首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Zhao  Jianqiang  Ma  Lijie  Ni  Zengfeng  Liu  Hui 《Biotechnology letters》2021,43(7):1311-1322
Background

Bone marrow mesenchymal stem cells (BMMSCs) were proved to play a vital role in multiple myeloma (MM). Polygonatum sibiricum polysaccharide (PSP) was found to have anti-tumor pharmacological effects, yet its interaction with BMMSCs remained poorly understood. Therefore, we explore the effect of PSP on osteogenic differentiation of BMMSCs.

Methods

BMMSCs were isolated by density gradient centrifugation. CD90 and CD34 were detected by flow cytometry (FCM). Osteogenic marks were detected by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). The vitality of cells treated with different concentrations of PSP was observed by Cell Counting Kit-8 (CCK-8). ALP staining kit was used to detect the activity of alkaline phosphatase (ALP). Alizarin red staining detected the formation of mineralized nodules. Osteoblast-associated genes were evaluated by qRT-PCR and WB. The phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) signaling pathways were tested by WB.

Results

The BMMSCs showed good growth under an inverted microscope. FCM showed that CD34 and CD45 was low-expressed, whereas CD44, CD90 and CD105 was highly expressed. Compared with the Control group, the expressions of Runx2 and ALP in cells were significantly increased. CCK-8 showed that different concentrations of PSP had no significant effect on the viability of BMMSCs. BMMSCs treated with 25 mg/l PSP were stained the most deeply by ALP. Mineralized nodules in PSP groups dramatically increased, and hit a peak under the action of 25 mg/l PSP. PSP up-regulated p-PI3K, p-AKT, and p-mTOR, but had no significant effect on PI3K, AKT, and mTOR.

Conclusion

PSP induced osteogenic differentiation of BMMSCs from MM patients.

  相似文献   

3.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

4.
Osteoblasts, the chief bone-forming cells, are differentiated from mesenchymal stromal/stem cells. Disruption of this differentiation process can cause osteoporosis, a bone disease characterized by low bone mass and deteriorated bone structure. Cholesterol has been implicated in pathogenesis of osteoporosis, and was recently identified as an endogenous activator of Hedgehog (Hh) signaling. However, its pathological and physiological roles in osteoblast differentiation are still poorly understood. Moreover, it is unclear whether these potential roles played by cholesterol are related to its capability to modulate Hh pathway. In this study, we investigated the role of exogenous versus endogenous cholesterol in osteogenesis and Hh pathway activation using ST2 cells, a bone marrow stromal cell line. We found that exogenous cholesterol significantly inhibited alkaline phosphatase (ALP) activity and messenger RNA expression of osteoblast markers genes (Alpl, Sp7, and Ibsp) while modestly activating expression of Gli1 (a readout of Hh signaling) under both basal osteogenic culture condition and Wnt3a treatment. Similarly, exogenous cholesterol suppressed osteogenic response of ST2 cells to sonic Hh (Shh) or purmorphamine (Purmo) treatment, which, however, was accompanied by diminished induction of Gli1, indicating the involvement of a Hh-dependent mechanism. Interestingly, depletion of endogenous cholesterol also reduced Shh-induced ALP activity and Gli1 expression. Likewise, cholesterol depletion inhibited osteogenic response to Purmo, although it did not affect Gli1 induction. Taken together, our findings have demonstrated that cholesterol plays a dual role in osteoblast differentiation likely through both Hh-dependent and -independent mechanisms.  相似文献   

