首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zymography and in situ hybridizition were used to investigate matrix metalloproteinase-2, -9 (MMP-2, -9) activities, and expression of mRNAs for MMP-2, -9 and tissue inhibitors of matrix metalloproteinases (TIMP-1, -2, -3) in the rat uterus during early pregnancy (day 1-7). The zymography results showed two forms of MMP-2 (64 and 67 kDa) in the rat uteri during early pregnancy. The 64-kDa MMP-2 activity was the highest on day 2 (P < 0.01) and higher on day 5 and 6 (P < 0.05). The 67-kDa MMP-2 activity reached the highest on day 5 and 6 (P < 0.01). The 64-kDa MMP-2 activity at the implantation sites was higher than those at interimplantation sites (P < 0.05). Furthermore, the 67 kDa MMP-2 can be converted to 64 kDa forms by incubation with p-aminophenylmercuric acetate (APMA) and trypsin in vitro. The 92-kDa MMP-9 activity was only detected on day 5 and 6 of pregnancy (P < 0.01). In situ hybridization showed that on day 1-4 of pregnancy, both MMP-2 and TIMP-2 mRNAs were evidently localized in the basal stromal cells. On day 5, MMP-2 mRNA signals were decreased in the basal stromal cells and mRNA for TIMP-2 was expressed in the epithelial cells and subepithelial stromal cells. The mRNAs for MMP-9, TIMP-1, and -3 were mainly expressed in epithelial cells on day 1-5. At the implantation site on day 6, the mRNAs for MMP-2, -9, TIMP-1, -2, and -3 were highly expressed in the primary decidual zone surrounding the implanting embryo, and in the whole decidualized stromal cells (the primary and secondary decidual zones) at the implantation site on day 7. The intensities of mRNAs for the TIMPs in decidualized stromal cells at the implantation site on day 6 and 7 were stronger than those for the MMPs. The weak mRNAs for MMP-2, -9, TIMP-1, and -3 but not TIMP-2 were also observed in the ectoplacental cone/trophoblastic cells of the implanting embryos. However, at the interimplantation sites on day 6 and 7, MMP-2, -9, TIMP-1, -2, and -3 mRNAs were weakly expressed in the epithelial cells, subepithelial stromal cells, and myometrium. The results suggested that the implanting rat embryo strongly induced MMP-2 and -9 proteins and gene expression for decidulization and embryo invasion, which were strictly controlled and balanced by the simultaneous expression of TIMP-1, -2 and -3.  相似文献   

2.
3.
4.
Niu R  Okamoto T  Iwase K  Nomura S  Mizutani S 《Life sciences》2000,66(12):1127-1137
To elucidate the implication of type IV collagenases(MMP-2 and MMP-9) and their tissue inhibitors (TIMP-1 and TIMP-2) for placental development, we quantified their levels in the conditioned media of placental organ culture and primary culture of the trophoblast as well as in the tissue extracts of placentas from different stages of gestation using specific enzyme-linked immunosorbent assays. First trimester villous tissue secreted about 10 times more pro-MMP-2 than pro-MMP-9, and pro-MMP-2 levels dramatically decreased in the second trimester. On the other hand, pro-MMP-9 levels were more than 10 times higher than those of pro-MMP-2 in the primary culture of the first trimester trophoblast, indicating the involvement of stromal cells for prominent pro-MMP-2 secretion from first trimester villous tissue described above. Levels of TIMPs, especially those of TIMP-2, remained constant throughout gestation both in the culture media and tissue extracts. Gelatin zymography revealed abundant secretion of the active form of MMP-2 as well as pro-MMP-2 from first trimester villous tissue. Western immunoblot analysis confirmed the presence of both TIMP-1 and TIMP-2 in placental tissue. These results suggest that active secretion of MMP-2 from villous tissue in the first trimester and constant production of TIMPs throughout gestation are characteristic of placental development.  相似文献   

