首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we examine the response of succulents in a global biodiversity hot spot to experimental warming consistent with a future African climate scenario. Passive daytime warming (averaging 5.5 degrees C above ambient) of the natural vegetation was achieved with 18 transparent hexagonal open-top chamber arrays randomized in three different quartz-field communities. After 4-months summer treatment, the specialized-dwarf and shrubby succulents displayed between 2.1 and 4.9 times greater plant and canopy mortalities in the open-top chambers than in the control plots. Those surviving in cooler ventilated areas and shaded refuges in the chambers had lower starch concentrations and water contents; the shrubby succulents also exhibited diminished chlorophyll concentrations. It is concluded that current thermal regimes are likely to be closely proximate to tolerable extremes for many endemic succulents in the region, and that anthropogenic warming could significantly exceed their thermal thresholds. Further investigation is required to elucidate the importance of associated moisture deficits in these warming experiments, a potential consequence of supplementary (fog and dew) precipitation interception by open-top chambers and higher evaporation therein, on plant mortalities.  相似文献   

2.
It has been predicted that subalpine forests will be negatively affected by global warming; however, direct responses to experimental warming have been scarcely examined in these systems. In this study we evaluated the effects of higher temperatures with and without water addition on the survival and growth of recently emerged (small) and large seedlings of the widely distributed species Nothofagus pumilio in subalpine forests of the southern Chilean Andes. We also examined the variations in seedling traits related to carbon balance in order to infer the causal mechanisms of survival and growth responses. Treatments of open top chambers (OTCs) were combined with watering in two locations with differing climates: Antillanca (40°S, humid) and Cerro Castillo (46°S, drier). OTCs increased mean and maximum air temperatures by 0.6 °C and 2–3 °C, respectively, and decreased soil humidity by 56% in Antillanca and 30% in Cerro Castillo, fulfilling methodological expectations and climate model predictions. After two complete growing seasons, the survival, relative growth rate (RGR), biomass, and a suite of seedling traits were measured and analyzed using mixed-effects models. Warming and warming in combination with watering significantly increased large seedling survival in Cerro Castillo. In Antillanca, warmer conditions increased the height, biomass, and leaf area of small seedlings, and the RGR of large seedlings. In this location, warming also caused lower leaf carbon isotopic composition in both age classes and higher specific leaf area in small seedlings, suggesting whole-plant carbon gain improvements; warming did not produce any drought effects. Our results indicate that warming produces positive effects on the seedling establishment of N. pumilio in the southern Andes, highlighting the importance of site-specific effects in response to climate change in widespread species. Site-specific effects can most likely explain the discrepancies between the results of this study and the predictions outlined by previous studies for these forests.  相似文献   

3.
4.
Small, cursorial ectotherms like ants often are immersed in the superheated air layers that develop millimeters above exposed, insolated surfaces (i.e., the thermal boundary layer). We quantified the thermal microenvironments around tree branches in the tropical rainforest canopy, and explored the effects of substrate color on the internal body temperature and species composition of arboreal ants. Branch temperatures during the day (09:00–16:00) were hottest (often > 50 °C) and most variable on the upper surface, while the lowest and least variable temperatures occurred on the underside. Temperatures on black substrates declined with increasing distance above the surface in both the field and the laboratory. By contrast, a micro-scale temperature inversion occurred above white substrates. Wind events (ca. 2 m s−1) eliminated these patterns. Internal temperatures of bodies of Cephalotes atratus workers experimentally heated in the laboratory were 6 °C warmer on white vs. black substrates, and 6 °C cooler than ambient in windy conditions. The composition of ant species foraging at baits differed between black-painted and unpainted tree branches, with a tendency for smaller ants to avoid the significantly hotter black surfaces. Collectively, these outcomes show that ants traversing canopy branches experience very heterogeneous thermal microenvironments that are partly influenced in predictable ways by branch surface coloration and breezy conditions.  相似文献   