5.
BackgroundEfficient differentiation of mesenchymal stem cells (MSCs) into a desired cell lineage remains challenging in cell-based therapy and regenerative medicine. Numerous efforts have been made to efficiently promote differentiation of MSCs into osteoblast lineage. Accordingly, epigenetic signatures emerge as a key conductor of cell differentiation. Among them, Enhancer of Zeste Homolog 2 (EZH2), a histone methyltransferase appears to suppress osteogenesis. Curcumin is an osteoinductive natural polyphenol compound which supposedly modulates epigenetic mechanisms. Hence, the current study aims to address the role of the EZH2 epigenetic factor in osteogenic activity of MSCs after Curcumin treatment.MethodsThe effect of Curcumin on viability and osteogenic differentiation was evaluated at different time points in vitro. The expression level of EZH2 was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) after 14 and 21 days.ResultsMTT results showed no cytotoxic effects at concentrations of 10 and 15 μM of Curcumin and cells survived up to 70 % at all time-points. qRT-PCR results demonstrated that Curcumin significantly enhanced the expression levels of osteogenic markers that included Runx2, Osterix, Collagen type I, Osteopontin and Osteocalcin at day 21.ConclusionsInterestingly, we observed that the expression level of the EZH2 gene was downregulated in the presence of Curcumin compared to the control group during osteogenesis. This study confirmed that Curcumin acts as an epigenetic switch to regulate osteoblast differentiation specifically through the EZH2 suppression.  相似文献   

6.
7.
BackgroundSome microRNAs (miRNAs) are involved in osteogenic differentiation. In recent years, increasing evidences have revealed that exosomes contain specific miRNAs. However, the effect and mechanism of miR-23a-5p-containing exosomes in osteoblast remain largely unclear.MethodsWe extracted exosomes from RANKL-induced RAW 264.7 cells, and identified exosomes via transmission electron microscopy, western blot and flow cytometry analysis. In addition, exosome secretion was inhibited by GW4869 and Rab27a siRNAs. miR-23a-5p expression was analyzed by qRT-PCR, and the related protein levels were examined by western blot assay. Furthermore, the number and distribution of osteoclasts were detected by TRAP staining, and early osteogenesis was evaluated by ALP staining. Combination of YAP1 and Runx2 was verified by Co-IP assay, and the regulation of miR-23a-5p and Runx2 was measured by dual luciferase reporter assay.ResultsWe successfully extracted exosomes from RANKL-induced RAW 264.7 cells, and successfully verified exosomes morphology. We also indicated that miR-23a-5p was highly expressed in exosomes from RANKL-induced RAW 264.7 cells, and osteoclast-derived miR-23a-5p-containing exosomes inhibited osteoblast activity, while its inhibition weakened osteoclasts. In mechanism, we demonstrated that Runx2 was a target gene of miR-23a-5p, YAP interacted with Runx2, and YAP or Runx2 inhibited MT1DP expression. In addition, we proved that knockdown of MT1DP facilitated osteogenic differentiation by regulating FoxA1 and Runx2.ConclusionsWe demonstrated that osteoclast-derived miR-23a-5p-containing exosomes could efficiently suppress osteogenic differentiation by inhibiting Runx2 and promoting YAP1-mediated MT1DP. Therefore, we suggested miR-23a-5p in exosomes might provide a novel mechanism for osteoblast function.  相似文献   

8.
《Tissue & cell》2016,48(5):488-495
In this study, adipose-derived mesenchymal stem cells (ADSCs) were isolated from adipose tissues of rats. Flow cytometry identification showed that ADSCs of passage 3 highly expressed CD29 and CD44, but hardly expressed CD31 and CD45. Adipogenic, osteogenic, and chondrogenic differentiation were confirmed by the results of oil red O staining, alkaline phosphatase (ALP), and alcian blue staining, respectively. ADSCs at a density of 1 × 106/cm2 were cultured in the osteogenic medium and the osteogenic cell sheets could be obtained after 14 d. The cell sheets were positive with von kossa staining. The transmission electron microscopy (TEM) result showed that needle-like calcium salt crystals were deposited on the ECM. These results suggested that the osteogenic cell sheets may have potential osteogenesis ability. ADSCs at a density of 1 × 106/cm2 were cultured in the endothelial cell growth medium-2 and the endothelial cell sheets can be formed after 16 d of culture. The TEM image confirmed that the Weibel-Palade corpuscle was seen in the cells. The expression of CD31 was positive, suggesting that the endothelial cell sheets may have a strong ability to form blood vessels. In this study, two types of cell sheets with the potential abilities of osteogenesis and blood vessels formation were obtained by induced culture of ADSCs in vitro, which lays a foundation to build vascularized tissue engineered bone for the therapy of bone defects.  相似文献   

