首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
The structural peculiarities of the most widespread oxysterols, the products of oxidative transformations of cholesterol are discussed. The transformations proceed with the participation of enzymatic systems of the body or as a result of various nonenzymatic reactions. The pathways of their formation from cholesterol are also considered. The role of oxysterols in the maintenance of cholesterol homeostasis and in the development of atherosclerosis is reviewed. The possibility of using oxysterols as markers of pathological processes is demonstrated.  相似文献   

6.
The structural peculiarities of the most widespread oxysterols, the products of oxidative transformations of cholesterol are discussed. The transformations proceed with the participation of enzymatic systems of the body or as a result of various nonenzymatic reactions. The pathways of their formation from cholesterol are also considered. The role of oxysterols in the maintenance of cholesterol homeostasis and in the development of atherosclerosis is reviewed. The possibility of using oxysterols as markers of pathological processes is demonstrated.  相似文献   

7.
Oxysterols, cholesterol homeostasis, and Alzheimer disease   总被引:5,自引:2,他引:3  
Aberrant cholesterol metabolism has been implicated in Alzheimer disease (AD) and other neurological disorders. Oxysterols and other cholesterol oxidation products are effective ligands of liver X activated receptor (LXR) nuclear receptors, major regulators of genes subserving cholesterol homeostasis. LXR receptors act as molecular sensors of cellular cholesterol concentrations and effectors of tissue cholesterol reduction. Following their interaction with oxysterols, activation of LXRs induces the expression of ATP-binding cassette, sub-family A member 1, a pivotal modulator of cholesterol efflux. The relative solubility of oxysterols facilitates lipid flux among brain compartments and egress across the blood-brain barrier. Oxysterol-mediated LXR activation induces local apoE biosynthesis (predominantly in astrocytes) further enhancing cholesterol re-distribution and removal. Activated LXRs invoke additional neuroprotective mechanisms, including induction of genes governing bile acid synthesis (sterol elimination pathway), apolipoprotein elaboration, and amyloid precursor protein processing. The latter translates into attenuated beta-amyloid production that may ameliorate amyloidogenic neurotoxicity in AD brain. Stress-induced up-regulation of the heme-degrading enzyme, heme oxygenase-1 in AD-affected astroglia may impact central lipid homeostasis by promoting the oxidation of cholesterol to a host of oxysterol intermediates. Synthetic oxysterol-mimetic drugs that activate LXR receptors within the CNS may provide novel therapeutics for management of AD and other neurological afflictions characterized by deranged tissue cholesterol homeostasis.  相似文献   

8.
9.
《Free radical research》2013,47(11):881-893
Abstract

Oxysterols are oxidized species of cholesterol coming from exogenous (e.g. dietary) and endogenous (in vivo) sources. They play critical roles in normal physiologic functions such as regulation of cellular cholesterol homeostasis. Most of biological effects are mediated by interaction with nuclear receptor LXRα, highly expressed in the liver as well as in many other tissues. Such interaction participates in the regulation of whole-body cholesterol metabolism, by acting as “lipid sensors”. Moreover, it seems that oxysterols are also suspected to play key roles in several pathologies, including cardiovascular and inflammatory disease, cancer, and neurodegeneration. Growing evidence suggests that oxysterols may contribute to liver injury in non-alcoholic fatty liver disease. The present review focuses on the current status of knowledge on oxysterols’ biological role, with an emphasis on LXR signaling and oxysterols’ physiopathological relevance in NAFLD, suggesting new pharmacological development that needs to be addressed in the near future.  相似文献   

10.
11.
Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work by using molecular-dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayers to examine the combined effects of 25-HC and cholesterol in the same bilayer. 25-HC causes larger changes in membrane structure when added to cholesterol-containing membranes than when added to cholesterol-free membranes. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and thus increasing its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These effects provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through modulation of cholesterol availability.  相似文献   

12.
13.
Oxidized analogs of cholesterol (oxysterols) are produced through both enzymatic and non-enzymatic pathways and have been shown to perturb membrane properties in vitro and in vivo. In the present study, the membrane behavior of two naturally occurring oxysterols, 25-hydroxycholesterol and 7-ketocholesterol, was examined in two model systems. The presence of an additional oxygen moiety was found to alter membrane properties compared to native cholesterol and to each other in lipid monolayers, composed of either pure sterol or sterol–glycerophospholipid and sterol–sphingomyelin binary films, as well as in mixed multilamellar vesicles. The ability of oxysterols to condense phosphatidylcholine and sphingomyelin films, their capacity to cause changes in in-plane elasticity moduli, and their propensity to form detergent-resistant membrane domains were all found to be dependant on the location of the oxygen functionality in the oxysterol, the chemical nature of the phospholipid in the model systems, and the oxysterol/phospholipid ratio in the membrane. The findings described in this study with respect to their biophysical/biophysiological implications provide additional insight into the activity of cytotoxic oxysterols in model membranes.  相似文献   

14.
Oxysterols are oxygenated derivatives of cholesterol that are intermediates in cholesterol excretion pathways. They may also be regarded as transport forms of cholesterol and introduction of an additional hydroxyl group facilitates flux of cholesterol across cell membranes and the blood-brain barrier. According to current concepts, oxysterols are also mediating a number of cholesterol-induced metabolic effects. The recent discovery of nuclear receptors with an affinity for oxysterols has given support to this concept. Nuclear receptors such as liver X receptor alpha do have a role in cholesterol homeostasis, but there is still only indirect evidence that oxysterols are the physiological ligands. In this overview we report some recent advancements in our knowledge about the origin and metabolic fate of the quantitatively most important oxysterols occurring in the circulation. In addition, we discuss the possibility that some of these oxysterols may activate liver X receptors and regulate cholesterol homeostasis.  相似文献   