5.
Growth at elevated CO2 often decreases photosynthetic capacity (acclimation) and leaf N concentrations. Lower-shaded canopy leaves may undergo both CO2 and shade acclimation. The relationship of acclimatory responses of flag and lower-shaded canopy leaves of wheat (Triticum aestivum L.) to the N content, and possible factors affecting N gain and distribution within the plant were investigated in a wheat crop growing in field chambers set at ambient (360 μmol mol−1) and elevated (700 μmol mol−1) CO2, and with two amounts of N fertilizer (none and 70 kg ha−1 applied on 30 April). Photosynthesis, stomatal conductance and transpiration at a common measurement CO2, chlorophyll and Rubisco levels of upper-sunlit (flag) and lower-shaded canopy leaves were significantly lower in elevated relative to ambient CO2-grown plants. Both whole shoot N and leaf N per unit area decreased at elevated CO2, and leaf N declined with canopy position. Acclimatory responses to elevated CO2 were enhanced in N-deficient plants. With N supply, the acclimatory responses were less pronounced in lower canopy leaves relative to the flag leaf. Additional N did not increase the fraction of shoot N allocated to the flag and penultimate leaves. The decrease in photosynthetic capacity in both upper-sunlit and lower-shaded leaves in elevated CO2 was associated with a decrease in N contents in above-ground organs and with lower N partitioning to leaves. A single relationship of N per unit leaf area to the transpiration rate accounted for a significant fraction of the variation among sun-lit and shaded leaves, growth CO2 level and N supply. We conclude that reduced stomatal conductance and transpiration can decrease plant N, leading to acclimation to CO2 enrichment.  相似文献   

6.
《Biological Control》2007,40(3):539-546
A thermogradient apparatus was used to investigate the effect of variable dew temperatures on infection of green foxtail by the indigenous pathogen Pyricularia setariae (Ps) and the exotic pathogens Drechslera gigantea (Dg), and Exserohilum rostratum (Er) from the southern USA that showed bioherbicide potential against several grassy weeds. This device is capable of creating multiple diurnal temperature cycles, mimicking daily temperature fluctuations that occur under field conditions. Seven temperature regimes, i.e., 15/10 °C, 20/5 °C, 20/15 °C, 25/10 °C, 25/20 °C, 30/15 °C, and 30/25 °C (maximum/minimum), were used with temperature cycling from maximum to minimum and then back up to maximum in a 24 h period. Ps and Dg were much more virulent than Er on green foxtail, resulting in higher levels of disease and weed control. Dg was little affected by the dew temperatures in terms of plant infection and was more efficacious than Ps under cooler dew temperatures (15/10 °C and 20/5 °C), causing twice as much disease. This greater amount of disease coincided with higher conidial germination, appressorial formation and infection-hypha frequency by Dg at the lower temperatures. The efficacy of Ps improved as dew temperature increased, accompanied by a higher percentage of germination and more frequent appressorial production. Dg caused severe disease 2 d after inoculation whereas Ps required 4 d to initiate disease symptoms. These observations suggest that Dg is a superior candidate than Ps for green foxtail control on the Canadian prairies.  相似文献   

7.
Predicted global climate change has prompted numerous studies of thermal tolerances of marine species. The upper thermal tolerance is unknown for most marine species, but will determine their vulnerability to ocean warming. Gastropods in the family Turbinidae are widely harvested for human consumption. To investigate the responses of turbinid snails to future conditions we determined critical thermal maxima (CTMax) and preferred temperatures of Turbo militaris and Lunella undulata from the tropical-temperate overlap region of northern New South Wales, on the Australian east coast. CTMax were determined at two warming rates: 1 °C/30 min and 1 °C/12 h. The number of snails that lost attachment to the tank wall was recorded at each temperature increment. At the faster rate, T. militaris had a significantly higher CTMax (34.0 °C) than L. undulata (32.2 °C). At the slower rate the mean of both species was lower and there was no significant difference between them (29.4 °C for T. militaris and 29.6 °C for L. undulata). This is consistent with differences in thermal inertia possibly allowing animals to tolerate short periods at higher temperatures than is possible during longer exposure times, but other mechanisms are not discounted. The thermoregulatory behaviour of the turban snails was determined in a horizontal thermal gradient. Both species actively sought out particular temperatures along the gradient, suggesting that behavioural responses may be important in ameliorating short-term temperature changes. The preferred temperatures of both species were higher at night (24.0 °C and 26.0 °C) than during the day (22.0 °C and 23.9 °C). As the snails approached their preferred temperature, net hourly displacement decreased. Preferred temperatures were within the average seasonal seawater temperature range in this region. However, with future predicted water temperature trends, the species could experience increased periods of thermal stress, possibly exceeding CTMax and potentially leading to range contractions.  相似文献   

8.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

9.
西双版纳热带雨林干季林冠层雾露形成的小气候特征研究   总被引:10,自引:3,他引:7  
对西双版纳热带雨林干季林冠层雾露形成的小气候特征进行了观测研究。结果表明,雾露首先形成于最上林冠层,林下露水的形成迟于林上3~4h,林下雾是由上层雾变浓、下沉而来。夜间,雾形成前,气温高于叶表温;雾形成后,气温则低于叶表温,且气温及叶表温均有回升。雾露的形成不仅凝结了水汽进入森林,同时也对森林起到了一定的保温作用,这对热带雨林的生存和发展具有致关重要的作用。  相似文献   

