首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using fluorescent membrane potential sensing dyes to stain budding yeast, mitochondria are resolved as tubular organelles aligned in radial arrays that converge at the bud neck. Time-lapse fluorescence microscopy reveals region-specific, directed mitochondrial movement during polarized yeast cell growth and mitotic cell division. Mitochondria in the central region of the mother cell move linearly towards the bud, traverse the bud neck, and progress towards the bud tip at an average velocity of 49 +/- 21 nm/sec. In contrast, mitochondria in the peripheral region of the mother cell and at the bud tip display significantly less movement. Yeast strains containing temperature sensitive lethal mutations in the actin gene show abnormal mitochondrial distribution. No mitochondrial movement is evident in these mutants after short-term shift to semi-permissive temperatures. Thus, the actin cytoskeleton is important for normal mitochondrial movement during inheritance. To determine the possible role of known myosin genes in yeast mitochondrial motility, we investigated mitochondrial inheritance in myo1, myo2, myo3 and myo4 single mutants and in a myo2, myo4 double mutant. Mitochondrial spatial arrangement and motility are not significantly affected by these mutations. We used a microfilament sliding assay to examine motor activity on isolated yeast mitochondria. Rhodamine-phalloidin labeled yeast actin filaments bind to immobilized yeast mitochondria, as well as unilamellar, right- side-out, sealed mitochondrial outer membrane vesicles. In the presence of low levels of ATP (0.1-100 microM), we observed F-actin sliding on immobilized yeast mitochondria. In the presence of high levels of ATP (500 microM-2 mM), bound filaments are released from mitochondria and mitochondrial outer membranes. The maximum velocity of mitochondria- driven microfilament sliding (23 +/- 11 nm/sec) is similar to that of mitochondrial movement in living cells. This motor activity requires hydrolysis of ATP, does not require cytosolic extracts, is sensitive to protease treatment, and displays an ATP concentration dependence similar to that of members of the myosin family of actin-based motors. This is the first demonstration of an actin-based motor activity in a defined organelle population.  相似文献   

2.
Selectins are cell adhesion molecules that mediate capture of leukocytes on vascular endothelium as an essential component of the inflammatory response. Here we describe a method for yeast surface display of selectins, together with a functional assay that measures rolling adhesion of selectin-expressing yeast on a ligand-coated surface. E-selectin-expressing yeast roll specifically on surfaces bearing sialyl-Lewis-x ligands. Observation of yeast rolling dynamics at various stages of their life cycle indicates that the kinematics of yeast motion depends on the ratio of the bud radius to the parent radius (B/P). Large-budded yeast "walk" across the surface, alternately pivoting about bud and parent. Small-budded yeast "wobble" across the surface, with bud pivoting about parent. Tracking the bud location of budding yeast allows measurement of the angular velocity of the yeast particle. Comparison of translational and angular velocities of budding yeast demonstrates that selectin-expressing cells are rolling rather than slipping across ligand-coated surfaces.  相似文献   

