共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of leaf structure and water status on carbon isotope discrimination in field-grown durum wheat 总被引:8,自引:0,他引:8
The relationships between leaf and kernel carbon isotope discriminations (Δ) and several leaf structural parameters that are indicators of photosynthetic capacity were studied in durum wheat grown in the field under three water regimens. A set of 144 genotypes were cultivated in two rain-fed trials, and 125 of these were grown under supplementary irrigation before heading. Total chlorophyll and nitrogen (N) contents, the dry mass per unit leaf area (LDM, the reciprocal of specific leaf area) and carbon isotope discrimination (Δ) were measured in penultimate leaves and Δ of mature kernels was also analysed. Both LDM and N per unit area showed significant (P≤ 0.001) negative correlation (r=–0.60 and r=–0.36, respectively) with leaf Δ in the wettest trial. Little or no correlation was found for any structural parameter and leaf Δ in the rain-fed trials. In contrast, in the two rain-fed trials LDM was the parameter with the strongest positive correlation (P≤ 0.001) with kernel Δ (r= 0.47 and 0.30) and grain yield (r= 0.43 and 0.29), whereas no correlation was found in the irrigation trial. These correlations, rather than representing a causal link between the amount of photosynthetic tissue and Δ, were probably indirect associations caused by a parallel effect of water status and phenology on leaf structure, grain Δ and yield. Correlations across trials (i.e. environments) between leaf structure and either Δ and yield were very high, although also spurious. Our results suggest that LDM should be used to cull segregating population differences in leaf Δ based on the internal photosynthetic capacity only in the absence of drought. Selecting for kernel Δ and grain yield on the basis of LDM is worthwhile for rain-fed trials. 相似文献
2.
不同供水条件下冬小麦叶与非叶绿色
器官光合日变化特征 总被引:2,自引:0,他引:2
为揭示小麦叶片与非叶绿色器官的光合活性在一日中的变化特性及其在器官间的差异性,探讨群体及不同器官光合日变化对不同供水条件的响应特征,在田间设置生育期不灌水(I0)、灌2水(I2,拔节水+开花水)和灌4水(I4,起身水+孕穗水+开花水+灌浆水)3个处理,于灌浆期测定了群体光合与呼吸速率的日变化, 旗叶片、叶鞘、穗、穗下节间各器官光合速率、蒸腾速率、气孔导度及叶绿素荧光参数的日变化。结果表明,灌浆期小麦穗和穗下节间光合速率日变化呈单峰曲线,而旗叶叶片与旗叶鞘光合速率均呈双峰型,表现出不同程度的午休。随着灌水次数减少,各器官光合速率降低,叶片对严重水分亏缺的反应大于各非叶器官。器官光合速率的日变化与Fv/Fm变化相一致,而与气孔导度日变化有较大差异。各器官上午的累积光合量均高于下午,上午光合量占日总光合量的比例为51%-62%,随着灌水次数减少而增大。不同灌水处理群体光合速率、呼吸速率日变化均未出现午休现象。春季浇2水处理与春浇4水处理相比,灌浆期群体光合速率及日光合积累量没有显著差异。综合研究认为,小麦叶与非叶器官光合性能及其日变化特征有较大不同,非叶光合对水分亏缺的敏感性低于叶片,生育期浇2水可以获得与浇4水相似的群体日光合积累量。 相似文献
3.
Background and aims
The changes in the characteristics of Panicum virgatum, an exotic invasive species, after invading various plant communities on the Loess Plateau in China and the main soil nutrient factors in these communities closely associated with invasion remain unclear.Methods
A pot culture experiment was carried out to simulate the changes in photosynthesis, biomass, and biomass allocation in P. virgatum and to identify the main soil nutrient factors in various soils collected from local plant communities. P. virgatum was grown in soils collected from communities of P. virgatum (PS treatment), Setaria viridis (SS treatment), Bothriochloa ischaemum (BS treatment), and Artemisia sacrorum (AS treatment) and in a mixed soil from the communities of S. viridis, B. ischaemum, and A. sacrorum (MS treatment).Results
Photosynthesis in P. virgatum differed significantly among the soil treatments. Net photosynthetic rate, stomatal conductance, and photochemical efficiency (Fv/Fm) were highest in PS, whereas single-photon avalanche diode values were highest in PS and SS. The variation of biomass differed significantly in different tissues of P. virgatum in the treatments. Leaf and stem biomasses were highest in PS and SS, and root biomass was highest in PS and MS. Total biomass differed significantly among the treatments, except between BS and MS. Both the leaf to total and stem to total biomass ratios were highest in AS and SS, but the root to total biomass ratio was lowest in these two treatments. A constrained redundancy analysis and a path analysis suggested that the water-soluble nitrate-nitrogen (W-NN) concentration of the soil could significantly affect photosynthesis, biomass, and biomass allocation in P. virgatum.Conclusions
Photosynthesis, biomass, and biomass allocation in P. virgatum differed significantly when grown in soils from different local plant communities on the Loess Plateau. The soil W-NN concentration in these local plant communities likely has a large impact on the invasive success of P. virgatum.4.