10.
Phylogenies of legume taxa are ecologically structured along a tropical seasonality gradient, which suggests phylogenetic niche conservatism. This seasonality gradient spans Neotropical wet forests, savannas, and highly seasonal drought-prone woody vegetation known as the succulent biome. Ecological phylogenetic structure was investigated using a community phylogenetic approach. We further analyzed bioclimatic and other independent variables that potentially explained phylogenetic beta diversity among 466 floristic sites that spanned the savanna and succulent biomes in eastern South America. Explanatory variables were selected using variance inflation factors, information criteria, and the ability to explain both species and phylogenetic beta diversity. A model involving annual precipitation suggests that a threshold of < 1200 mm explains community phylogenetic structure along the savanna–succulent biome transition. Variables involving temperatures or measures of seasonality were notably lacking from top-ranked models. The abundance and diversity of legumes across the tropical seasonality gradient suggest that a high nitrogen metabolism confers an advantage in one of two ways, both of which are related to rapid growth rates. Legumes adapted to the succulent biome may be responding to regular post-dry-season leaf-flush opportunities. Legumes adapted to the savanna biome may be responding to intermittent post-disturbance growing opportunities. A seasonal predominance of leaf flushing by woody plants implicates the role of ecological stability in the succulent biome because of the need to recover the cost of regenerating short-lived leaves. Ecological stability may be the fundamental cause of ecological phylogenetic structure across the tropical seasonality gradient and required for maintaining high levels of both leaf-flushing legume and succulent plant biodiversity.  相似文献   

11.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   

12.
《Acta Oecologica》2007,31(2):151-157
One consequence of human-induced changes in fire regimes has been the invasion of fire-prone Mediterranean ecosystems by weeds from more mesic habitats. In southern Australia, the tree Pittosporum undulatum Vent. has established in new areas, causing a serious reduction in floristic and structural diversity. Pittosporum undulatum has a high competitive ability and creates an environment that favours its own progeny at the expense of other species, making control difficult. We tested the hypothesis that fire effectively disrupts this invasion cycle by (1) eliminating the soil and canopy seed bank, (2) reducing the competitive ability of adults, and (3) minimising the number of sites favourable to invasion. To test this, the ability of P. undulatum to re-establish after a prescribed burn was estimated in a field study. The field data were then compared with the experimentally determined sensitivity of seeds and seedlings to elevated temperatures. The experimentally determined combination of temperatures and exposure time required for seed mortality (90–120 °C, depending on duration) was such that most seed stored in the canopy would be killed by prescribed burning. In addition, 90% of seedlings (ca. 0.4 m tall) were killed when heated to 180 °C for 5–10 min in the laboratory, consistent with the observed 100% seedling mortality in the burnt plots. Of the adult trees, 20% resprouted within 6 months of the fire. We conclude that the temperatures associated with wildfires are sufficient to act as a circuit breaker on the invasion cycle allowing other control measures, such as poisoning and weeding to be employed to greater effect.  相似文献   

13.
? Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. ? Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. ? The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. ? Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity.  相似文献   

14.
The influence of temperature on the diurnal activity of five species of aphidophagous lady beetles (Coleoptera: Coccinellidae) was investigated between 0700 and 1900 h in chili (Capsicum annuum L.) agroecosystems and neighboring vegetation (goose grass, Eleusine indica L.). The lady beetle species observed were Menochilus sexmaculatus Fabricius, Coelophora inaequalis F., Coccinella transversalis F., Harmonia octomaculata F. and Coelophora bissellata Mulsant. More lady beetles (of all species) were found during cooler periods (at 0700, 0900, 1100, and 1900 h). The diurnal pattern of lady beetle adult was temperature dependent. On chili plants, numbers were higher at temperatures between 22 to 30 °C (at 0700, 0900, 1100 and 1900 h) and numbers decreased when temperatures were above 30 °C. When temperature was above 30 °C under the chili plant canopy, numbers were higher in neighboring goose grass, where temperatures were cooler (< 30 °C). Numbers of all species were negative correlated between chili plant and goose grass.  相似文献   

