首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was shown previously that the long lifespan and juvenile phase of trees strongly attenuate founder effects during colonisation in a diffusive dispersal model. However, this model yielded too slow a colonisation rate in comparison with palynological data for temperate forest trees. Since rare long-distance dispersal events have been shown to increase considerably colonisation rates in population dynamics models, we investigate here the impact of long-distance dispersal on within-population diversity (H(S)) and among-population differentiation (F(ST)) during the colonisation process. We use a stochastic approach and compare several dispersal strategies, ranging from very rare dispersal events of large amplitude to more frequent events of smaller amplitude. Using a simulation approach, which takes into account tree life-history traits, we show that long-distance dispersal events increase colonisation speed, and yield much larger founder effects in comparison with the diffusive model. The two models that include intermediate- and long-distance dispersal events show stronger deviations from experimental F(ST) values during and at the end of the colonisation process than the model with more frequent events of smaller dispersal variance. Furthermore, the introduction of a high level of pollen flow has a much more limited impact on models that include long-distance dispersal than on a diffusive dispersal model. The relatively high H(S) values that were obtained in all models are discussed according to the assumed mutation rate and effective population size. This study is an example of how observed genetic data can provide additional evidence on the best demographic model for a given species or group of species.  相似文献   

2.
Armstrong and McGehee (1980) have shown that two species modeled in continuous time can coexist on a single resource provided that one species oscillates autonomously. This paper demonstrates the parallel result in discrete time. I consider a deterministic model of two asexual types in a single patch competing for a single resource, and show that such systems generically produce oscillatory coexistence or bistability if one of the types displays periodic or chaotic behavior in isolation. The conditions for coexistence or bistability are derived in terms of the convexity of the functions describing fitness as a function of resource availability. I also analyze whether or not a stable type, a type with a stable equilibrium population size when considered in isolation, can invade a periodic orbit of an unstable type, and show that the same convexity condition distinguishes these two cases. The widely considered exponential or Ricker model for population dynamics lies on the boundary between the two cases and is highly degenerate in this context.  相似文献   

3.
A central question of ecology is what determines the presence and abundance of species at different locations. In cases of ecological pattern formation, population sizes are largely determined by spatially distributed interactions and may have very little to do with the habitat template. We find pattern formation in a single-species metapopulation model with quasi-local competition, but only if the populations have (at least) two age or stage classes. Quasi-local competition is modeled using an explicit resource competition model with fast resource dynamics, and assuming that adults, but not juveniles, spend a fraction of their foraging time in habitat patches adjacent to their home patch. Pattern formation occurs if one stage class depletes the common resource but the shortage of resource affects mostly the other stage. When the two stages are spatially separated due to quasi-local competition, this results in competitive exclusion between the populations. We find deep similarity between spatial pattern formation and population cycles due to competitive exclusion between cohorts of biennial species, and discuss the differences between the present mechanism and established ways of pattern formation such as diffusive instability and distributed competition with local Allee-effects.  相似文献   

4.
The population-dispersal dynamics for predator–prey interactions and two competing species in a two patch environment are studied. It is assumed that both species (i.e., either predators and their prey, or the two competing species) are mobile and their dispersal between patches is directed to the higher fitness patch. It is proved that such dispersal, irrespectively of its speed, cannot destabilize a locally stable predator–prey population equilibrium that corresponds to no movement at all. In the case of two competing species, dispersal can destabilize population equilibrium. Conditions are given when this cannot happen, including the case of identical patches.  相似文献   

5.
Microscopic turbulent motions of water have been shown to influence the dynamics of microscopic species living in that habitat. The number, stability, and excitability of stationary states in a predator–prey model of plankton species can therefore change when the strength of turbulent motions varies. In a spatial system these microscopic turbulent motions are naturally of different strength and form a heterogeneous physical environment. Spatially neighboring plankton communities with different physical conditions can impact each other due to diffusive coupling. We show that local variations in the physical conditions can influence the global system in form of propagating pulses of high population densities. For this we consider three different local predator–prey models with different local responses to variations in the physical environment. The degree of spatial heterogeneity can, depending on the model, promote or reduce the number of propagating pulses, which can be interpreted as patchy plankton distributions and recurrent blooms.  相似文献   