3.
The growth and division of mitochondria during the cell cycle was investigated by a morphometric analysis of electron micrographs of synchronized HeLa cells. The ratio of total outer membrane contour length to cytoplasmic area did not vary significantly during the cell cycle, implying a continuous growth of the mitochondrial outer membrane. The mean fraction of cytoplasmic area occupied by mitochondrial profiles was likewise found to remain constant, indicating that the increase in total mitochondrial volume per cell occurs continuously during interphase, in such a way that the mitochondrial complement occupies a constant fraction( approximately 10-11(percent)) of the volume of the cytoplasm. The mean area, outer membrane contour length, and axis ratio of the mitochondrial profiles also did not vary appreciably during the cell cycle; furthermore, the close similarity of the frequency distributions of these parameters for the six experimental time-points suggested a stable mitochondrial shape distribution. The constancy of both the mean mitochondrial profile area and the number of mitochondrial profiles per unit of cytoplasmic area was interpreted to indicate the continuous division of mitochondria at the level of the cell population. Furthermore, no evidence was found for the occurrence of synchronous mitochondrial growth and division within individual cells. Thus, it appears that, in HeLa cells, there is no fixed temporal relationship between the growth and division of mitochondria and the events of the cell cycle. A number of statistical methods were developed for the purpose of making numerical estimates of certain three-dimensional cellular and mitochondrial parameters. Mean cellular and cytoplasmic volumes were calculated for the six time-points; both exhibited a nonlinear, approx. twofold increase. A comparison of the axis ratio distributions of the mitochondrial profiles with theoretical distributions expected from random sectioning of bodies of various three-dimensional shapes allowed the derivation of an "average" mitochondrial shape. This, in turn, permitted calculations to be made which expressed the two-dimensional results in three-dimensional terms. Thus, the estimated values for the number of mitochondria per unit of cytoplasmic volume and for the mean mitochondrial volume were found to remain constant during the cell cycle, while the estimated number of mitochondria per cell increase approx. twofold in an essentially continuous manner.  相似文献   

4.
Two actin-dependent force generators contribute to mitochondrial inheritance: Arp2/3 complex and the myosin V Myo2p (together with its Rab-like binding partner Ypt11p). We found that deletion of YPT11, reduction of the length of the Myo2p lever arm (myo2-Delta6IQ), or deletion of MYO4 (the other yeast myosin V), had no effect on mitochondrial morphology, colocalization of mitochondria with actin cables, or the velocity of bud-directed mitochondrial movement. In contrast, retention of mitochondria in the bud was compromised in YPT11 and MYO2 mutants. Retention of mitochondria in the bud tip of wild-type cells results in a 60% decrease in mitochondrial movement in buds compared with mother cells. In ypt11Delta mutants, however, the level of mitochondrial motility in buds was similar to that observed in mother cells. Moreover, the myo2-66 mutant, which carries a temperature-sensitive mutation in the Myo2p motor domain, exhibited a 55% decrease in accumulation of mitochondria in the bud tip, and an increase in accumulation of mitochondria at the retention site in the mother cell after shift to restrictive temperatures. Finally, destabilization of actin cables and the resulting delocalization of Myo2p from the bud tip had no significant effect on the accumulation of mitochondria in the bud tip.  相似文献   

5.
The general structure and results of quantitative studies of rat carotid body type I cells are described. In contrast to previous reports, there was no change in mitochondrial V/v% on stimulating the carotid body with 10% oxygen. The volume of cytoplasm occupied by electron-dense cored vesicles was significantly increased, whilst their density per square micrometre of cytoplasm was decreased during hypoxia. Thus, the size of vesicles is increased by hypoxic stimulation. On the basis of vesicle diameter and density we were unable to find evidence of more than one variety of type I cell.  相似文献   

6.
In view of the central role that mitochondria are thought to play in the ageing process, we investigated changes in mitochondria of spinal ganglion neurons in rabbits aged 1, 3.6, 6.7, and 8.8 years (the latter extremely old). Mitochondrial size increased significantly with age, while mitochondrial structure did not change. The total volume of mitochondria within the perikaryon did not change significantly during life. This indicates that in these neurons mitochondrial degradation was completely compensated by the production of new mitochondria even in the extremely advanced age. We also found that the mean volume of neuronal perikaryon increased markedly with age, so that the mean percentage of perikaryal volume occupied by mitochondria decreased significantly with a difference of about 33% between the youngest and the oldest animals. This decrease is only in very small part due to lipofuscin accumulation, so that the ratio of the total volume of mitochondria to the volume of functionally active cytoplasm decreased with age. The mitochondria of the neurons studied seem therefore unable to adapt their total volume to the volume of functionally active cytoplasm, that increases with age. This result is consistent with the observation that the neurons of old animals have a reduced ability to respond to high energy demands.  相似文献   