15.
PURPOSE OF REVIEW: Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS: According to their biophysical properties, which can be distinct from those of cholesterol, oxysterols can promote or inhibit the formation of membrane microdomains or lipid rafts. Oxysterols that inhibit raft formation are cytotoxic. The stereo-specific binding of cholesterol to sterol-sensing domains in cholesterol homeostatic pathways is not duplicated by oxysterols, and some oxysterols are poor substrates for the pathways that detoxify cells of excess cholesterol. The cytotoxic roles of oxysterols are, at least partly, due to a direct physical effect on membranes involved in cholesterol-induced cell apoptosis and raft mediated cell signaling. Oxysterols regulate cellular functions by binding to oxysterol binding protein and oxysterol binding protein-related proteins. Oxysterol binding protein is a sterol-dependent scaffolding protein that regulates the extracellular signal-regulated kinase signaling pathway. According to a recently solved structure for a yeast oxysterol binding protein-related protein, Osh4, some members of this large family of proteins are likely sterol transporters. SUMMARY: Given the association of some oxysterols with atherosclerosis, it is important to identify the mechanisms by which their association with cell membranes and intracellular proteins controls membrane structure and properties and intracellular signaling and metabolism. Studies on oxysterol binding protein and oxysterol binding protein-related proteins should lead to new understandings about sterol-regulated signal transduction and membrane trafficking pathways in cells.  相似文献   

16.
Cellular cholesterol homeostasis is maintained through coordinated regulation of cholesterol synthesis, degradation, and secretion. Nuclear receptors for oxygenated cholesterol derivatives (oxysterols) are known to play key roles in the regulation of cholesterol homeostasis. We recently identified a sulfated oxysterol, 5-cholesten-3beta,25-diol 3-sulfate (25HC3S), that is localized to liver nuclei. The present study reports a biosynthetic pathway for 25HC3S in hepatocytes. Assays using mitochondria isolated from rats and sterol 27-hydroxylase (Cyp27A1) gene knockout mice indicated that 25-hydroxycholesterol (25HC) is synthesized by CYP27A1. Incubation of cholesterol or 25HC with mitochondrial and cytosolic fractions in the presence of 3'-phosphoadenosyl 5'-phosphosulfate resulted in the synthesis of 25HC3S. Real-time RT-PCR and Western blot analysis showed the presence of insulin-regulated hydroxycholesterol sulfotransferase 2B1b (SULT2B1b) in hepatocytes. 25HC3S, but not 25HC, decreased SULT2B1b mRNA and protein levels. Specific small interfering RNA decreased SULT2B1b mRNA, protein, and activity levels. These findings demonstrate that mitochondria synthesize 25HC, which is subsequently 3beta-sulfated to form 25HC3S.  相似文献   

17.
Certain oxysterols, when added to cultured cells, are potent regulators of cholesterol homeostasis, decreasing cholesterol synthesis and uptake and increasing cholesterol efflux. However, very little is known about whether or not endogenous oxysterol(s) plays a significant role in cholesterol homeostasis. 24(S),25-Epoxycholesterol (24,25EC) is unique among oxysterols in that it is produced in a shunt of the mevalonate pathway which also produces cholesterol. We investigated the role of endogenously produced 24,25EC using a novel strategy of overexpressing the enzyme 2,3-oxidosqualene cyclase in Chinese hamster ovary cells to selectively inhibit the synthesis of this oxysterol. First, loss of 24,25EC decreased expression of the LXR target gene, ABCA1, substantiating its role as an endogenous ligand for LXR. Second, loss of 24,25EC increased acute cholesterol synthesis, which was rationalized by a concomitant increase in HMG-CoA reductase gene expression at the level of SREBP-2 processing. Therefore, in the absence of 24,25EC, fine-tuning of the acute regulation of cholesterol homeostasis is lost, supporting the hypothesis that 24,25EC functions to protect the cell against the accumulation of newly synthesized cholesterol.  相似文献   

18.
B Luu  C Moog 《Biochimie》1991,73(10):1317-1320
To improve the understanding of the various biological activities of oxysterols (oxygenated derivatives of cholesterol), studies of their physicochemical properties have been undertaken. Oxysterols modify membrane dynamic properties which consequently trigger several biological effects. Despite the presence of at least one oxygenated group in addition to the C3 beta-hydroxyl, oxysterols insert perfectly into the lipidic bilayer of the membrane inducing a condensing effect similar to, but less potent than, that of cholesterol. In biological membranes oxysterols probably interact with membrane components as they are not easily exchanged after their incorporation into the cell membrane. These lipid-protein interactions are probably crucial for the expression of the biological activities of the oxysterols.  相似文献   

19.
20.
Rats were fed on a diet containing 0.5% cholesterol oxidation products (oxysterols) or 0.5% cholesterol for 30 min, and their lymph was collected for 7 h. The amount of each of the individual oxysterols absorbed in the lymph depended on the ingested amounts, but the recovery was the highest for 5alpha,6alpha-epoxycholesterol (10.5%), this being followed by 7-ketocholesterol (5.8%), cholestanetriol (5.2%), 7beta-hydroxycholesterol (4.8%), 7alpha-hydroxycholesterol (3.4%), 5beta,6beta-epoxycholesterol (2.2%), and 25-hydroxycholesterol (1.8%). A diet enriched with oxysterol, but not cholesterol, resulted in increased transport of triacylglycerols in the lymph. These results suggest that the absorption rate of oxysterols depends on the type, and indicate that the effect of dietary oxysterols on the lymphatic transport of triacylglycerols differs from that of dietary cholesterol. It therefore remains to be determined which oxysterol was responsible for the triacyglycerol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号