6.
This article seeks to determine the extent to which endogenous consumer-resource cycles can contribute to the coexistence of competing consumer species. It begins with a numerical analysis of a simple model proposed by Armstrong and McGehee. This model has a single resource and two consumers, one with a linear functional response and one with a saturating response. Coexistence of the two consumer species can occur when the species with a saturating response generates population cycles of the resource, and also has a lower resource requirement for zero population growth. Coexistence can be achieved over a wide range of relative efficiencies of the two consumers provided that the functional response of the saturating consumer reaches its half-saturation value when the resource population is a small fraction of its carrying capacity. In this case, the range of efficiencies allowing coexistence is comparable to that when two competitors have stable dynamics and a high degree of resource partitioning. A variety of modifications of this basic model are analyzed to investigate the consequences for coexistence of different resource growth equations, different functional and numerical response shapes, and other factors. Large differences in functional response shape appear to be the most important factor in producing robust coexistence via resource cycles. If the unstable species has a concave numerical response, this greatly expands the conditions allowing coexistence. If the stable consumer species has a convex (accelerating) functional and/or numerical response, the range of conditions allowing coexistence is also expanded. We argue that large between-species differences in functional response form can often be produced by between-consumer differences in the adaptive adjustments of foraging effort to food density. Consumer-resource cycles can also expand the conditions allowing coexistence when there is resource partitioning, but do so primarily when resource partitioning is relatively slight; this makes the ease of coexistence relatively independent of consumer similarity.  相似文献   

7.
Theoretical models of intraguild predation (IGP) predict that IGP decreases the effectiveness of biological control while many empirical studies do not agree with this prediction. In this study, I discuss the importance of explicit consideration of multiple resource species that has been neglected in most theoretical IGP models. In the previous models of IGP, a single resource species represented the pest species. However, there are multiple resource species (e.g., multiple pest species or aggregates of pest and non-pest species) in real systems. This study shows that models with multiple resource species can predict a variety of outcomes including those consistent with the empirical observations. The explicit consideration of resource species is useful for the future development of theories in biological control. Handling Editor: Helen Roy  相似文献   

8.
In animal foraging, the optimal search strategy in an unknown environment varies depending on the context, such as the resource density and season. When food is distributed sparsely and uniformly, superdiffusive walks outperform normal-diffusive walks. However, superdiffusive walks are no longer advantageous when random walkers forage in resource-rich environments. It is not currently clear whether a relationship exists between an agent's use of local information to make subjective inferences about global food distribution and the optimal random walk strategy. Therefore, I investigated how flexible exploration is achieved if an agent alters its directional rule based on the local resource distribution. In the proposed model, the agent, a Brownian-like walker, estimates whether an abundant or sparse area is nearby using local resource patterns and then makes a decision by altering its movement rules. I show that the agent can behave like a non-Brownian walker if it interacts with a prey distribution. The agent can adaptively switch between diffusive properties depending on the resource density. This leads to a more effective resource-searching performance than a simple random-walk model. These results demonstrate that optimal searching is a context-dependent process.  相似文献   

9.
Small population sizes can, over time, put species at risk due to the loss of genetic variation and the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess MHC class I (MHC‐I) diversity and its effects on mate choice and survival in the Critically Endangered Raso lark Alauda razae, a species restricted to the 7 km2 islet of Raso, Cape Verde, since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122 individuals, we find no effect of MHC‐I genotype/diversity on mate choice or survival. However, we demonstrate that MHC‐I diversity has been maintained through extreme bottlenecks by retention of a high number of gene copies (at least 14), aided by cosegregation of multiple haplotypes comprising 2–8 linked MHC‐I loci. Within‐locus homozygosity is high, contributing to low population‐wide diversity. Conversely, each individual had comparably many alleles, 6–16 (average 11), and the large and divergent haplotypes occur at high frequency in the population, resulting in high within‐individual MHC‐I diversity. This functional immune gene diversity will be of critical importance for this highly threatened species’ adaptive potential.  相似文献   

