined by high-pressure liquid-chromatographic analysis of both cell extract and uptake medium. Conjugated metabolites were selectively hydrolysed by incubation with arylsulphatase or beta-glucuronidase before analysis. The principal metabolites of dopamine in fibroblast cells are 3-methoxytyramine 4-O-sulphate and 3-methoxytyramine. No significant differences, either in the amounts of these metabolites or in the amount of dopamine metabolism, were observed in fibroblasts from both normal and homocystinuric individuals. In rat hepatoma cells, the major metabolite of dopamine was 3-methoxytyramine 4- or 3-O-glucuronide; lower concentrations of dopamine 4- or 3-O-glucuronide, 4-hydroxy-3-methoxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid and two unidentified glucuronide conjugates were also observed. Significant differences in the relative concentrations of these metabolites in cell and uptake medium were observed in both cell systems.  相似文献   

16.
The metabolism of vitamin E involves oxidation of the phytyl chain to generate the terminal metabolite 7,8-dimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (CEHC) via intermediate formation of 13'-hydroxychromanol and long-chain carboxychromanols. Conjugated (including sulfated) metabolites were reported previously but were limited to CEHCs. Here, using electrospray and inductively coupled plasma mass spectrometry, we discovered that gamma-tocopherol (gamma-T) and delta-T were metabolized to sulfated 9'-, 11'-, and 13'-carboxychromanol (9'S, 11'S, and 13'S) in human A549 cells. To further study the metabolites, we developed a HPLC assay with fluorescence detection that simultaneously analyzes sulfated and nonconjugated intermediate metabolites. Using this assay, we found that sulfated metabolites were converted to nonconjugated carboxychromanols by sulfatase digestion. In cultured cells, approximately 45% long-chain carboxychromanols from gamma-T but only 10% from delta-T were sulfated. Upon supplementation with gamma-T, rats had increased tissue levels of 9'S, 11'S, and 13'S, 13'-hydroxychromanol, 13'-carboxychromanol, and gamma-CEHC. The plasma concentrations of combined sulfated long-chain metabolites were comparable to or exceeded those of CEHCs and increased proportionally with the supplement dosages of gamma-T. Our study identifies sulfated long-chain carboxychromanols as novel vitamin E metabolites and provides evidence that sulfation may occur parallel with beta-oxidation. In addition, the HPLC fluorescence assay is a useful tool for the investigation of vitamin E metabolism.  相似文献   

17.
There is currently interest in the metabolism of the various compounds which make up the vitamin E family, especially with regards to the possible use of vitamin E metabolites as markers of oxidative stress and adequate vitamin E supply. A number of vitamin E metabolites have been described to date and we have recently developed a method to extract and quantitate a range of vitamin E metabolites in human urine. During the development of this method a new metabolite of alpha-tocopherol was identified, which we tentatively characterised as 5-(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-yl)-2-methyl-pentanoic acid (alpha-CMBHC).(1) Here we describe the synthesis of alpha-CMBHC as a standard and confirm that it is a metabolite of alpha-tocopherol.  相似文献   

18.
Human metabolism of the monoterpene cyclic ether 1,8-cineole was investigated in vitro and in vivo. In vitro, the biotransformation of 1,8-cineole was investigated by human liver microsomes and by recombinant cytochrome P450 enzymes coexpressed with human CYP-reductase in Escherichia coli cells. Besides the already described metabolite 2alpha-hydroxy-1,8-cineole we found another metabolite produced at high rates. The structure was identified by a comparison of its mass spectrum and retention time with the reference compounds as 3alpha-hydroxy-1,8-cineole. There was a clear correlation between the concentration of the metabolites, incubation time and enzyme content, respectively. CYP3A4/5 antibody significantly inhibited the 2alpha- and 3alpha-hydroxylation catalyzed by pooled human liver microsomes. Further kinetic analysis revealed that the Michaelis-Menten K(m) and V(max) for oxidation of 1,8-cineole in position three were 19 microM and 64.5 nmol/min/nmol P450 for cytochrome P450 3A4, and 141 microM and 10.9 nmol/min/nmol P450 for cytochrome P450 3A5, respectively. To our knowledge, this is the first time that 3alpha-hydroxy-1,8-cineole is described as a human metabolite of 1,8-cineole. We confirmed these in vitro results by the investigation of human urine after the oral administration of cold medication containing 1,8-cineole. In human urine we found by GC-MS analysis the described metabolites, 2alpha-hydroxy-1,8-cineole and 3alpha-hydroxy-1,8-cineole.  相似文献   