9.
BackgroundImpaired bone formation is one of the reasons behind osteoporosis. Alterations in the patterns of mesenchymal stromal cell differentiation towards adipocytes instead of osteoblasts contribute to osteoporosis progression. Natural anti-osteoporotic agents are effective and safe alternatives for osteoporosis treatment.PurposeIn this context, 3,5-dicaffeoyl‑epi-quinic acid (DCEQA) which is a derivative of chlorogenic acid with reported bioactivities was studied for its osteogenic differentiation enhancing potential in vitro.MethodsAnti-osteoporotic effects of DCEQA were investigated in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) which were induced to differentiate into osteoblasts or adipocytes with or without DCEQA treatment. Changes in the osteogenic and adipogenic markers such as ALP activity and lipid accumulation, respectively, were observed along with differentiation-specific activation of mitogen activated protein kinase (MAPK) pathways.ResultsAt 10 μM concentration, DCEQA increased the proliferation of bone marrow-derived human mesenchymal stromal cells (hBM-MSCs) during osteoblast differentiation. The expression of osteogenic markers ALP, osteocalcin, Runx2, BMP2 and Wnt 10a was upregulated by DCEQA treatment. The ALP activity and extracellular mineralization were also increased. DCEQA elevated the phosphorylation levels of p38 and JNK MAPKs as well as the activation of β-catenin and Smad1/5. DCEQA suppressed the lipid accumulation and downregulated expression of adipogenic markers PPARγ, C/EBPα and SREBP1c in adipo-induced hBM-MSCs. DCEQA also decreased the phosphorylation of p38 and ERK MAPKs and stimulated the activation of AMPK in hBM-MSC adipocytes.ConclusionDCEQA was suggested to enhance osteoblast differentiation via stimulating Wnt/BMP signaling. The adipocyte differentiation inhibitory effect of DCEQA was suggested to arise from its ability to increase AMPK phosphorylation. Overall, DCEQA was shown to possess osteogenesis enhancing and adipogenesis inhibitory properties which might facilitate its use against osteoporotic conditions.  相似文献   

10.
Objective:In bone tissue engineering, the use of osteoblastic seed cells has been widely adopted to mediate the osteogenic differentiation so as to prompt bone regeneration and repair. It is hypothesized that Dok5 can regulate the proliferation and differentiation of osteoblasts. In this study, the role of Dok5 in osteoblast proliferation and differentiation was investigated.Methods:A lentiviral vector to silence Dok5 was transferred to C3H10, 293T and C2C12 cells. CCK-8 assay was used to detect the cell proliferation. Cells were stained by ALP and AR-S staining. Western blot and RT-PCR were used to detect the expression levels of related factors.Results:Dok5 expression level was gradually up-regulated during the osteoblast differentiation. Dok5 silencing down-regulated the expression levels of osteogenic biosignatures OPN, OCN, and Runx2 and suppressed the osteogenesis. Additionally, the osteoblast proliferation and canonical Wnt/β-catenin signaling were suppressed upon Dok5 knockdown, β-catenin expression level was significantly down-regulated in the knockdown group, while the expression levels of GSK3-β and Axin, negative regulators in the Wnt signaling pathway, were up-regulated. Furthermore, overexpression of Dok5 promoted the proliferation and osteogenesis and activated the canonical Wnt/β-catenin signaling pathway.Conclusion:Dok5 may regulate the osteogenic proliferation and differentiation via the canonical Wnt/β-catenin signaling pathway.  相似文献   