10.
We consider spatial distributions of two competing and diffusing populations whose habitats are partly overlapping. As a model, certain reaction—diffusion equations are used in the finite and in the infinite regions with Dirichlet boundary conditions. On the assumption of extremely different diffusive rates of the two species, it is verified, by the use of singular perturbation techniques, that the slowly diffusing species can survive in some subregions, although the species with the greater diffusive rate rapidly occupies the region at the initial stage, and that coexistence of two populations is realized, reducing the effect of interspecific competition by spatial segregation. It will be also shown that the size of the region where the slowly moving population can survive exhibits a markedly qualitative change, depending on the values of some parameters, and that the population can extends the distribution infinitely, when the parameters satisfy a certain condition.  相似文献   

11.
A model which incorporates random temporal variation in resource consumption rates is used to investigate the effects that such variation has on the coexistence of competitors. The analysis of the model and several extensions of it suggests that such variation in consumption rates will often allow two or more competitors to coexist while limited by the same resource. For variability to promote coexistence, it is necessary that the time scale of resource population dynamics be fast relative to the time scale of environmental change. Variability is especially likely to promote coexistence if there is a large variance in consumption rates, negative correlation between the consumption rates of different species, and a linear or concave relationship between resource consumption and per capita population growth. Many previous studies which have found coexistence of two or more species on one resource can be interpreted as examples of coexistence due to varying resource consumption rates.  相似文献   

12.
We study the competition of two species for a single resource in a chemostat. In the simplest space-homogeneous situation, it is known that only one species survives, namely the best competitor. In order to exhibit coexistence phenomena, where the two competitors are able to survive, we consider a space dependent situation: we assume that the two species and the resource follow a diffusion process in space, on top of the competition process. Besides, and in order to consider the most general case, we assume each population is associated with a distinct diffusion constant. This is a key difficulty in our analysis: the specific (and classical) case where all diffusion constants are equal, leads to a particular conservation law, which in turn allows to eliminate the resource in the equations, a fact that considerably simplifies the analysis and the qualitative phenomena. Using the global bifurcation theory, we prove that the underlying 2-species, stationary, diffusive, chemostat-like model, does possess coexistence solutions, where both species survive. On top of that, we identify the domain, in the space of the relevant bifurcation parameters, for which the system does have coexistence solutions.  相似文献   

13.
Container-inhabiting mosquito species are subject to both intraspecific and interspecific competition during larval development in resource-limited habitats. The arrival of an invasive species, Aedes albopictus, in the U.S. has altered competitive interactions among container-inhabiting mosquito species and, in some cases, has led to displacement of these species. Resource enrichment of container habitats has been shown to alleviate competitive interactions and to promote species co-existence; however, the importance of the timing of enrichment has yet to be explored. Larval competition between Ae. albopictus and a native species, Ochlerotatus triseriatus, was explored when resources were added either gradually or in a single pulse. Replacement series experiments revealed that Ae. albopictus was able to outcompete and displace Oc. triseriatus via resource monopolization when all resources were made available simultaneously; however, when the same resource amount was added over time, survival was high for both species, leading to co-existence. Timing of resource input also had an effect in monospecific treatments, indicating that intraspecific competition impacts survival as well. Duration of larval development was influenced by both species presence and by timing of resource input for Oc. triseriatus. These results indicate competitive outcome is condition-specific and that timing of resource input can determine whether a dominant invasive competitor displaces a native species, or if the two species are able to co-exist. Both intraspecific and interspecific competition occur at different temporal scales due to species-specific differences in larval developmental time. Timing of resource availability in container habitats can impact mosquito survival via competitive interactions, which can ultimately influence vector population size and behavior, possibly influencing vector-borne disease transmission.  相似文献   