7.
The yeast Candida utilis was continuously synchronized by the phased method of cultivation with the nitrogen source as the growth-limiting nutrient. The doubling time (phasing period) of cells was 6 h. Both cell number and deoxyribonucleic acid synthesis showed a characteristic stepwise increase during the phased growth. The time of bud emergence coincided with the time of initiation of deoxyribonucleic acid synthesis. Size distribution studies combined with microscopic analysis showed that the cells expanded only during the unbudded phase of growth. Usually the cells stopped increasing in size about 30 min before bud emergence, and the arrest of the increase in cell volume coincided with the exhaustion of nitron from the medium. There was no net change in the volume of cells during the bud expansion phase of growth, suggesting that as the bud expanded, the volume of the mother portion of the cell decreased. After division the cells expanded slightly. The postdivision expansion of cells, unlike the growth before bud initiation, occurred in the absence of the growth-limiting nutrient. The newly formed daughter cells were smaller than the mother cells and expanded at a faster rate, so that both types of cells reached maximum size at the same time. Possible reasons for the different rates of expansion of mother and daughter cells are discussed.  相似文献   

8.
The fine structure of Paracoccidioides brasiliensis undergoing temperature-dependent transformation from mycelium to yeast and vice versa (M right harpoon over left harpoon Y) was studied. The transitional form to mycelium from the yeast appears as an elongated bud that extends from the yeast and which has a mixture of characteristics from both the yeast and the mycelium. The transitional form to yeast from the mycelium starts with enlargement of the interseptal spaces and cracking of the outer electron-dense layer of the cell wall of the hypha. Later the interseptal spaces tend to become round and separate. In M --> Y only few interseptal spaces seem to transform. The yeast is produced by self-transformation of the hypha. In Y --> M a new structure is formed and the yeast dies. Intrahyphal hyphae are observed during the transformation from M --> Y, and intrayeast hyphae during the Y --> M. Due to the high mortality and breakage observed in both types of transformations, we believe that wound of the yeast or the mycelium could elicit this phenomenon.  相似文献   

9.
10.
KD115 (ol1), an unsaturated fatty acid auxotroph of S. cerevisiae, was grown in a semi-synthetic medium supplemented with 3.3 x 10(-4) M palmitoleic (cis 16:1) or palmitelaidic (trans 16:1) acids. The parent strain S288C was studied as a control. The lipid composition (fatty acids, neutral lipids, and phospholipids), respiratory activity (O2 consumption), and ultrastructure were compared in mutant yeast grown with each unsaturated fatty acid supplement. The fatty acid supplement represented 70-80% of the yeast fatty acids. Yeast grown in trans 16:1 contained more squalene, a higher ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC), and had 10-20% of the respiratory activity compared to the same yeast grown in cis 16:1. The mitochondrial morphology of yeast in each growth supplement was notably different. The use of mixtures of cis and trans 16:1 in different proportions revealed that the PE/PC ratio, the squalene content, the respiratory defect, and the mitochondrial morphology were all similarly dependent on the fraction of trans 16:1 in the mixtures. As little as 10-20% of cis 16:1 in the mixture was sufficient to abrogate the physiological effects of trans 16:1 on each of the parameters noted above. The combined effects of high content of trans unsaturated fatty acid and the altered phospholipid composition seem to account for the decrease in lipid fluidity, the defective structure and function of the mitochondrial membrane.  相似文献   

11.
Regulation of cell size in the yeast Saccharomyces cerevisiae.   总被引:11,自引:2,他引:9       下载免费PDF全文
For cells of the yeast Saccharomyces cerevisiae, the size at initiation of budding is proportional to growth rate for rates from 0.33 to 0.23 h-1. At growth rates lower than 0.23 h-1, cells displayed a minimum cell size at bud initiation independent of growth rate. Regardless of growth rate, cells displayed an increase in volume each time budding was initiated. When abnormally small cells, produced by starvation for nitrogen, were placed in fresh medium containing nitrogen but with different carbon sources, they did not initiate budding until they had grown to the critical size characteristic of that medium. Moreover, when cells were shifted from a medium supporting a low growth rate and small size at bud initiation to a medium supporting a higher growth rate and larger size at bud initiation, there was a transient accumulation of cells within G1. These results suggest that yeast cells are able to initiate cell division at different cell sizes and that regulation of cell size occurs within G1.  相似文献   