Valentina Španić Katarina Šunić Jurica Duvnjak Yin-Gang Hu Zorana Katanić 《The Annals of applied biology》2023,183(1):80-92
Improving wheat grain yield plays a significant role in ensuring global food security. Wheat production could be increased by the genetic improvement of wheat genotypes where delayed senescence with enhanced post-anthesis capacity and staygreen traits could have an important role. In this study, chlorophyll a fluorescence (ChlF) rise kinetics from the early until late senescence of flag leaves, grain yield and other agro-morphological characteristics were compared for three winter wheat advanced lines (Osk.4.312/10-18, Osk.4.330/6-18 and Osk.4.354/12-18) under natural drought conditions. The differences between lines were observed when considering the heading date which was 1 and 4 days earlier for the line Osk.4.354/12-18, than lines Osk.4.312/10-18 and Osk.4.330/6-18, respectively. Furthermore, line Osk.4.354/12-18 had the highest test weight (kg hl−1), while line Osk.4.330/6-18 showed a tendency of decreased grain yield, compared to the other two lines. Analysis of ChlF transients and several JIP-test parameters indicated that all three lines had a generally similar course of changes in the photosynthetic performance of flag leaves during senescence under drought conditions. However, at the point when a decrease in photosynthetic performance was initiated, it was slightly less intensive in line Osk.4.354/12-18 accompanied by longer preservation of functionality and connectivity of PSII units, than in the other two lines, which contributed to its better agronomical performance. These results indicated that even delicate variations in the functioning of the photosynthetic apparatus of the flag leaf during grain filling were agronomically important, especially when plants were exposed to drought stress, and could be used to differentiate otherwise similar wheat genotypes. Even small genotype-specific differences in the photosynthetic performance of senescing flag leaves, along with earlier heading dates, could assist in the selection of genotypes with a better ability to cope with unfavourable environmental conditions. 相似文献
5.
A study of the extent and patterns of microsatellite diversity in 234 genotypes from Ethiopian durum wheat (Triticum turgidum) landraces was conducted to identify areas of diversity that could be used as a source of new germplasm for developing high yielding and stable varieties. Landraces belonging to nine populations, from three Ethiopian regions [Tigray (T), Gonder (G) and Shewa (S)] with different climates, were analysed by using 28 simple sequence repeat (SSR) markers. The level of polymorphism was high and quite consistent among populations underlining the great diversity existing. The highest level of diversity was found within populations, about 75.9%, while about 5.3% was attributed to differences between regions. The level of expected heterozygosity was on an average, rather high, ranging from 39% to 56%, whereas the observed heterozygosity was, on an average, limited to 14%. An average of about five alleles per locus was detected in each population. Nevertheless, alleles were not equally present in populations as confirmed by the high level of expected heterozygosity. The polymorphism information content (PIC) for the markers assessed showed a wide range of values from 0.14 to 0.92. The likelihood relationships among the nine Ethiopian populations indicated that the material collected in the Gonder region (a wet climate) was genetically more diverse than the materials from Shewa and Tigray (dryer climates). The high number of loci in linkage disequilibrium (LD), up to 23, has demonstrated that the loci were associated irrespective of their physical location. This holds true even if the loci are located on different chromosome arms. Genetic diversity values between populations was very different and was used to produce a dendrogram showing population relationships. 相似文献
6.