5.
E-cadherin is a cell surface glycoprotein, which is responsible for adhesion between epithelial cells. Whether it is involved in embryo implantation is still unknown. In a mouse intrauterine horn injection model, one uterine horn in each mouse was injected with different doses of E-cadherin antibody on day 3 of pregnancy. The results showed that embryo implantation was significantly inhibited in the mice injected with 3 microg E-cadherin antibody. The mouse uteri in this group were collected on days 5, 6, and 7 of pregnancy and expressions of MMP-2 and -9 were studied. In situ hybridization and RT-PCR results showed that the expression of MMP-2 and -9 mRNAs in uteri of E-cadherin antibody treated group was increased on days 5-7. The results of gelatin zymography of MMPs showed that the activities of pro-MMP-2, MMP-2, and pro-MMP-9 were increased significantly on days 5 and 6, and pro-MMP-9 activity was increased on day 7. The present study suggested that E-cadherin was involved in embryo implantation through decreasing the expressions and activities of MMP-2 and -9.  相似文献   

6.
Matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MT1-MMP are required for basement membrane degradation in cervical carcinoma. We evaluated the expression and activity of MMPs and their inhibitors RECK and TIMP-2 in 3 human invasive cervical carcinoma cell lines. Two HPV16-positive cell lines (SiHa and CaSki) and an HPV-negative cell line (C33A) were cultured either onto a type-I collagen gel, Matrigel, or plastic, to recreate their three-dimensional growth environment and evaluate the expression of these genes using quantitative real-time PCR. We also analyzed the gelatinolytic activity of MMP-2 and MMP-9 by zymography. We found that HPV (human papillomavirus)-positive cell lines express higher levels of MMP-2, MT1-MMP, and TIMP-2 than the HPV negative cell line. In addition, MMP-9 was expressed at very low levels in both HPV-negative and HPV-positive cell lines. We also observed that the expression of the RECK gene is higher in CaSki cells, being associated with higher pro-MMP-2 activity. Furthermore, Matrigel substrate influences MMP-2 expression in both SiHa and CaSki cells. On the other hand, we found that type-I collagen gel, but not Matrigel, can enhance pro-MMP-2 activity in all cell lines. Our results suggest that the presence of HPV is related to increased expression of MMP-2, MT1-MMP, and TIMP-2, and that pro-MMP-2 activity is higher in HPV-positive than in HPV-negative cells.  相似文献   

7.
Matrix metalloproteinases (MMPs) are zinc-requiring enzymes that can degrade components of the extracellular matrix and that are implicated in tissue remodeling. Their role in the onset of menstruation in vivo has been proven; however, the expression and functions of MMPs and tissue inhibitors of metalloproteinases (TIMPs) in vascular structures are poorly understood. We determined by immunocytochemistry, using characterized monoclonal antibodies, the distribution of MMPs and of their inhibitors TIMP-1 and TIMP-2 in the endometrium during the menstrual cycle. MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1, and TIMP-2 had differing distributions and patterns of expression. In addition to the localization of MMP-9 in the epithelium and of MMP-2, MMP-3, and MMP-1 in the stromal tissue, these MMPs were detected in the vascular structures. MMP-2 (72-kDa gelatinase) and tissue inhibitors TIMP-1 and TIMP-2 were detectable in vessels throughout the cycle. In contrast, MMP-3 (stromelysin-1) was detected only in late-secretory and menstrual endometrial vessels, while MMP-9 (92-kDa gelatinase) was detected in spiral arteries during the secretory phase and in vascular structures during the midfollicular and menstrual phases. The expression of MMP-2 and MMP-9 in endometrial vessels during the proliferative and secretory periods suggests their relationship to vascular growth and angiogenesis. The pronounced expression of MMP-3 (stromelysin-1) in the vessels situated in the superficial endometrial layer during menses suggests that this metalloproteinase initiates damage in the vascular wall during menstrual breakdown. The finding of an intense expression of TIMP-1 and TIMP-2 in the vessels delineating necrotic from non-necrotic areas during menses also suggests that they could limit tissue damage, allowing regeneration of the endometrium after menses. These data indicate that, in addition to expression in epithelial cells and stromal tissue, MMPs are expressed in endometrial vascular cells in a cycle-specific pattern, consistent with regulation by steroid hormones and with specific roles in the vascular remodeling processes occurring in the endometrium during the cycle.  相似文献   