12.
The vacuole of the yeast Saccharomyces cerevisiae was visualized with three unrelated fluorescent dyes: FITC-dextran, quinacrine, and an endogenous fluorophore produced in ade2 yeast. FITC-dextran, which enters cells by endocytosis, had been previously developed as a vital stain for yeast vacuoles. Quinacrine, which diffuses across membranes and accumulates in acidic compartments in mammalian cells, can also be used as a marker for yeast vacuoles. ade2 yeast accumulate an endogenous fluorophore in their vacuoles. Using these stains, yeast were examined for vacuole morphology throughout the cell division cycle. In both the parent cell and the bud, a single vacuole was the most common morphology at every stage. Two or more vacuoles could also be found in the mother cell or in the bud; however, this morphology was not correlated with any stage of the cell division cycle. Even small buds (in early S phase) often contained a small vacuole. By the time the bud was half the diameter of the mother cell, it almost always bore a vacuole. This picture of vacuole division and segregation differs from what is seen with synchronized cultures. In ade2 yeast, the bud usually inherits a substantial portion of its vacuole contents from the mother cell. We propose that vacuolar segregation is accomplished by vesicular traffic between the parent cell and the bud.  相似文献   

13.
Budding in the Dimorphic Fungus Phialophora dermatitidis   总被引:6,自引:5,他引:1       下载免费PDF全文
Ultrastructural comparisons of yeast and hyphal bud formation in Phialophora dermatitidis reveal that bud initiation is characterized by a blastic rupture of the outer portion of the yeast or hyphal wall and the emergence of a bud protuberance through the resulting opening. The wall of the emerging bud is continuous, with only an inner wall layer of the parental yeast or hypha. The outer, ruptured portion of the parental wall typically forms a collar around the constricted emergence region of the developing bud. The cytoplasm within the very young emerging bud invariably contains a small number of membrane-bound vesicles. The septum formed between the daughter bud and the parental yeast or hypha is a complete septum devoid of a septal pore, septal pore plug, or any associated Woronin bodies characteristic of simple septa of the moniliform or true hyphae. These observations suggest that yeast bud formation and lateral hyphal bud formation in the dimorphic fungus P. dermatitidis involve a growth process which occurs identically in both the yeast and mold phase of this human pathogenic organism.  相似文献   

14.
The budding process of the yeast form of Mucor rouxii was examined by electron microscopy of thin sections with particular reference to wall ontogeny. In most instances the bud wall is seen as a continuation of the inner layers of the parent cell wall. As the bud emerges it ruptures the outer layers of the parent wall. The bud wall is much thinner than the parent wall and remains so while the bud grows into a sphere of about one half the diameter of the parent cell. Then a septum begins to form centripetally, at the neck, by invagination of the plasmalemma. Before the neck canal is completely occuluded, electron-dense wall material is deposited into the septum space. Two separate septum walls are deposited, one on the parent side and one on the bud side of the invaginating plasmalemma. Septum wall formation extends to the surrounding neck walls. In this manner, the parent and bud cytoplasms become fully separated and each is surrounded by a continuous wall. The two cells remain attached to each other by the original neck wall; eventually, the bud abscisses leaving a birth scar on the bud cell and a more pronounced bud scar on the parent cell. In general, the mechanism of budding in this zygomycetous fungus resembles that of an ordinary ascomycetous yeast such as Saccharomyces cerevisiae.  相似文献   