11.
Objectives:To investigate the effect of neurotrophin-3 (NT-3) on osteogenic/adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).Methods:Osteogenic differentiation was detected by alkaline phosphatase (ALP) staining and alizarin red staining (ARS). Adipogenic differentiation was detected by oil red O (ORO) staining. The expression of bone-related genes (Runx2, Osterix, OCN, ALP) and lipogenic genes (FABP4, PPAR, CEBP, LPL) was detected by real-time quantitative polymerase chain reaction (real-time qPCR). The expression of p-Akt and Akt protein was detected by Western blot assay.Results:ALP staining and ARS staining showed that the overexpression of NT-3 could promote the differentiation into osteoblasts, while knockdown of NT-3 could inhibit that. Real-time qPCR showed that the overexpression of NT-3 could increase the expression of osteoblast genes, while knockdown of NT-3 could inhibit that. ORO staining showed that the overexpression of NT-3 could inhibit the differentiation into adipogenesis, while knockdown of NT-3 can promote that. Real-time qPCR showed that the overexpression of NT-3 could reduce the expression of lipogenic genes. while knockdown NT-3 could increase that. In addition, the overexpression of NT-3 increased p-Akt/Akt levels significantly, while knockdown NT-3 reduced that significantly.Conclusion:NT-3 could promote the differentiation of mouse BMSCs into osteoblasts and inhibit their differentiation into adipogenesis.  相似文献   

12.
BackgroundUnderstanding of the molecular mechanisms of miRNAs involved in osteoblast differentiation is important for the treatment of bone-related diseases.MethodsMC3T3-E1 cells were induced to osteogenic differentiation by culturing with bone morphogenetic protein 2 (BMP2). After transfected with miR-26b-3p mimics or inhibitors, the osteogenic differentiation of MC3T3-E1 cells was detected by ALP and ARS staining. Cell viability was analyzed by MTT. The expressions of miR-26b-3p and osteogenic related markers and signaling were examined by qPCR and western blot. Direct binding of miR-26b-3p and ER-α were determined by dual luciferase assay.ResultsmiR-26b-3p was significantly down-regulated during osteoblast differentiation. Overexpression of miR-26b-3p inhibited osteoblast differentiation, while inhibition of miR-26b-3p enhanced osteoblast differentiation. Further studies demonstrated miR-26b-3p inhibited the expression of estrogen receptor α (ER-α) by directly targeting to the CDS region of ER-α mRNA. Overexpression of ER-α rescued the suppression effects of miR-26b-3p on osteoblast differentiation, while knockdown of ER-α reversed the upregulation of osteoblast differentiation induced by knockdown of miR-26b-3p.ConclusionOur study demonstrates that miR-26b-3p suppresses osteoblast differentiation of MC3T3-E1 cells via directly targeting ER-α.  相似文献   

13.
mTORC1 signaling not only plays important physiological roles in the regulation of proliferation and osteogenic differentiation of BMSCs, but also mediates exogenous Wnt‐induced protein anabolism and osteoblast differentiation. However, the downstream effectors of the mTORC1 signaling in the above processes are still poorly understood. In this study, we explored the specific role of S6K1, one of the major targets of the mTORC1 pathway, in BMSCs self ‐ renewal and osteogenic differentiation. We first found that S6K1 was active in primary mouse bone marrow stromal cells, and further activated upon osteogenic induction. We then determined the effects of S6K1 inhibition by LY2584702 Tosylate, a selective inhibitor of S6K1 (hereafter S6KI), using both primary mouse bone marrow stromal cells and ST2 cells. Colony‐Forming Unit‐Fibroblast (CFU‐F) assays showed that S6KI dramatically reduced the total number of colonies formed in primary BMSCs cultures. Under the basal osteogenic culture condition, S6KI significantly inhibited mRNA expression of osteoblast marker genes (Sp7, Bglap, Ibsp, and Col1a1), ALP activity and matrix mineralization. Upon Wnt3a treatments, S6KI inhibited Wnt3a‐induced osteoblast differentiation and expression of protein anabolism genes in ST2 cells, but to a much lesser degree than rapamycin (a specific inhibitor of mTORC1 signaling). Collectively, our findings have demonstrated that pharmacological inhibition of S6K1 impaired self ‐ renewal and osteogenic differentiation of BMSCs, but only partially suppressed exogenous Wnt3a‐induced osteoblast differentiation and protein anabolism.  相似文献   