8.
Like carcinoma, endometriosis has the unique characteristics, of invasion and metastasis, though pathologically, it is a benign tumor. However, the mechanism of destruction of the surrounding tissue in endometriosis is still unclear. In this study, the expression and localization of matrix metalloproteinases (MMP)-1, -2, -3, -7, -9 and tissue inhibitors of metalloproteinases-1 (TIMP-1) were evaluated by immunohistochemistry for 20 cases and the amounts of MMP-1, TIMP-1 and MMP-1/TIMP-1 complex in the fluid of endometrioma, were analyzed by ELISA and western blotting for 20 cases, which were analyzed by immunohistochemical study. MMP-1, -2 and -9 were detected strongly in both stromal and epithelial cells and MMP-7 in the epithelial cells in the menstrual period. MMP-3 was mainly expressed in macrophage containing hemosiderin but the change of expression was not clear. TIMP-1 was intensively detected in both stromal and epithelial cells in the menstrual period but the expression decreased in other stages of the menstrual cycle. ELISA for MMP-1 also showed results similar to immunohistochemistry, suggesting that it was released to the cyst in the menstrual period when it was released to the extracellular space from the cytoplasm. The expression of TIMP-1 was not clearly changed during the menstrual cycle. From these results, it was suggested that the destruction of the surrounding matrix by endometriosis might be caused by various MMPs, which are mainly produced in stromal cells.  相似文献   

9.
10.
Tumor cell invasion and metastasis are often associated with matrix metalloproteinases (MMPs), among which MMP-2 and MMP-9 are of central importance. We previously showed that H-Ras, but not N-Ras, induced invasion of MCF10A human breast epithelial cells in which the enhanced expression of MMP-2 was involved. MMP-2 is produced as a latent pro-MMP-2 (72 kDa) to be activated resulting the 62 kDa active MMP-2. The present study investigated if H-Ras and/or N-Ras induces pro-MMP-2 activation of MCF10A cells when cultured in two-dimensional gel of type I collagen. Type I collagen induced activation of pro-MMP-2 only in H-Ras MCF10A cells but not in N-Ras MCF10A cells. Induction of active MMP-2 by type I collagen was suppressed by blocking integrin alpha2, indicating the involvement of integrin signaling in pro-MMP-2 activation. Membrane-type (MT)1-MMP and tissue inhibitor of metalloproteinase (TIMP)-2 were up-regulated by H-Ras but not by N-Ras in the type I collagen-coated gel, suggesting that H-Ras-specific up-regulation of MT1-MMP and TIMP-2 may lead to the activation of pro-MMP-2. Since acquisition of pro-MMP-2 activation can be associated with increased malignant progression, these results may help understanding the mechanisms for the cell surface matrix-degrading potential which will be crucial to the prognosis and therapy of breast cancer metastasis.  相似文献   