Photosynthetic characteristics and enzymatic antioxidant capacity of leaves from wheat cultivars exposed to drought 总被引:2,自引:0,他引:2
Huseynova IM 《Biochimica et biophysica acta》2012,1817(8):1516-1523
Two durum (Triticum durum L.), Barakatli-95 and Garagylchyg-2; and two bread (Triticum aestivum L.) wheat cultivars, Azamatli-95 and Giymatli-2/17 with different sensitivities to drought were grown in the field on a wide area under normal irrigation and severe water deficit. Drought caused a more pronounced inhibition in photosynthetic parameters in the more sensitive cvs Garagylchyg-2 and Giymatli-2/17 compared with the tolerant cvs Barakatli-95 and Azamatli-95. Upon dehydration, a decline in total chlorophyll and relative water content was evident in all cultivars, especially in later periods of ontogenesis. Potential quantum yield of PS II (F(v)/F(m) ratio) in cv Azamatli-95 was maximal during stalk emergency stage at the beginning of drought. This parameter increased in cv Garagylchyg-2, while in tolerant cultivar Barakatli-95 significant changes were not observed. Contrary to other wheat genotypes in Giymatli-2/17 drought caused a decrease in PS II quantum yield. Drought-tolerant cultivars showed a significant increase in CAT activity as compared to control plants. In durum wheat cultivars maximal activity of CAT was observed at the milk ripeness and in bread wheat cultivars at the end of flowering. APX activity also increased in drought-treated leaves: in tolerant wheat genotypes maximal activity occurred at the end of flowering, in sensitive ones at the end of ear formation. GR activity increased in the tolerant cultivars under drought stress at all stages of ontogenesis. SOD activity significantly decreased in sensitive cultivars and remained at the control level or increased in resistant ones. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. 相似文献
7.
Olfa Ayed-Slama Imen Bouhaouel Zoubeir Chamekh Youssef Trifa Ali Sahli Nadhira Ben Aissa Hajer Slim-Amara 《Journal of Genetic Engineering and Biotechnology》2018,16(1):161-167
Agriculture has new challenges against the climate change: the preservation of genetic resources and the rapid creation of new varieties better adapted to abiotic stress, specially salinity. In this context, the agronomic performance of 25 durum wheat (Triticum turgidum subsp. durum Desf.) genotypes (nineteen landraces and six improved varieties), cultivated in two semi-arid regions in the center area of Tunisia, were assessed. These sites (Echbika, 2.2?g?l?1; Barrouta, 4.2?g?l?1) differ by their degree of salinity of the water irrigation. The results showed that most of the agronomic traits (e.g. spike per meter square, thousand kernels weight and grain yield) were reduced by salinity. Durum wheat landraces, Mahmoudi and Hmira, and improved varieties, Maali and Om Rabia showed the widest adaptability to different quality of irrigation water. Genotypes including Jneh Kotifa and Arbi were estimated as stable genotypes under adverse conditions. Thereafter, salt-tolerant (Hmira and Jneh Khotifa) and the most cultivated high-yielding (Karim, Razzak and Khiar) genotypes were tested for their gynogenetic ability to obtain haploids and doubled haploid lines. Genotypes with good induction capacity had not necessarily a good capacity of regeneration of haploid plantlets. In our conditions, Hmira and Khiar exhibited the best gynogenetic ability (3.1% and 2.9% of haploid plantlets, respectively). 相似文献
8.
A metabolomic study of substantial equivalence of field-grown genetically modified wheat 总被引:11,自引:0,他引:11
Baker JM Hawkins ND Ward JL Lovegrove A Napier JA Shewry PR Beale MH 《Plant biotechnology journal》2006,4(4):381-392
The 'substantial equivalence' of three transgenic wheats expressing additional high-molecular-weight subunit genes and the corresponding parental lines (two lines plus a null transformant) was examined using metabolite profiling of samples grown in replicate field trials on two UK sites (Rothamsted, Hertfordshire and Long Ashton, near Bristol) for 3 years. Multivariate comparison of the proton nuclear magnetic resonance spectra of polar metabolites extracted with deuterated methanol–water showed a stronger influence of site and year than of genotype. Nevertheless, some separation between the transgenic and parental lines was observed, notably between the transgenic line B73-6-1 (which had the highest level of transgene expression) and its parental line L88-6. Comparison of the spectra showed that this separation resulted from increased levels of maltose and/or sucrose in this transgenic line, and that differences in free amino acids were also apparent. More detailed studies of the amino acid composition of material grown in 2000 were carried out using gas chromatography-mass spectrometry. The most noticeable difference was that the samples grown at Rothamsted consistently contained larger amounts of acidic amino acids (glutamic, aspartic) and their amides (glutamine, asparagine). In addition, the related lines, L88-6 and B73-6-1, both contained larger amounts of proline and γ-aminobutyric acid when grown at Long Ashton than at Rothamsted. The results clearly demonstrate that the environment affects the metabolome and that any differences between the control and transgenic lines are generally within the same range as the differences observed between the control lines grown on different sites and in different years. 相似文献
9.
Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat 总被引:2,自引:0,他引:2
James RA Munns R von Caemmerer S Trejo C Miller C Condon TA 《Plant, cell & environment》2006,29(12):2185-2197
The capacity of plants to tolerate high levels of salinity depends on the ability to exclude salt from the shoot, or to tolerate high concentrations of salt in the leaf (tissue tolerance). It is widely held that a major component of tissue tolerance is the capacity to compartmentalize salt into safe storage places such as vacuoles. This mechanism would avoid toxic effects of salt on photosynthesis and other key metabolic processes. To test this, the relationship between photosynthetic capacity and the cellular and subcellular distribution of Na+, K+ and Cl- was studied in salt-sensitive durum wheat (cv. Wollaroi) and salt-tolerant barley (cv. Franklin) seedlings grown in a range of salinity treatments. Photosynthetic capacity parameters (Vcmax, Jmax) of salt-stressed Wollaroi decreased at a lower leaf Na+ concentration than in Franklin. Vacuolar concentrations of Na+, K+ and Cl- in mesophyll and epidermal cells were measured using cryo-scanning electron microscopy (SEM) X-ray microanalysis. In both species, the vacuolar Na+ concentration was similar in mesophyll and epidermal cells, whereas K+ was at higher concentrations in the mesophyll, and Cl- higher in the epidermis. The calculated cytoplasmic Na+ concentration increased to higher concentrations with increasing bulk leaf Na+ concentration in Wollaroi compared to Franklin. Vacuolar K+ concentration was lower in the epidermal cells of Franklin than Wollaroi, resulting in higher cytoplasmic K+ concentrations and a higher K+ : Na+ ratio. This study indicated that the maintenance of photosynthetic capacity (and the resulting greater salt tolerance) at higher leaf Na+ levels of barley compared to durum wheat was associated with the maintenance of higher K+, lower Na+ and the resulting higher K+ : Na+ in the cytoplasm of mesophyll cells of barley. 相似文献
10.
Photosynthetic regulation under fluctuating light in field-grown Cerasus cerasoides: A comparison of young and mature leaves 总被引:1,自引:0,他引:1
Photosystem I (PSI) is a potential target of photoinhibition under fluctuating light. However, photosynthetic regulation under fluctuating light in field-grown plants is little known. Furthermore, it is unclear how young leaves protect PSI against fluctuating light under natural field conditions. In the present study, we examined chlorophyll fluorescence, P700 redox state and the electrochromic shift signal in the young and mature leaves of field-grown Cerasus cerasoides (Rosaceae). Within the first seconds after any increase in light intensity, young leaves showed higher proton gradient (ΔpH) across the thylakoid membranes than the mature leaves, preventing over-reduction of PSI in the young leaves. As a result, PSI was more tolerant to fluctuating light in the young leaves than in the mature leaves. Interestingly, after transition from low to high light, the activity of cyclic electron flow (CEF) in young leaves increased first to a high level and then decreased to a stable value, while this rapid stimulation of CEF was not observed in the mature leaves. Furthermore, the over-reduction of PSI significantly stimulated CEF in the young leaves but not in the mature leaves. Taken together, within the first seconds after any increase in illumination, the stimulation of CEF favors the rapid lumen acidification and optimizes the PSI redox state in the young leaves, protecting PSI against photoinhibition under fluctuating light in field-grown plants. 相似文献
11.
