首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of the neurotransmitter amino acids glutamate, aspartate, and GABA were determined in different brain regions during ischemia and post-ischemic recirculation periods using the unilateral carotid artery occlusion model of stroke in gerbils. The levels of glutamate, aspartate and GABA in ischemic hemisphere were increased significantly by 10 min of ischemia and later declined with time. Reperfusion for 30 min following 10 min. of ischemia further enhanced the levels of glutamate and aspartate. Increase in GABA levels were found during early periods of reperfusion. Regional variations in the changes of amino acids' levels were noticed following ischemia. Hippocampus showed the highest increase in glutamate levels followed by striatum and cerebral cortex. Aspartate levels in striatum and hippocampus increased during 10 min ischemia (46% and 30%) and recirculation (70% and 79%), whereas in cerebral cortex the levels were doubled only during recirculation. Ischemia induced elevations of GABA levels were observed in cerebral cortex (68%) and in hippocampus (30%), and the levels were normalized during recirculation. No changes in GABA levels were found in striatum. It is suggested that the large increase in the levels of excitatory neurotransmitter amino acids in brain regions specially in hippocampus during ischemia and recirculation may be one of the causal factors for ischemic brain damage.  相似文献   

2.
The effects of free radical generating systems on basal and ischemia/reperfusion-evoked release of amino acids into cortical superfusates was examined in the rat using the cortical cup technique. Xanthine oxidase plus xanthine significantly enhanced GABA levels 358 fold over controls during 20 min of four vessel occlusion. Glutamate and phosphoethanolamine release following reperfusion were also elevated. Prostaglandin synthase plus arachidonic acid significantly enhanced the ischemia-evoked release of all amino acids (aspartate 360 fold; glutamate 433 fold; glycine 6 fold; GABA 689 fold; phosphoethanolamine 69 fold) and increased the pre-ischemic levels of glutamate, glycine and phosphoethanolamine. Administration of H2O2 plus ferrous sulfate significantly elevated both pre-ischemic amino acid release and ischemia-evoked release. A role for free radical generating systems in the development of ischemic injury is supported by the ability of superoxide dismutase plus catalase to reduce ischemia-evoked amino acid efflux into cortical superfusates. Thus, the species of free radical produced, as well as the amount generated, may alter the pattern of amino acid release under both ischemic and non-ischemic conditions.  相似文献   

3.
Excitatory amino acid release and neurotoxicity in the ischemic brain may be reduced by endogenously released adenosine which can modulate both glutamate or aspartate release and depress neuronal excitability. The present study reports on the patterns of release of glutamate and aspartate; the inhibitory amino acids GABA and glycine; and of the purine catabolites adenosine and inosine from the rat parietal cerebral cortex during 20 and 60 min periods of middle cerebral artery (MCA) occlusion followed by reperfusion. Aspartate and glutamate efflux into cortical superfusates rose steadily during the period of ischemia and tended to increase even further during the subsequent 40 min of reperfusion. GABA release rose during ischemia and declined during reperfusion, whereas glycine efflux was relatively unchanged during both ischemia and reperfusion. Adenosine levels in cortical superfusates rose rapidly at the onset of ischemia and then declined even though MCA occlusion was continued. Recovery to pre-occulusion levels was rapid following reperfusion. Inosine efflux also increased rapidly, but its decline during reperfusion was slower than that of adenosine.  相似文献   

4.

Objective

Treadmill pre-training can ameliorate blood brain barrier (BBB) dysfunction in ischemia-reperfusion injury, however, its role in ischemic brain edema remains unclear. This study assessed the neuroprotective effects induced by treadmill pre-training, particularly on brain edema in transient middle cerebral artery occluded model.

Methods

Transient middle cerebral artery occlusion to induce stroke was performed on rats after 2 weeks of treadmill pre-training. Magnetic resonance imaging (MRI) was used to evaluate the dynamic impairment of cerebral edema after ischemia-reperfusion injury. In addition, measurements of wet and dry brain weight, Evans Blue assay and Garcia scores were performed to investigate the cerebral water content, BBB permeability and neurologic deficit, respectively. Moreover, during ischemia-reperfusion injury, the expression of Aquaporin 4 (AQP4) was detected using immunofluorescence and Western bloting analyses.