11.
In vivo, transforming growth factor (TGF)-beta1 and matrix metalloproteinases (MMPs) present at the site of airway injury are thought to contribute to epithelial wound repair. As TGF-beta1 can modulate MMP expression and MMPs play an important role in wound repair, we hypothesized that TGF-beta1 may enhance airway epithelial repair via MMPs secreted by epithelial cells. We evaluated the in vitro influence of TGF-beta1 on wound repair in human airway epithelial cells cultured under conditions allowing differentiation. The results showed that TGF-beta1 accelerated in vitro airway wound repair, whereas MMP inhibitors prevented this acceleration. In parallel, we examined the effect of TGF-beta1 on the expression of MMP-2 and MMP-9. TGF-beta1 induced a dramatic increase of MMP-2 expression with an increased steady-state level of MMP-2 mRNA, contrasting with a slight increase in MMP-9 expression. To confirm the role of MMP-2, we subsequently evaluated the effect of MMP-2 on in vitro airway wound repair and demonstrated that the addition of MMP-2 reproduced the acceleration of wound repair induced by TGF-beta1. These results strongly suggest that TGF-beta1 increases in vitro airway wound repair via MMP-2 upregulation. It also raises the issue of a different in vivo biological role of MMP-2 and MMP-9 depending on the cytokine microenvironment.  相似文献   

12.
13.
A rate-limiting step of tumor cell metastasis is matrix degradation by active matrix metalloproteinases (MMPs). It is known that reactive oxygen species are involved in tumor metastasis. Sustained production of H(2)O(2) by phenazine methosulfate (PMS) induced activation of pro-MMP-2 through the induction of membrane type 1-MMP (MT1-MMP) expression in HT1080 cells. MMP-2, MMP-9, and tissue inhibitor of metalloproteinase-1 and -2 levels were changed negligibly by PMS. A one time treatment with H(2)O(2) did not induce activation of MMPs. It was also demonstrated that superoxide anions and hydroxyl radicals were not related to PMS action. PMS-induced pro-MMP-2 activation was regulated by the receptor tyrosine kinases, especially the receptors of platelet-derived growth factor and vascular endothelial growth factor, and downstream on the phosphatidylinositol 3-kinase/NF-kappa B pathway but not Ras, cAMP-dependent protein kinase, protein kinase C, and mitogen-activated protein kinases. PMS did not induce pro-MMP-2 activation in T98G and NIH3T3 cells. This may be related to a low level of MT1-MMP, indicating a threshold level of MT1-MMP is important for pro-MMP-2 activation. Furthermore, PMS increased cell motility and invasion but decreased cell-cell interaction. Cell-matrix interaction was not affected by PMS.  相似文献   

14.
Cell-extracellular matrix interaction and extracellular matrix remodeling are known to be important in fetal lung development. We investigated the localization of matrix metalloproteinases (MMPs) in fetal rabbit lungs. Immunohistochemistry for type IV collagen, MMP-1, MMP-2, MMP-9, membrane type (MT) 1 MMP, and tissue inhibitor of metalloproteinase (TIMP)-2 and in situ hybridization for MMP-9 mRNA were performed. Gelatin zymography and Western blotting for MT1-MMP in lung tissue homogenates were also studied. MMP-1 and MT1-MMP were detected in epithelial cells, and MMP-2 and TIMP-2 were detected in epithelial cells and some mesenchymal cells in each stage. MMP-9 was found in epithelial cells mainly in the late stage. Gelatin zymography revealed that the ratio of active MMP-2 to latent MMP-2 increased dramatically during the course of development. MT1-MMP was detected in tissue homogenates, especially predominant in the late stage. These findings suggest that MMPs and their inhibitors may contribute to the formation of airways and alveoli in fetal lung development and that activated MMP-2 of alveolar epithelial cells may function to provide an extremely wide alveolar surface.  相似文献   