Decline of photosynthetic capacity with leaf age in relation to leaf longevities for five tropical canopy tree species 总被引:2,自引:0,他引:2
The effect of leaf aging on photosynthetic capacities was examined for upper canopy leaves of five tropical tree species in a seasonally dry forest in Panama. These species varied in mean leaf longevity between 174 and 315 d, and in maximum leaf life span between 304 and 679 d. The light-saturated CO2 exchange rates of leaves produced during the primary annual leaf flush measured at 7-8 mo of age were 33-65% of the rates measured at 1-2 mo of age for species with leaf life span of < 1 yr. The negative regression slopes of photosynthetic capacity against leaf age were steeper for species with shorter maximum leaf longevity. In all species, regression slopes were less steep than the slopes predicted by assuming a linear decline toward the maximum leaf age (20-80% of the predicted decline rate). Maximum oxygen evolution rates and leaf nitrogen content declined faster with age for species with shorter leaf life spans. Statistical significance of regression slopes of oxygen evolution rates against leaf age was strongest on a leaf mass basis (r = 0.49-0.87), followed by leaf nitrogen basis (r = 0.48-0.77), and weakest on a leaf area basis (r = 0.35-0.70). 相似文献
12.
The laboratory and field performance of two electrical resistance (ER) sensors of leaf surface wetness were compared with that of a beta-ray gauge (BRG). The BRG provided the most accurate measurements of wetness duration, which were in agreement with visual observations. A Campbell and a cotton cloth ER sensor consistently underestimated the duration of leaf surface wetness compared to the value obtained with the BRG in a dew chamber. However, the response of the Campbell sensor improved considerably with increase in the severity of dewfall. A superior performance of one of the two ER sensors could not be decisively established on the basis of the field experiments of 1989 and 1990 on soybean and tobacco crops, respectively. For studies where accurate measurements of surface wetness are critical, it is suggested that a beta-ray gauge should be used. 相似文献
13.
Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions 总被引:19,自引:0,他引:19
Photosynthetic capacity on area (P
Nmaxa
) and mass bases (P
Nmaxm
) and specific leaf mass (SLM) were determined in twenty adult woody species of Cerrado under field conditions. The mean values
obtained for P
Nmaxa
[11.4 μmol(CO2) m-2 s-1], P
Nmaxm
[78 μmol(CO2) kg-1 s-1] and SLM (150 g m-2) were compared with mean values found for deciduous and evergreen sclerophyllous
species growing also under field conditions. P
Nmaxm
and SLM were statistically different among deciduous, Cerrado and evergreen sclerophyllous species. There was a gradual decrease
of P
Nmaxm
and an increase of SLM from deciduous to evergreen sclerophyllous species. Woody species of Cerrado showed mean values of
P
Nmaxm
and SLM between deciduous and evergreen species indicating its brevideciduousness. The comparison using mean values of P
Nmaxm
and SLM belonging to deciduous, Cerrado and evergreen sclerophyllous species was suitable to confirm the interdependence
among leaf life span, structure and physiological attributes of leaf.
This revised version was published online in September 2006 with corrections to the Cover Date. 相似文献
14.
Ear of durum wheat under water stress: water relations and photosynthetic metabolism 总被引:3,自引:0,他引:3
The photosynthetic characteristics of the ear and flag leaf of well-watered (WW) and water-stressed (WS) durum wheat (Triticum turgidum L. var. durum) were studied in plants grown under greenhouse and Mediterranean field conditions. Gas exchange measurements simultaneously with modulated chlorophyll fluorescence were used to study the response of the ear and flag leaf to CO2 and O2 during photosynthesis. C4 metabolism was identified by assessing the sensitivity of photosynthetic rate and electron transport to oxygen. The presence of CAM metabolism was assessed by measuring daily patterns of stomatal conductance and net CO2 assimilation. In addition, the histological distribution of Rubisco protein in the ear parts was studied by immunocytochemical localisation. Relative water content (RWC) and osmotic adjustment (osmotic potential at full turgor) were also measured in these organs. Oxygen sensitivity of the assimilation rate and electron transport, the lack of Rubisco compartmentalisation in the mesophyll tissues and the gas-exchange pattern at night indicated that neither C4 nor CAM metabolism occurs in the ear of WW or WS plants. Nevertheless, photosynthetic activity of the flag leaf was more affected by WS conditions than that of the ear, under both growing conditions. The lower sensitivity under water stress of the ear than of the flag leaf was linked to higher RWC and osmotic adjustment in the ear bracts and awns. We demonstrate that the better performance of the ear under water stress (compared to the flag leaf) is not related to C4 or CAM photosynthesis. Rather, drought tolerance of the ear is explained by its higher RWC in drought. Osmotic adjustment and xeromorphic traits of ear parts may be responsible. 相似文献
15.