15.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

16.
Environmental stress can affect development and yield of tomato plants. This study was undertaken to investigate the underlying mechanism asserted by kaolin on tomato physiology by evaluating its effect on leaf, canopy and inner fruit temperatures, gas exchange at the leaf and canopy scales, above ground biomass, yield and fruit quality.The study was carried out under field conditions in Southern Italy. Treatments were plants treated with kaolin-based particle film (Surround® WP) suspension and untreated plants (control).Kaolin application slightly increased leaf and canopy scale temperatures by 1.0 and 0.4 °C, respectively, transpiration rate decreased at both scales. On calm days (wind speed <0.5 m s?1) with a prevalently clear sky at midday, inner fruit temperature (tf) of kaolin-treated plants was 4.4 °C lower than the tf of control plants, while in days with clear sky-windy, and cloudy-calm, the tf did not differ.At leaf scale, net assimilation was reduced by 26% in kaolin-coated treatments. Stomatal conductance decreased by 53%, resulting in reductions of 34 and 15% in transpiration and internal CO2 concentration, respectively. Gas exchange parameters measured at canopy scale were similarly affected. In kaolin-treated plants, assimilation and evapotranspiration rates were reduced by 17 and 20%, respectively, while dark respiration was not affected. Above ground dry biomass decreased by 6.4%.Marketable yield in kaolin-treated plants was 21% higher than those measured in control plants; this is possibly related to the 96 and 79% reduction in sunburned fruit and those damaged by insects, respectively, and to the 9% increase in mean fruit weight. Kaolin treatment increased lycopene fruit content by 16%, but did not affect total soluble solids content, fruit dry matter, juice pH, titratable acidity or tomato fruit firmness. The use of kaolin-based particle film technology would be an effective tool to alleviate heat stress and to reduce water stress in tomato production under arid and semi-arid conditions.  相似文献   

17.
Global atmospheric carbon dioxide concentrations (Ca) are rising. As a consequence, recent climate models have projected that global surface air temperature may increase 1.4–5.8 °C with the doubling of Ca by the end of the century. Because, changes in Ca and temperature are likely to occur concomitantly, it is important to evaluate how the temperature dependence of key physiological processes are affected by rising Ca in major crop plants including maize (Zea mays L.), a globally important grain crop with C4 photosynthetic pathway. We investigated the temperature responses of photosynthesis, growth, and development of maize plants grown at five temperature regimes ranging from 19/13 to 38.5/32.5 °C under current (370 μmol mol−1) and doubled (750 μmol mol−1) Ca throughout the vegetative stages using sunlit controlled environmental chambers in order to test if the temperature dependence of these processes was altered by elevated Ca. Leaf and canopy photosynthetic rates, C4 enzyme activities, leaf appearance rates, above ground biomass accumulation and leaf area were measured. We then applied temperature response functions (e.g., Arrhenius and Beta distribution models) to fit the measured data in order to provide parameter estimates of the temperature dependence for modeling photosynthesis and development at current and elevated Ca in maize. Biomass, leaf area, leaf appearance rate, and photosynthesis measured at growth Ca was not changed in response to CO2 enrichment. Carboxylation efficiency and the activities of C4 enzymes were reduced with CO2 enrichment indicating possible photosynthetic acclimation of the C4 cycle. All measured parameters responded to growth temperatures. Leaf appearance rate and leaf photosynthesis showed curvilinear response with optimal temperatures near 32 and 34 °C, respectively. Total above ground biomass and leaf area were negatively correlated with growth temperature. The dependence of leaf appearance rate, biomass, leaf area, leaf and canopy photosynthesis, and C4 enzyme activities on growth temperatures was comparable between current and elevated Ca. The results of this study suggest that the temperature effects on growth, development, and photosynthesis may remain unchanged in elevated Ca compared with current Ca in maize.  相似文献   