14.
JillLancaster 《Ecography》2006,29(3):385-395
Many organisms are aggregated within resource patches and aggregated spatially across landscapes with multiple resources. Such patchy distributions underpin models of population regulation and species coexistence, so ecologists require methods to analyse spatially‐explicit data of resource distribution and use. I describe a method for analysing maps of resources and testing hypotheses about how resource distribution influences the distribution of organisms, where resource patches can be described as points in a landscape and the number of organisms on each resource point is known. Using a mark correlation function and the linearised form of Ripley's K‐function, this version of marked point pattern analysis can characterise and test hypotheses about the spatial distribution of organisms (marks) on resource patches (points). The method extends a version of point pattern analysis that has wide ecological applicability, it can describe patterns over a range of scales, and can detect mixed patterns. Statistically, Monte Carlo permutations are used to estimate the difference between the observed and expected values of the mark correlation function. Hypothesis testing employs a flexible neutral landscape approach in which spatial characteristics of point patterns are preserved to some extent, and marks are randomised across points. I describe the steps required to identify the appropriate neutral landscape and apply the analysis. Simulated data sets illustrate how the choice of neutral landscape can influence ecological interpretations, and how this spatially‐explicit method and traditional dispersion indices can yield different interpretations. Interpretations may be general or context‐sensitive, depending on information available about the underlying point pattern and the neutral landscape. An empirical example of caterpillars exploiting food plants illustrates how this technique might be used to test hypotheses about adult oviposition and larval dispersal. This approach can increase the value of survey data, by making it possible to quantify the distribution of resource points in the landscape and the pattern of resource use by species.  相似文献   

15.
The relationship between vertebrate morphology and swimming performance has long interested biologists. Recent work on predator‐induced morphological plasticity of anuran tadpoles has increased this interest. Here, I use data on five species of spadefoot toad tadpoles (Scaphiopodidae) to compare linear and geometric morphometrics. Linear measures explain only 7–26% of the variation in swimming speed, depending on species, whereas geometric morphometrics could explain 24–46% of the same variation. I also compare two methods for examining how similar the morphology–swimming speed relationship is among species. A canonical variate derived from a MANCOVA approach successfully detected species differences in these relationships, whether using linear or geometric methods, but a canonical correlation approach failed in both cases. Overall, tadpoles with smaller bodies, larger tails, and larger tail muscles are faster swimmers but the details of how these shape changes are achieved differed among species. For example, in some species a smaller body was achieved primarily by reducing abdomen size, whereas in others both the head and abdomen are smaller. Faster swimmers also had deeper tails, especially in the posterior half of the tail. This pattern would have been missed in standard linear morphometrics which usually only measures maximum tail depth. J. Morphol. 271:1044‐1052, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Models of metapopulations have often ignored local community dynamics and spatial heterogeneity among patches. However, persistence of a community as a whole depends both on the local interactions and the rates of dispersal between patches. We study a mathematical model of a metacommunity with two consumers exploiting a resource in a habitat of two different patches. They are the exploitative competitors or the competing predators indirectly competing through depletion of the shared resource. We show that they can potentially coexist, even if one species is sufficiently inferior to be driven extinct in both patches in isolation, when these patches are connected through diffusive dispersal. Thus, dispersal can mediate coexistence of competitors, even if both patches are local sinks for one species because of the interactions with the other species. The spatial asynchrony and the competition-colonization trade-off are usual mechanisms to facilitate regional coexistence. However, in our case, two consumers can coexist either in synchronous oscillation between patches or in equilibrium. The higher dispersal rate of the superior prompts rather than suppresses the inferior. Since differences in the carrying capacity between two patches generate flows from the more productive patch to the less productive, loss of the superior by emigration relaxes competition in the former, and depletion of the resource by subsidized consumers decouples the local community in the latter.  相似文献   