Caixia Lan Bhoja R. Basnet Ravi P. Singh Julio Huerta-Espino Sybil A. Herrera-Foessel Yong Ren Mandeep S. Randhawa 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2017,130(3):609-619
Key message
New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds.Abstract
CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5–60.8%, 9.0–14.3%, 2.8–13.9%, and 11.6–29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.16.
Although plant cell bioenergetics is strongly affected by abiotic stresses, mitochondrial metabolism under stress is still largely unknown. Interestingly, plant mitochondria may control reactive oxygen species (ROS) generation by means of energy-dissipating systems. Therefore, mitochondria may play a central role in cell adaptation to abiotic stresses, which are known to induce oxidative stress at cellular level. With this in mind, in recent years, studies have been focused on mitochondria from durum wheat, a species well adapted to drought stress. Durum wheat mitochondria possess three energy-dissipating systems: the ATP-sensitive plant mitochondrial potassium channel (PmitoK(ATP)); the plant uncoupling protein (PUCP); and the alternative oxidase (AOX). It has been shown that these systems are able to dampen mitochondrial ROS production; surprisingly, PmitoK(ATP) and PUCP (but not AOX) are activated by ROS. This was found to occur in mitochondria from both control and hyperosmotic-stressed seedlings. Therefore, the hypothesis of a 'feed-back' mechanism operating under hyperosmotic/oxidative stress conditions was validated: stress conditions induce an increase in mitochondrial ROS production; ROS activate PmitoK(ATP) and PUCP that, in turn, dissipate the mitochondrial membrane potential, thus inhibiting further large-scale ROS production. Another important aspect is the chloroplast/cytosol/mitochondrion co-operation in green tissues under stress conditions aimed at modulating cell redox homeostasis. Durum wheat mitochondria may act against chloroplast/cytosol over-reduction: the malate/oxaloacetate antiporter and the rotenone-insensitive external NAD(P)H dehydrogenases allow cytosolic NAD(P)H oxidation; under stress this may occur without high ROS production due to co-operation with AOX, which is activated by intermediates of the photorespiratory cycle. 相似文献
17.
Epidermal conductance in different parts of durum wheat grown under Mediterranean conditions: the role of epicuticular waxes and stomata 总被引:1,自引:1,他引:1
Abstract. Epidermal (non-stomatally-controlled) conductance from the fourth leaf, first node leaf, flag leaf and ear of durum wheat (Triticum turgidum var durum L.) grown under Mediterranean field conditions has been measured, along with leaf stomatal frequency and the amount and distribution of epicuticular waxes. Measurements were carried out on varieties and land-races from the Middle East, North Africa, ‘Institut National de la Recherche Agricole’ (INRA) and ‘Centra Internacional de Mejora de Maiz y Trigo’ (CIMMYT). Significant differences were observed among genotypes in the epidermal conductances (ge) of the four organs. For each of the four organs tested, genotypes from the Middle East and CIMMYT showed higher ge. values than those from North Africa and INRA. Ears showed epidermal conductances that were more than four times higher than those of leaves when ge. values were expressed per unit dry weight. The amount of epicuticular waxes was higher in the fourth leaves, intermediate in the first node and flag leaves and lower in the ears. For each organ, ge differences among genotypes were unrelated with the amount of epicuticular waxes. Removal of epicuticular waxes by dipping the organs into chloroform significantly increased the epidermal conductance for the fourth and first node leaves and the ear. However, this did not occur for the flag leaf. For the fourth leaf, ge of intact leaves and ge of leaves in which epicuticular waxes were removed were unrelated (r = -0.265). The regression coefficient of this relation for the first node and flag leaves showed values of 0.666 and 0.650 (P > 0.05), respectively, and values were even higher in the ear (r > m 0.892, P > 0.01). Scanning electron microscope analysis showed that wax bloom decreased from the fourth leaf to the flag leaf, whereas the extent of amorphous wax increased. Wax bloom in leaves consisted mainly of deposits of thin wax plates. In the ears and the adaxial surface of flag leaves, fibrillar waxes predominated. In the first node and flag leaves, the wax deposits on the adaxial side cover the surface of the leaf more densely and uniformly than those on the abaxial side. There was no significant correlation between ge and total stomatal density, or between ge and either adaxial or abaxial stomatal density for any sample of the three different leaves. The contribution of epicuticular waxes plus total stomatal frequency only explained 42.4, 11.8, 28.3 and 16% of ge (per unit leaf area) variations for the fourth leaf, first node leaf, flag leaf and the combined variation of the three leaves together, respectively. From these results, it is concluded that complex interrelationship between different morphophysiological characteristics probably control ge differences among genotypes and that these interrelationships differ for each different plant part. 相似文献
18.