15.
Cervical cancer is the third most common cancer in women worldwide. Persistent infection with high-risk HPV types, principally HPV16 and 18 is the main risk factor for the development of this malignancy. However, the onset of invasive tumor occurs many years after initial exposure in a minority of infected women. This suggests that other factors beyond viral infection are necessary for tumor establishment and progression. Tumor progression is characterized by an increase in secretion and activation of matrix metalloproteinases (MMPs) produced by either the tumor cells themselves or tumor-associated fibroblasts or macrophages. Increased MMPs expression, including MMP-2, MMP-9 and MT1-MMP, has been observed during cervical carcinoma progression. These proteins have been associated with degradation of ECM components, tumor invasion, metastasis and recurrence. However, few studies have evaluated the interplay between HPV infection and the expression and activity of MMPs and their regulators in cervical cancer. We analyzed the effect of HPV16 oncoproteins on the expression and activity of MMP-2, MMP-9, MT1-MMP, and their inhibitors TIMP-2 and RECK in cultures of human keratinocytes. We observed that E7 expression is associated with increased pro-MMP-9 activity in the epithelial component of organotypic cultures, while E6 and E7 oncoproteins co-expression down-regulates RECK and TIMP-2 levels in organotypic and monolayers cultures. Finally, a study conducted in human cervical tissues showed a decrease in RECK expression levels in precancer and cancer lesions. Our results indicate that HPV oncoproteins promote MMPs/RECK-TIMP-2 imbalance which may be involved in HPV-associated lesions outcome.  相似文献   

16.
17.
Hypoxia not only controls organogenesis, embryogenesis, and wound repair, but also triggers tumor progression and metastasis. Matrix metalloproteinases (MMP), especially gelatinases (MMP-2, MMP-9) regulate the composition and stability of the extracellular matrix (ECM), which affects cell proliferation, migration, and differentiation. This study investigated the effect of hypoxia alone and in combination with ECM compounds and nutrition on MMP-2 and MMP-9 expression, activity, and synthesis in human lung fibroblasts and pulmonary vascular smooth muscle cells (VSMC). We also determined the expression of the tissue inhibitors of MMP (TIMP-1, -2). Cells were grown on plastic, collagen-I, collagen-IV, or gelatin and in either starving medium (0.1% serum) or growth medium (5% serum), and were subjected to normoxia or hypoxia (1% O(2)). Collagenases expression was determined by zymography. TIMP-1, -2 expression was assessed by Western blotting and RT-PCR. Depending on serum concentration human lung cells expressed pro-MMP-2 on all substrates. Hypoxia increased pro-MMP-2 expression, on collagen type I or type IV further via Erk1/2 and p38 MAP kinase signaling. MMP-9 was only expressed when cells were grown on collagen type IV and increased with serum concentration, and by hypoxia. TIMP-1 expression was only expressed when cells were grown on collagen type I and was significantly increased by hypoxia, while TIMP-2 expression was unchanged. We demonstrated that the hypoxia, ECM composition, and nutrition, rather than one of these conditions alone, modulate the expression and activity of collagenases and their inhibitors in primary human lung fibroblasts.  相似文献   

18.
Flavonoids have been proposed to act as chemopreventive agents in numerous epidemiological studies and have been shown to inhibit angiogenesis and proliferation of tumor cells and endothelial cells in vitro. Angiogenesis requires tightly controlled extracellular matrix degradation mediated by extracellular proteolytic enzymes including matrix metalloproteinases (MMPs) and serine proteases, in particular, the urokinase-type plasminogen activator (uPA)-plasmin system. In this study, we have investigated the antiangiogenic mechanism of the flavonoids, genistein, apigenin, and 3-hydroxyflavone in a human umbilical vein endothelial cell (HUVEC) model. The stimulation of serum-starved HUVECs with vascular endothelial growth factor/basic fibroblast growth factor (VEGF/bFGF) caused marked increase in MMP-1 production and induced the pro-MMP-2 activation accompanied by the increase in MT1-MMP expression. However, pretreatment with flavonoids before VEGF/bFGF stimulation completely abolished the VEGF/bFGF-stimulated increase in MMP-1 and MT1-MMP expression and pro-MMP-2 activation. Genistein blocked VEGF/bFGF-stimulated increase in TIMP-1 expression and decrease in TIMP-2 expression. Apigenin and 3-hydroxyflavone further decreased TIMP-1 expression below basal level and completely abolished TIMP-2 expression. VEGF and bFGF stimulation also significantly induced uPA expression, most strikingly the level of 33 kDa uPA, and increased the expression of PA inhibitor (PAI)-1. Genistein, apigenin, and 3-hydroxyflavone effectively blocked the generation of 33 kDa uPA, and further decreased the activity of the 55 kDa uPA and the expression of PAI-1 below the basal level. In conclusion, these data suggest that genistein, apigenin, and 3-hydroxyflavone inhibit in vitro angiogenesis, in part via preventing VEGF/bFGF-induced MMP-1 and uPA expression and the activation of pro-MMP-2, and via modulating their inhibitors, TIMP-1 and -2, and PAI-1.  相似文献   