15.
The inheritance of mitochondria in yeast depends on bud-directed transport along actin filaments. It is a matter of debate whether anterograde mitochondrial movement is mediated by the myosin-related motor protein Myo2 or by motor-independent mechanisms. We show that mutations in the Myo2 cargo binding domain impair entry of mitochondria into the bud and are synthetically lethal with deletion of the YPT11 gene encoding a rab-type guanosine triphosphatase. Mitochondrial distribution defects and synthetic lethality were rescued by a mitochondria-specific Myo2 variant that carries a mitochondrial outer membrane anchor. Furthermore, immunoelectron microscopy revealed Myo2 on isolated mitochondria. Thus, Myo2 is an essential and direct mediator of bud-directed mitochondrial movement in yeast. Accumulating genetic evidence suggests that maintenance of mitochondrial morphology, Ypt11, and retention of mitochondria in the bud contribute to Myo2-dependent inheritance of mitochondria.  相似文献   

16.
Mitochondrial volume fraction was compared among three regions along the length of six multiply innervated fibers (MIFs) in the orbital surface layer of rabbit superior rectus. These MIFs are of about 5 μm diameter toward the middle of their length, and of about 15 μm diameter toward their proximal and distal ends. The region of highest volume fraction (26%) was located toward the proximal end of their segment of minimal diameter, in apparent association with endplate-like nerve junctions. The region of lowest volume fraction (8%) was located at their distal segment of maximal diameter. The region toward the distal end of their segment of minimal diameter displayed an intermediate volume fraction (15%). These mitochondrial volume fractions were further analyzed in terms of the relative contributions of the I-band, the A-band, and the subsarcolemmal mitochondrial clusters. Comparable changes in mitochondrial content occur in both the I-band and A-band: in the fibers' distal segment of maximal diameter, however, the mitochondrial volume fraction in the A-band (5%) is lower than in the I-band (11%). These modifications of mitochondrial content along the fibers' length occur irrespective of the contributions of the subsarcolemmal mitochondrial clusters.  相似文献   

17.
BACKGROUND AND AIMS: Lichens can be both nitrogen- (N) and phosphorous- (P) limited and thus may be susceptible to nutrient enrichment. Nutrient enrichment with N and P may have differing impacts on the lichen structure because of different physiological responses of fungal and algal partners to these nutrients. The hypothesis was tested that the differential responses of lichen symbionts to enhanced availability of N and P is reflected in the lichen thallus structure and the wall-to-wall interface between the algal and fungal cells. METHODS: Lichen cushions of Cladonia stellaris were treated with one P and two N concentrations alone and in combination that yielded total depositions of approx. 300 (moderate) and 1000 (high) mg N m(-2) and 100 (high) mg P m(-2) over an experiment lasting 14 weeks. The effects of N and P inputs on the relative volumes of fungal and algal cell in the medullary tissue and on the thallus structure were studied using light microscopy. The interface between algal and fungal cell walls was examined using transmission electron microscopy. KEY RESULTS: The influence of excess P on the lichen thallus structure was stronger than that of additional N. Addition of P reduced the N : P ratio in podetia, the proportion of the medullary layer volume occupied by the algal cells, the thallus volume occupied by the internal lumen, and the algal cell-wall area covered by fungal hyphae. CONCLUSIONS: Ecologically realistic changes in the availability of key macronutrients can alter the growth of symbionts. Reduction in the proportion of photobiont cells indicates that the application of P either stimulates fungal hyphal growth in the medullary tissue or impairs the cell division of the algal cells. The results suggest that both the N and P availability and thallus N : P ratio affect the growth rates of lichen symbionts.  相似文献   