Results

Treadmill pre-training improved the relative apparent diffusion coefficient (rADC) loss in the ipsilateral cortex and striatum at 1 hour and 2.5 hours after cerebral ischemia. In the treadmill pre-training group, T2W1 values of the ipsilateral cortex and striatum increased less at 7.5 hours, 1 day, and 2 days after stroke while the brain water content decreased at 2 days after ischemia. Regarding the BBB permeability, the semi-quantitative amount of contrast agent leakage of treadmill pre-training group significantly decreased. Less Evans Blue exudation was also observed in treadmill pre-training group at 2 days after stroke. In addition, treadmill pre-training mitigated the Garcia score deficits at 2 days after stroke. Immunofluorescence staining and Western blotting results showed a significant decrease in the expression of AQP4 after treadmill ischemia following pre-training.

Conclusions

Treadmill pre-training may reduce cerebral edema and BBB dysfunction during cerebral ischemia/reperfusion injury via the down-regulation of AQP4.  相似文献   

5.

Objectives

δ-opioid receptor (DOR) activation reduced brain ischemic infarction and attenuated neurological deficits, while DOR inhibition aggravated the ischemic damage. The underlying mechanisms are, however, not well understood yet. In this work, we asked if DOR activation protects the brain against ischemic injury through a brain-derived neurotrophic factor (BDNF) -TrkB pathway.

Methods

We exposed adult male Sprague-Dawley rats to focal cerebral ischemia, which was induced by middle cerebral artery occlusion (MCAO). DOR agonist TAN-67 (60 nmol), antagonist Naltrindole (100 nmol) or artificial cerebral spinal fluid was injected into the lateral cerebroventricle 30 min before MCAO. Besides the detection of ischemic injury, the expression of BDNF, full-length and truncated TrkB, total CREB, p-CREB, p-ATF and CD11b was detected by Western blot and fluorescence immunostaining.

Results

DOR activation with TAN-67 significantly reduced the ischemic volume and largely reversed the decrease in full-length TrkB protein expression in the ischemic cortex and striatum without any appreciable change in cerebral blood flow, while the DOR antagonist Naltrindole aggregated the ischemic injury. However, the level of BDNF remained unchanged in the cortex, striatum and hippocampus at 24 hours after MCAO and did not change in response to DOR activation or inhibition. MCAO decreased both total CREB and pCREB in the striatum, but not in the cortex, while DOR inhibition promoted a further decrease in total and phosphorylated CREB in the striatum and decreased pATF-1 expression in the cortex. In addition, MCAO increased C11b expression in the cortex, striatum and hippocampus, and DOR activation specifically attenuated the ischemic increase in the cortex but not in the striatum and hippocampus.

Conclusions

DOR activation rescues TrkB signaling by reversing ischemia/reperfusion induced decrease in the full-length TrkB receptor and reduces brain injury in ischemia/reperfusion  相似文献   

6.
The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.) significantly reduced total infarct volumes: by 70% after 90 min MCAO and by 95% after 60 min MCAO, compared with saline-treated ischemic group. The number of degenerating neurons in hippocampal CA1 region was also markedly lower in aminoguanidine-treated ischemic groups compared to ischemic groups without AG-treatment. The number of iNOS-positive cells significantly increased in the hippocampal CA1 region of ischemic animals, whereas it was reduced in AG-treated rats. Our findings demonstrate that aminoguanidine decreases ischemic brain damage and improves neurological recovery after transient focal ischemia induced by MCAO.  相似文献   

7.
The release of glutamate and GABA in response to K+ depolarization was determined for tissue prisms prepared from brain subregions removed from rats following 30 min of forebrain ischemia or recirculation periods up to 24 h. There were statistically significant effects of this treatment on release of both amino acids from samples of the dorsolateral striatum, an area developing selective neuronal degeneration. However, for at least the first 3 h of recirculation the calcium-dependent and calcium-independent release of both amino acids in this region were similar to pre-ischemic values. Differences were observed under some conditions at longer recirculation times. In particular there was a decrease in calcium-dependent GABA release at 24 h of recirculation and a trend towards increased release of glutamate at 6 h of recirculation and beyond. No statistically significant differences were seen in samples from the paramedian neocortex, a region resistant to post-ischemic damage. These results suggest that changes in the ability to release glutamate and GABA in response to stimulation are not necessary for the development of neurodegeneration in the striatum but rather that release of these amino acids may be modified as a result of the degenerative process.  相似文献   