14.
Bisphosphonates (BPs) are known to affect bone homeostasis and also to have anti-angiogenic properties. Because of the intimate relationship between angiogenesis and osteogenesis, this study analysed the effects of Alendronate (AL) and Zoledronate (ZL) in the expression of endothelial and osteogenic genes on interacting endothelial and mesenchymal stem cells, an issue that was not previously addressed. Alendronate and ZL, 10−12–10−6 M, were evaluated in a direct co-culture system of human dermal microvascular endothelial cells (HDMEC) and human bone marrow mesenchymal stem cells (HMSC), over a period of 14 days. Experiments with the respective monocultures were run in parallel. Alendronate and ZL caused an initial dose-dependent stimulation in the cell proliferation in the monocultures and co-cultures, and did not interfere with their cellular organization. In HDMEC monocultures, the expression of the endothelial genes CD31, VE-cadherin and VEGFR2 was down-regulated by AL and ZL. In HMSC monocultures, the BPs inhibited VEGF expression, but up-regulated the expression of the osteogenic genes alkaline phosphatase (ALP), bone morphogenic protein-2 (BMP-2) and osteocalcin (OC) and, to a greater extent, osteoprotegerin (OPG), a negative regulator of the osteoclastic differentiation, and increased ALP activity. In co-cultured HDMEC/HMSC, AL and ZL decreased the expression of endothelial genes but elicited an earlier and sustained overexpression of ALP, BMP-2, OC and OPG, compared with the monocultured cells; they also induced ALP activity. This study showed for the first time that AL and ZL greatly induced the osteogenic gene expression on interacting endothelial and mesenchymal stem cells.  相似文献   

15.
Osteogenesis is a complex series of events involving the differentiation of mesenchymal stem cells to generate new bone. In this study, we examined the effect of pulsed electromagnetic fields (PEMFs) on cell proliferation, alkaline phosphatase (ALP) activity, mineralization of the extracellular matrix, and gene expression in bone marrow mesenchymal stem cells (BMMSCs) during osteogenic differentiation. Exposure of BMMSCs to PEMFs increased cell proliferation by 29.6% compared to untreated cells at day 1 of differentiation. Semi‐quantitative RT‐PCR indicated that PEMFs significantly altered temporal expression of osteogenesis‐related genes, including a 2.7‐fold increase in expression of the key osteogenesis regulatory gene cbfa1, compared to untreated controls. In addition, exposure to PEMFs significantly increased ALP expression during the early stages of osteogenesis and substantially enhanced mineralization near the midpoint of osteogenesis. These results suggest that PEMFs enhance early cell proliferation in BMMSC‐mediated osteogenesis, and accelerate the osteogenesis. Bioelectromagnetics 31:209–219, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
Objectives:Mesenchymal stem cells (MSCs) have become seed cells and basic elements for bone regeneration and bone tissue engineering. The aim of the present study was to investigate the roles and mechanisms of bone morphogenetic protein 2 (BMP-2) on osteogenic differentiation of MSCs.Methods:Primary MSCs were isolated from the femur and tibia bone of rats and then transfected with BMP-2 and PGC-1α adenovirus vectors. Alkaline phosphatase (ALP) activity and alizarin red staining were used to measure osteogenic differentiation of MSCs. Real-time PCR and western blot assays were performed to assess osteogenic differentiation-related proteins levels. The activities of mitochondrial respiratory chain complexes I and II and mitochondrial fluorescence intensity were used to explore mitochondria status during osteogenic differentiation of MSCs.Results:We found that the ability of BMP-2 overexpressed (OE) group osteogenic differentiation was significantly improved, compared with the negative control (NC) group. The results also indicated that BMP-2 can promote the activity of mitochondria. We further used the gain- and loss-of-function approaches to demonstrate that BMP-2 promotes mitochondrial activity by up-regulating PGC-1α to promote osteogenic differentiation of MSCs.Conclusions:These results explored the important role of BMP-2 in the osteoblast differentiation of MSCs from a new perspective, providing a theoretical and experimental basis for bone defect and repair.  相似文献   

18.

Background  

The potential of mesenchymal stromal cells (MSCs) to differentiate into functional bone forming cells provides an important tool for bone regeneration. The identification of factors that trigger osteoblast differentiation in MSCs is therefore critical to promote the osteogenic potential of human MSCs. In this study, we used microarray analysis to identify signalling molecules that promote osteogenic differentiation in human bone marrow stroma derived MSCs.  相似文献   

19.
20.
Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号