18.
Retrieving leaf chlorophyll content at a range of spatio-temporal scales is central to monitoring vegetation productivity, identifying physiological stress and managing biological resources. However, estimating leaf chlorophyll over broad spatial extents using ground-based traditional methods is time and resource heavy. Satellite-derived spectral vegetation indices (VIs) are commonly used to estimate leaf chlorophyll content, however they are often developed and tested on broadleaf species. Relatively little research has assessed VIs for different leaf structures, particularly needle leaves which represent a large component of boreal forest and significant global ecosystems. This study tested the performance of 47 published VIs for estimating foliar chlorophyll content from different leaf and canopy structures (broadleaf and needle). Coniferous and deciduous sites were selected in Ontario, Canada, representing different dominant vegetation species (Picea mariana and Acer saccharum) and a variety of canopy structures. Leaf reflectance data was collected using an ASD Fieldspec Pro spectroradiometer (400–2500 nm) for over 300 leaf samples. Canopy reflectance data was acquired from the medium resolution imaging spectrometer (MERIS). At the canopy level, with both leaf types combined, the DD-index showed the strongest relationship with leaf chlorophyll (R2 = 0.78; RMSE = 3.56 μg/cm2), despite differences in leaf structure. For needleleaf trees alone the relationship with the top VI was weaker (D[red], R2 = 0.71; RMSE = 2.32 μg/cm2). A sensitivity study using simulated VIs from physically-modelled leaf (PROSPECT) and canopy (4-Scale) reflectance was performed in order to further investigate these results and assess the impacts of different background types and leaf area index on the VIs’ performance. At the leaf level, the MNDVI8 index showed a strong linearity to changing chlorophyll and negligible difference to leaf structure/type. At canopy level, the best performing VIs were relatively consistent where LAI  4, but responded strongly to differences in background at low canopy coverage (LAI = 2). This research provides comprehensive assessments for the use of spectral indices in retrieval of spatially-continuous leaf chlorophyll content at the leaf (MTCI: R2 = 0.72; p < 0.001) and canopy (DD: R2 = 0.78; p < 0.001) level for resource management over different spatial and temporal scales.  相似文献   

19.
Here we present the results of the study of two Lower Toarcian carbonate sections located in the Iberian Range of central Spain. Analyses of stable isotope on belemnite calcite allowed calculation of seawater palaeotemperature variations, which were compared with the stratigraphical distribution of ostracods. These organisms are particularly sensitive to ratios of temperature and salinity variations and hence are good indicators of climate changes. From a cooling interval, with seawater temperatures of 13.2 °C recorded at the Pliensbachian?Toarcian transition, seawater temperature began to rise in the lowermost Toarcian Tenuicostatum Zone, reaching average temperatures between 14.6 °C and 16.3 °C during the time of deposition of this Zone. Coinciding with this seawater warming, up to 85% of the ostracods species progressively disappeared during a period of approximately 300 kyr, marking the extinction interval. The extinction boundary, located around the Tenuicostatum?Serpentinum zonal boundary, coincides with a marked increase in temperature in the Serpentinum Zone, on which average seawater temperatures of 22 °C have been calculated. Warming continued through part of the Middle Toarcian Bifrons Zone, reaching average temperatures of 24.7 °C. Readjustment of the ostracod population allowed recovery of these faunas in the upper Serpentinum Zone, although the extinction of a major ostracod group, the healdioids, was also recorded. The correlation between mass extinction and warming infers a causal relationship. Comparison of the results with the records of stable isotopes in belemnites and in bulk carbonates, as well as TOC and facies analysis suggests that the anoxia linked to the Early Toarcian oceanic anoxic event was not the main responsible for the ostracod mass extinction.  相似文献   

20.
Heat stress is a major factor limiting the growth of cool-season grasses in warm climatic regions by affecting many physiological processes, including protein metabolism. Protein degradation often occurs with increasing temperatures, but certain specific proteins such as heat shock proteins (HSPs) may be induced or enhanced in their expression under supraoptimal temperatures. The objectives of this study were to determine the critical temperature that causes protein induction or degradation in two Agrostis grass species differing in heat tolerance and to compare protein profiles between the two species under different temperature regimes. Plants of heat-tolerant Agrostis scabra and two cultivars of heat-sensitive Agrostis stolonifera (‘L-93’ and ‘Penncross’) were exposed to constant day/night temperatures of 20, 30, 35, 40, or 45 °C for 14 d. Leaf photochemical efficiency (Fv/Fm), chlorophyll and carotenoid contents, and soluble protein content declined with increasing temperatures. The decreases were the least severe for A. scabra, intermediate for ‘L-93’, and the most severe for ‘Penncross’, indicating interspecific and intraspecific variations in heat tolerance in Agrostis species. Protein degradation was observed at 30–45 °C in both cultivars of A. stolonifera, and at 40–45 °C in A. scabra.HSPs were induced or enhanced at 35–45 °C in ‘L-93’ and A. scabra, and at 40–45 °C in ‘Penncross’. Immunoblotting also revealed stronger expressions of HSP60 and HSP70 in A. scabra or ‘L-93’ than in ‘Penncross’ at 35–45 °C after 3 d. The results suggested the superior heat tolerance of Agrostis grass species and cultivars could be attributed to the early induction of HSPs, particularly small molecular weight (23 kDa), at a lower level of heat stress and the maintenance of protein thermostability, particularly high-molecular weight proteins (83 kDa and large units of Rubisco).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号