8.
The present study is to determine the effect of mild hypothermia (MHT) on the release of glutamate and glycine in rats subjected to middle cerebral artery occlusion and reperfusion. The relationship between amino acid efflux and brain infarct volume was compared in different periods during MHT. Reversible middle cerebral artery occlusion was performed in Sprague-Dawley rats using a suture model. The rats were divided into four groups including (1) MHT during ischemia (MHTi), (2) MHT during reperfusion (MHTr), (3) MHT during ischemia and reperfusion (MHTi + r), and (4) a normothermic group (NT). Extracellular concentrations of glutamate and glycine in the cortex and striatum were monitored using in vivo microdialysis and analyzed using high-performance liquid chromatography. Morphometric measurements for infarct volume were performed using 2,3,5-triphenyltetrazolium chloride staining. The increase of glutamate and glycine in the ischemic cortex of the MHTi and MHTi + r rats during ischemic and reperfusion periods was significantly less than that of the NT rats (p < 0.05). However, there was no statistical difference among these groups in the peak of glutamate and glycine release in the striatum. Infarct volume paralleled the release of glutamate and glycine. The protective effect of MHTi and MHTi + r in reducing ischemia and reperfusion brain injury may be due to the attenuation of both glutamate and glycine release during ischemia and reperfusion.  相似文献   

9.
Blood glutamate scavenging is a novel and attractive protecting strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. Glutamate oxaloacetate transaminase 1 (GOT1) activation by means of oxaloacetate administration has been used to reduce the glutamate concentration in the blood. However, the protective effect of the administration of the recombinant GOT1 (rGOT1) enzyme has not been yet addressed in cerebral ischemia. The aim of this study was to analyze the protective effect of an effective dose of oxaloacetate and the human rGOT1 alone and in combination with a non-effective dose of oxaloacetate in an animal model of ischemic stroke. Sixty rats were subjected to a transient middle cerebral artery occlusion (MCAO). Infarct volumes were assessed by magnetic resonance imaging (MRI) before treatment administration, and 24 h and 7 days after MCAO. Brain glutamate levels were determined by in vivo MR spectroscopy (MRS) during artery occlusion (80 min) and reperfusion (180 min). GOT activity and serum glutamate concentration were analyzed during the occlusion and reperfusion period. Somatosensory test was performed at baseline and 7 days after MCAO. The three treatments tested induced a reduction in serum and brain glutamate levels, resulting in a reduction in infarct volume and sensorimotor deficit. Protective effect of rGOT1 supplemented with oxaloacetate at 7 days persists even when treatment was delayed until at least 2 h after onset of ischemia. In conclusion, our findings indicate that the combination of human rGOT1 with low doses of oxaloacetate seems to be a successful approach for stroke treatment  相似文献   

10.
We have previously described a marked attenuation of postischemic striatal neuronal death by prior substantia nigra (SN) lesioning. The present study was carried out to evaluate whether the protective effect of the lesion involves changes in the degree of local cerebral blood flow (ICBF) reduction, energy metabolite depletion, or alterations in the extracellular release of striatal dopamine (DA), glutamate (Glu), or gamma-aminobutyric acid (GABA). Control and SN-lesioned rats were subjected to 20 min of forebrain ischemia by four-vessel occlusion combined with systemic hypotension. Levels of ICBF, as measured by the autoradiographic method, and energy metabolites were uniformly reduced in both the ipsi- and contralateral striata at the end of the ischemic period, a finding implying that the lesion did not affect the severity of the ischemic insult itself. Extracellular neurotransmitter levels were measured by microdialysis; the perfusate was collected before, during, and after ischemia. An approximately 500-fold increase in DA content, a 7-fold increase in Glu content, and a 5-fold increase in GABA content were observed during ischemia in nonlesioned animals. These levels gradually returned to baseline by 30 min of reperfusion. In SN-lesioned rats, the release of DA was completely prevented, the release of GABA was not affected, and the release of Glu was partially attenuated. However, excessive extracellular Glu concentrations were still attained, which are potentially toxic. This, taken together with the previous neuropathological findings, suggests that excessive release of DA is important for the development of ischemic cell damage in the striatum.  相似文献   