19.
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is one representative of the natural matrix metalloproteinase (MMP) inhibitor family, encompassing four members. It inhibits all MMPs, except several MT-MMPs, and a disintegrin with a metalloproteinase domain (ADAM)-10 with Kis < nM. Unexpectedly, its upregulation was associated to poor clinical outcome for several cancer varieties. Such finding might be related to the growth-promoting and survival activities of TIMP-1 for normal and cancer cells. In most cases, such properties are MMP-independent and binding of TIMP-1 to an unknown receptor system can trigger JAK (or FAK)/PI3 kinase/Akt/bad-bclX2 (erythroid, myeloid, epithelial cell lines) or Ras/Raf1/FAK (osteosarcoma cell line) signaling pathways. The relationship between viral infection and TIMP-1 expression is here underlined. Thus, TIMP-1 might display a dual influence on tumor progression; either beneficial by inhibiting MMPs as MMP-9 and by impairing angiogenesis or detrimental by favoring cancer cells growth or survival. We consider that the proMMP-9/TIMP-1 balance is of critical importance in early events of tumor progression, and might show promise as diagnostic and prognostic marker of malignancy.  相似文献   

20.
The activity of matrix metalloproteinases (MMPs) specifies the ability of the trophoblast cell to degrade extracellular matrix (ECM) substrates. Usually the process of normal human placentation involves a coordinated interaction between the fetal-derived trophoblast cells and their microenvironment in the uterus. In this study, the effects of ECM proteins on the expression of MMP-2, -9, and -14 (membrane-type MMP-1); and the production of tissue inhibitors of metalloproteinase (TIMP) types -1, -2, and -3 have been investigated. Cytotrophoblast cells at 9 or 10 wk of gestation were cultured on various ECM coated dishes under serum-free conditions. Gelatin zymography analysis showed that cells grown on fibronectin (FN), laminin (LN), and vitronectin (VN) secreted more MMP-9 (about 1.5- to 3-fold more) than cells cultured on collagen I (Col I), whereas the secretion of MMP-9 by cells cultured on collagen IV (Col IV) was only half that by the cells on Col I. Northern Blot analysis gave the same results as zymography, indicating that expression of the MMP-9 gene in cytotrophoblast cells can be affected by matrix proteins. There was no significant difference in the expression of MMP-2 either at protein or mRNA levels among the cells cultured on the different matrix substrates. The expression of MMP-14 was regulated in a manner similar to that of MMP-2. Using ELISA, we detected higher levels of TIMP-1 in the culture medium of cells grown on VN, LN, and FN compared with that grown on Col I. But the expression of TIMP-3 mRNA was remarkably inhibited by VN, and ECM proteins had no effect on TIMP-1 and TIMP-2 mRNA expression. It was also observed that cultured cytotrophoblast cells expressed the corresponding receptors for the tested matrix proteins, such as integrins alpha(1), alpha(5), alpha(6), beta(1), and beta(4). Furthermore, the adhesiveness of cytotrophoblast cells on Col I, Col IV, FN, and LN was increased by 62%, 45%, 21%, and 22%, respectively, when compared with adhesiveness on VN. Isolated cytotrophoblast cells remained stationary when cultured on dishes coated with Col I and Col IV, but they assumed a more motile morphology and aggregated into a network when cultured on LN and VN. These data indicate that human trophoblast cells interact with their microenvironment to control their behavior and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号