不同穗型小麦品种分蘖发育的代谢基础研究 总被引:5,自引:0,他引:5
比较研究了大穗型和多穗型小麦品种的分薛发育特征及其代谢基础。结果表明,与多穗型品种相比,单株分蘖较少的大穗型品种分蘖期具有较低的IAA氧化酶(IAAO)活性、较高的IAA含量和较强的碳代谢活性。在分蘖的两极分化期,大穗型品种在碳、氮代谢和同化物分配方面存在较强的主茎优势,因此,其分蘖较难继续发育成穗。 相似文献
19.
S. Ayadi C. Karmous Z. Chamekh Z. Hammami M. Baraket S. Esposito S. Rezgui Y. Trifa 《The Annals of applied biology》2016,168(2):264-273
Durum wheat is an important staple food crop in Tunisia and other Mediterranean countries and is grown in various climatic conditions. Production and yield are however severely limited not only by drought events but also by reduced levels of nitrogen fertilisation. A study was carried out at two locations in the sub‐humid area of Tunisia: Mateur in 2009–10 and 2010–11 and Beja in 2011–12 and 2012–13 under rainfed conditions. Four durum wheat genotypes (landraces: Bidi, Azizi; improved: Om Rabia, Khiar) were evaluated for nitrogen agronomic efficiency and related agronomic traits under various nitrogen rates: 0, 50, 100, 150, 200 and 250 kg N ha?1, with three replications. There was a significant interaction effect (P ≤ 0.001) environments × genotypes × N treatments for grain yield (GY), biomass yield (BY), harvest index (HI), partial factor productivity of applied nitrogen (PFPN) and nitrogen agronomic use efficiencies (NAE). GY was the most affected trait by nitrogen applied showing an increase of 94% under high N treatment (250 kg N ha?1) compared to control plots without N treatments. A significant linear regression exists between GY (0 N) and GY for the different N rates (r = 0.70; P < 0.001). This effect was more pronounced for improved genotypes than landraces for all parameters excepting BY and NAEBY. BY showed +11% increase in landraces than improved genotypes. PFPN showed an average decrease of 65% under high‐N fertilisation with 10% prevalence for improved genotypes. Landraces tend to promote vegetative growth while grain filling efficiency was higher for improved genotypes. 相似文献
20.
Tosens T Niinemets U Vislap V Eichelmann H Castro Díez P 《Plant, cell & environment》2012,35(5):839-856
Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in saplings of Populus tremula L. An one-dimensional diffusion model was used to gain insight into the importance of key anatomical traits in determining g(m) . Leaf development was associated with increases in dry mass per unit area, thickness, density, exposed mesophyll (S(mes) /S) and chloroplast (S(c) /S) to leaf area ratio, internal air space (f(ias) ), cell wall thickness and chloroplast dimensions. Development of S(mes) /S and S(c) /S was delayed under low light. Reduction in light availability was associated with lower S(c) /S, but with larger f(ias) and chloroplast thickness. Water stress reduced S(c) /S and increased cell wall thickness under high light. In all treatments, g(m) and A(n) increased and CO(2) drawdown because of g(m) , C(i) -C(c) , decreased with increasing leaf age. Low light and drought resulted in reduced g(m) and A(n) and increased C(i) -C(c) . These results emphasize the importance of g(m) and its components in determining A(n) variations during leaf development and in response to stress. 相似文献