11.
目的:探讨毛蕊异黄酮抗脑缺血再灌注损伤的作用是否与抑制calpain-1的表达有关。方法:将SD大鼠随机分为假手术组、模型组以及药物组,采用线栓法建立大鼠大脑中动脉阻断(MCAO)模型,于缺血再灌注前30 min腹腔注射给予20 mg/kg毛蕊异黄酮或等体积的溶剂。再灌注24 h后,行神经功能学评分、脑梗死面积以及神经元凋亡检测;再灌注12 h、24 h时,采用免疫组化和蛋白印迹技术检测大鼠脑皮层calpain-1的表达。结果:与假手术组大鼠比较,MCAO模型组大鼠再灌注24 h后神经功能学评分、梗死面积、神经元凋亡率及calpain-1的表达均明显升高(P0.05),而毛蕊异黄酮能够降低模型组大鼠再灌注24 h后神经功能学评分、梗死面积、神经元凋亡率以及calpain-1的表达(P0.05)。结论:毛蕊异黄酮可能通过抑制calpain-1的表达发挥抗脑缺血再灌注损伤作用。  相似文献   

12.
Transient focal cerebral ischemia leads to extensive excitotoxic neuronal damage in rat cerebral cortex. Efficient reuptake of the released glutamate is essential for preventing glutamate receptor over-stimulation and neuronal death. Present study evaluated the expression of the glial (GLT-1 and GLAST) and neuronal (EAAC1) subtypes of glutamate transporters after transient middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia in rats. Between 24h to 72h of reperfusion after transient MCAO, GLT-1 and EAAC1 protein levels decreased significantly (by 36% to 56%, p < 0.05) in the ipsilateral cortex compared with the contralateral cortex or sham control. GLT-1 and EAAC1 mRNA expression also decreased in the ipsilateral cortex of ischemic rats at both 24h and 72h of reperfusion, compared with the contralateral cortex or sham control. Glutamate transporter down-regulation may disrupt the normal clearance of the synaptically-released glutamate and may contribute to the ischemic neuronal death.  相似文献   

13.
The synergistic scavenger effects of selenium and melatonin collectively we called Se-Mel was studied on the prevention of neuronal injury induced by ischemia/reperfusion. Male Wistar rats were treated with sodium selenite (0.1 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) 30 min before the middle carotid artery occlusion (MCAO) and immediately after MCAO to male Wistar rats and was continued for 3 days once daily at the interval of 24 h. Behavioral activity (spontaneous motor activity and motor deficit) was improved in Se-Mel-treated rats as compared to MCAO group rats. The level of glutathione and the activity of antioxidant enzymes was depleted significantly while the content of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide radical (NO·) was increased significantly in MCAO group. Systemic administration of Se-Mel ameliorated oxidative stress and improves ischemia/reperfusion-induced focal cerebral ischemia. Se-Mel also inhibited inducible nitric oxide synthase expression in Se-Mel+MCAO group as compared to MCAO group rats. Thus, Se-Mel has shown an excellent neuroprotective effect against ischemia/reperfusion injury through an anti-ischemic pathway. In conclusion, we demonstrated that the pretreatment with Se-Mel at the onset of reperfusion, reduced post-ischemic damage, and improved neurological outcome following transient focal cerebral ischemia in male Wistar rat.  相似文献   

14.
The excitatory amino acids (EAA) like glutamate, aspartate and inhibitory neurotransmitter GABA (gama amino butyric acid) play an important role in the pathophysiology of cerebral ischemia. The objective of the present study is to elucidate the role of endogenous GABA against EAA release in different regions during ischemia. The transient focal ischemia was induced in rats by using middle cerebral artery occlusion model (MCAo). The results indicate gradual elevation of brain glutamate, aspartate and GABA level at different brain regions and attained peak level at 72 h of ischemic reperfusion (IR). At 168 h of IR the EAA levels declined to base line but GABA level was found to be still elevated. The biochemical analysis shows the depleted brain ATP, Na+K+ATPase content and triphasic response of glutathione activity. It can be concluded that time dependent variation in the EAA and GABA release, endogenous GABA can be neuroprotective and earlier restoration of energy deprivation is essential to prevent further neurodegeneration. To have efficient treatment in ischemic condition, multiple approaches like energy supply, antagonism of EAA, controlling calcium function are essential.  相似文献   

15.

Aim

Aquaporin-4(AQP4) expression in the brain with relation to edema formation following focal cerebral ischemia was investigated. Studies have shown that brain edema is one of the significant factors in worsening stroke outcomes. While many mechanisms may aggravate brain injury, one such potential system may involve AQP4 up regulation in stroke patients that could result in increased edema formation. Post administration of melatonin following ischemic stroke reduces AQP4 mediated brain edema and confers neuroprotection.