18.
The gross chemical composition of material extracted from yeast cell walls with various solvents or enzymes was studied. Attempts were made to locate these materials in situ by comparing electron micrographs of negatively stained and sectioned cell walls with those of the residues of the extraction procedures. There are at least two chemically distinct species of carbohydrate polymers which can be extracted with strong alkali: one yielding mainly mannose and some amino acid on hydrolysis and the other yielding mannose, glucose and amino acid. The alkali-insoluble material also yielded glucose, mannose and amino acid on hydrolysis but the glucose/mannose ratio was much higher. It was shown that none of these polymers constituted a physically distinct layer in the yeast cell wall. However, there does seem to be a region at the outer surface with distinctive properties. This is not fibrillar in nature and after extraction with ethylene diamine forms a double-layered structure. Materials which react with KMnO4 to produce an electron-dense material are located throughout the wall but tend to be concentrated in the outer and inner regions. Procedures which remove this material also remove up to 80% of the mannose, 40% of the glucose and 35 % of the protein of the original wall material. It was shown that fibres do not constitute a major fraction of the normal cell wall, except possibly in the region of the bud scars but may be produced fairly readily by certain specific treatments. The classical view of the yeast cell wall with the structural integrity being maintained by a fibrous network of 1–3, 1–6 linked glucose residues is challenged and evidence to support an alternative view is presented.The results in wthis paper were presented to the University of Manchester Institute of Science and Technology by JKB in a Thesis for the degree of M.Sc. (Bowden, 1966). The authors are indebted to Miss C. Backhouse and Miss B. Murphy for help in preparing the electron micrographs.  相似文献   

19.
The pattern of volume growth of Saccharomyces cerevisiae a/alpha was determined by image cytometry for daughter cells and consecutive cycles of parent cells. An image analysis program was specially developed to measure separately the volume of bud and mother cell parts and to quantify the number of bud scars on each parent cell. All volumetric data and cell attributes (budding state, number of scars) were stored in such a way that separate volume distributions of cells or cell parts with any combination of properties--for instance, buds present on mothers with two scars or cells without scars (i.e., daughter cells) and without buds--could be obtained. By a new method called intersection analysis, the average volumes of daughter and parent cells at birth and at division could be determined for a steady-state population. These volumes compared well with those directly measured from cells synchronized by centrifugal elutriation. During synchronous growth of daughter cells, the pattern of volume increase appeared to be largely exponential. However, after bud emergence, larger volumes than those predicted by a continuous exponential increase were obtained, which confirms the reported decrease in buoyant density. The cycle times calculated from the steady-state population by applying the age distribution equation deviated from those directly obtained from the synchronized culture, probably because of inadequate scoring of bud scars. Therefore, for the construction of a volume-time diagram, we used volume measurements obtained from the steady-state population and cycle times obtained from the synchronized population. The diagram shows that after bud emergence, mother cell parts continue to grow at a smaller rate, increasing about 10% in volume during the budding period. Second-generation daughter cells, ie., cells born from parents left with two scars, were significantly smaller than first-generation daughter cells. Second- and third-generation parent cells showed a decreased volume growth rate and a shorter budding period than that of daughter cells.  相似文献   

20.
Prohibitin proteins have been implicated in cell proliferation, aging, respiratory chain assembly and the maintenance of mitochondrial integrity. The prohibitins of Saccharomyces cerevisiae, Phb1 and Phb2, have strong sequence similarity with their human counterparts prohibitin and BAP37, making yeast a good model organism in which to study prohibitin function. Both yeast and mammalian prohibitins form high-molecular-weight complexes (Phb1/2 or prohibitin/BAP37, respectively) in the inner mitochondrial membrane. Expression of prohibitins declines with senescence, both in mammalian fibroblasts and in yeast. With a total loss of prohibitins, the replicative (budding) life span of yeast is reduced, whilst the chronological life span (the survival of stationary cells over time) is relatively unaffected. This effect of prohibitin loss on the replicative life span is still apparent in the absence of an assembled respiratory chain. It also does not reflect the production of extrachromosomal ribosomal DNA circles (ERCs), a genetic instability thought to be a major cause of replicative senescence in yeast. Examination of cells containing a mitochondrially targeted green fluorescent protein indicates this shortened life span is a reflection of defective mitochondrial segregation from the mother to the daughter in the old mother cells of phb mutant strains. Old mother phb mutant cells display highly aberrant mitochondrial morphology and, frequently, a delayed segregation of mitochondria to the daughter. They often arrest growth with their last bud strongly attached and with the mitochondria adjacent to the septum between the mother and the daughter cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号