19.
Urinary metabolites of cannabidiol (CBD), a non-psychoactive cannabinoid of potential therapeutic interest, were extracted from dog, rat and human urine, concentrated by chromatography on Sephadex LH-20 and examined by gas chromatography—mass spectrometry as trimethylsilyl (TMS), [2H9]TMS, methyl ester—TMS and methyloxime—TMS derivatives. Fragmentation of the metabolites under electron-impact gave structurally informative fragment ions; computer-generated single-ion plots of these diagnostic ions were used extensively to aid metabolite identification. Over fifty metabolites were identified with considerable species variation. CBD was excreted in substantial concentration in human urine, both in the free state and as its glucuronide. In dog, unusual glucoside conjugates of three metabolites (4″- and 5″-hydroxy- and 6-oxo-CBD), not excreted in the unconjugated state, were found as the major metabolites at early times after drug administration. Other metabolites in all three species were mainly acids. Side-chain hydroxylated derivatives of CBD-7-oic acid were particularly abundant in human urine but much less so in dog. In the latter species the major oxidized metabolites were the products of β-oxidation with further hydroxylation at C-6. A related, but undefined pathway resulted in loss of three carbon atoms from the side-chain of CBD in man with production of 2″-hydroxy-tris,nor-CBD-7-oic acid. Metabolism by the epoxide-diol pathway, resulting in dihydro-diol formation from the Δ-8 double bond, gave metabolites in both dog and human urine. It was concluded that CBD could be used as a probe of the mechanism of several types of biotransformation; particularly those related to carboxylic acid metabolism as intermediates of the type not usually seen with endogenous compounds were excreted in substantial concentration.  相似文献   

20.
50 microCi of [3H]prostaglandin D2 tracer (100 Ci/mmol) was infused intravenously into a normal human male volunteer. 75% of the infused radioactivity was excreted into the urine within 5 h. This urine was added to urine obtained from two mastocytosis patients with marked overproduction of prostaglandin D2. Radiolabeled prostaglandin D2 urinary metabolites were chromatographically isolated and purified and subsequently identified by gas chromatography-mass spectrometry. 25 metabolites were identified. 23 of these compounds comprising 37% of the recovered radioactivity had prostaglandin F-ring structures, and only two metabolites comprising 2.7% of the recovered radioactivity retained the prostaglandin D-ring structure. The single most abundant metabolite identified was 9,11-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid which was isolated in a tricyclic form as a result of formation of a lower side chain hemiketal followed by lactonization of the terminal carboxyl and the hemiketal hydroxyl. Different isomeric forms of several prostaglandin F-ring metabolites were identified. An isomer of prostaglandin F2 alpha was also excreted intact into the urine as a metabolite of prostaglandin D2. 15 PGF-ring compounds were treated with n-butylboronic acid and 13 failed to form a boronate derivative, suggesting that the orientation of the hydroxyl group at C-11 in these 13 metabolites is beta. This study documents that prostaglandin D2 is metabolized to prostaglandin F-ring metabolites in vivo in humans. These results also bring into question the accuracy of quantifying prostaglandin F2 alpha metabolites as a specific index of endogenous prostaglandin F2 alpha biosynthesis, as well as quantifying urinary prostaglandin F2 alpha as an accurate index of renal production of prostaglandin F2 alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号