17.
Interspecific mutualisms are ubiquitous in nature, despite their ecological and evolutionary instability. Recent studies have developed coevolutionary theory of mutualisms, which coupled population and evolutionary dynamics, to resolve the longstanding puzzle. However, earlier studies assumed a time-scale separation between these dynamics, leaving an unanswered question of how a relaxation in the time-scale separation affects the coevolutionary dynamics of mutualism. Here I relax the strong assumption to theoretically show that ecological and evolutionary dynamics occurring in a similar time scale can stabilize an otherwise unstable mutualism. I show that the coevolutionary dynamics can cause a stable limit cycle or stable equilibrium in the population sizes, even if the population sizes increase unbounded in the absence of evolutionary adaptation. In contrast, coevolution can also cause stable limit cycle even if the population dynamics is stable in the absence of evolutionary adaptation. Furthermore, the model predicts that the population dynamics is likely to converge to equilibrium when the evolutionary speed of two species is similar and fast or highly dissimilar. The results suggest that the ease of the evolutionary ‘arms race’ is of crucial importance to maintain mutualism.  相似文献   

18.
Ecological theory suggests that co‐infecting parasite species can interact within hosts directly, via host immunity and/or via resource competition. In mice, competition for red blood cells (RBCs) between malaria and bloodsucking helminths can regulate malaria population dynamics, but the importance of RBC competition in human hosts was unknown. We analysed infection density (i.e. the concentration of parasites in infected hosts), from a 2‐year deworming study of over 4000 human subjects. After accounting for resource‐use differences among parasites, we find evidence of resource competition, priority effects and a competitive hierarchy within co‐infected individuals. For example reducing competition via deworming increased Plasmodium vivax densities 2.8‐fold, and this effect is limited to bloodsucking hookworms. Our ecological, resource‐based perspective sheds new light into decades of conflicting outcomes of malaria–helminth co‐infection studies with significant health and transmission consequences. Beyond blood, investigating within‐human resource competition may bring new insights for improving human health.  相似文献   

19.
In most models of population dynamics, diffusion between two patches is assumed to be either continuous or discrete, but in reality, many species diffuse only during a single period, and diffusion often occurs in regular pulses. Further, in forest habitats, the highest-level predator species are restricted to a specific territory, but prey can impulsively move between territories. Therefore, in this paper, we consider a delayed stage-structured predator–prey model with impulsively diffusive prey between two patches; in the model, patches represent the territories of two different predator populations. Here, we analytically obtain the global attractivity condition of predator-extinction periodic solutions for the system by using the concepts of Hui and Chen (2005); a numerical simulation is also included to illustrate this result. Further, we establish permanence conditions for the coexistence of the species using the theory of impulsive delayed differential equations. Finally, we explore the possibilities of the permanence of the system by using the growth rates of immature predators and the impulse period as critical parameters, and we also obtain the parameters’ threshold limits using numerical experimentation.  相似文献   

20.
This work explores an information-theoretic approach to drawing inferences about coupling of spatially extended ecological populations based solely on time-series of abundances. The efficacy of the approach, time-delayed mutual information, was explored using a spatially extended predator-prey model system in which populations at different patches were coupled via diffusive movement. The approach identified the relative magnitude and direction of information flow resulting from animal movement between populations, the change in information flow as a function of distance separating populations, and the diffusive nature of the information flow. In addition, when the diffusive movement was eliminated from the model, mutual information correctly provided no evidence of information flow, even when population synchrony was generated by a common environmental driving function. Thus, for this model system, time-delayed mutual information was useful in discriminating between the Moran effect and animal movement as causes of population synchrony, as well as in characterizing dispersal in terms of direction, relative speed and diffusive nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号