Materials and methods

An in-silico approach was undertaken to confirm effective melatonin-AQP4 binding. Rats were treated with 5 mg/kg, i.p. melatonin or placebo at 30 min prior, 60 min post and 120 min post 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. Rats were evaluated for battery of neurological and motor function tests just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, apoptosis study and western blot experiments.

Key findings

Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde (MDA) were also found to be significantly reduced in ischemic brain regions in treated animals. Melatonin potentiated intrinsic antioxidant status, inhibited acid mediated rise in intracellular calcium levels, decreased apoptotic cell death and also markedly inhibited protein kinase C (PKC) influenced AQP4 expression in the cerebral cortex and dorsal striatum.

Significance

Melatonin confers neuroprotection by protein kinase C mediated AQP4 inhibition in ischemic stroke.  相似文献   

16.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

17.
We evaluated whether regional differences in the magnitude of glutamate, gamma-aminobutyric acid (GABA), and glycine release could explain why some regions are vulnerable to ischemia whereas others are spared. By means of the microdialysis technique, the temporal profile of ischemia-induced changes in extracellular levels of glutamate, GABA, and glycine was compared in regions that demonstrate differing susceptibilities to a 10- and 20-min ischemic insult (dorsal hippocampus, anterior thalamus, somatosensory cortex, and dorsolateral striatum). The degree of ischemia (as established by local cerebral blood flow reduction) and the magnitude of histopathological neuronal damage were also evaluated in these regions. The blood flow reduction was severe and uniform in all regions; however, the histopathological outcome illustrated a different pattern. Whereas the CA1 sector of the hippocampus was severely damaged, the thalamus and cortex were relatively spared from both 10 and 20 min of ischemia. Striatal neurons were resistant to a 10-min insult but severely damaged after 20 min of ischemia. Ischemia-induced increase in glutamate and GABA content were of a similar magnitude and temporal profile in all four brain regions. A uniform increase in extracellular glycine levels was also observed in all four brain structures. The postischemic response, however, was different. Glycine levels remained twofold higher than baseline in the hippocampus but fell to baseline in the cortex and thalamus after both 10- and 20-min insults. In the striatum, glycine levels returned to baseline after 10 min of ischemia but remained relatively high after a 20-min insult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Release of the excitotoxic amino acid, glutamate, into the extracellular space during ischemia/reperfusion contributes to neuronal injury and death. To gain insights into the signal transduction pathways involved in glutamate release we examined the time course of changes in enzyme levels and activities of cPLA2, PKC and ERKs in the rat cerebral cortex after four vessel (4VO) ischemia followed by reperfusion. Measurement both by enzymatic assay and Western blot analysis showed significant increases in the activity and protein levels of cPLA2 during 10–20 min of ischemia. Activity remained elevated at 10 min and 20 min of reperfusion, whereas cPLA levels had returned to base line levels after 20 min of reperfusion. PKC activity increased significantly in the particulate, but not in the cytosolic, fractions both during ischemia and reperfusion. Increases in PKC levels were recorded in the particulate fraction during ischemia and reperfusion, and in the cytosolic fraction during ischemia. Western blot analysis with a phosphospecific antibody for characterization of MAPK (ERKs) activation revealed significantly increased phosphorylation of ERK1, and ERK2 in the particulate fraction, of ERK2 in the cytosolic fraction, during ischemia and of both enzymes in the particulate and cytosolic fractions after 10 min of reperfusion. The relevance of the results to glutamate release is discussed.  相似文献   

19.
Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12 h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.  相似文献   

20.
Insulin plays a neuroprotectant role in the brain and spinal cord during ischemia. However, studies have shown insulin to increase the sensitivity of cultured cortical cells to glutamate toxicity. The present study looked at the relationship between topically administered insulin (1 mIU insulin/ml and 100 mIU insulin/ml) during a four-vessel model of global ischemia and the accumulation of amino acids, especially glutamate, from the ischemic rat cerebral cortex. The lower dose of insulin was found to attenuate the release of excitotoxic and other amino acids from the cortex in ischemia/reperfusion. This may occur because insulin increases glucose availability to glial cells resulting in maintenance of glycolysis and ionic pumps that can reduce glutamate release and maintain uptake during ischemia/reperfusion. The higher dose of insulin, which significantly increased the amount of aspartate, glutamate, taurine, and GABA during reperfusion, may act to stimulate the amount of glycogen stored in astrocytes, reducing the availability of glucose for metabolic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号