首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   

2.
Plants ofLolium perenne, grown with and without the balansoidfungal leaf endophyteNeotyphodium lolii, were exposed to threeultraviolet radiation treatments at an outdoor facility in theUK for 172 d. Plants were exposed to either (a) a 30% elevationabove the ambient erythemally-weighted level of UV-B (280–315nm) radiation under banks of cellulose diacetate filtered fluorescentlamps that also produce UV-A (315–400 nm) radiation (UV-B+A);(b) elevated UV-A radiation alone under banks of polyester filteredlamps; or (c) ambient levels of solar radiation under banksof unenergized lamps. The fertility of plants grown withN. loliiwassignificantly reduced by the elevated UV-B+A exposure. After172 d, these plants produced 70% fewer spikes, 75% fewer seeds,71% lower total weight of seed and 78% fewer seeds per g d.wt of plant tissue than plants colonized byN. loliiwhich wereexposed to ambient radiation. There was no discernible effectof elevated UV-B+A exposure on the fertility of endophyte-freeplants. Plants irradiated with UV-B+A developed 14% thickerleaves than those exposed to ambient radiation. Those whichwere irradiated with elevated UV-A alone produced seeds thatwere 20% heavier than plants exposed to ambient levels of radiation.Plants grown withN. loliihad 7% thicker leaves, 4% thicker stembases and 7% fewer tillers than those grown without it. Thefresh mass of tillers of plants grown withN. loliiwas 11% greaterthan those of endophyte-free plants, owing to their higher moisturecontents. These results suggest that the fertility ofL. perennecolonizedbyN. loliiin the natural environment could be deleteriouslyaffected by elevated fluxes of UV-B radiation associated withstratospheric ozone depletion and that this may affect the populationdynamics of the species.Copyright 1998 Annals of Botany Company Fungal leaf endophyte,Neotyphodium lolii, perennial ryegrass (Lolium perenne), stratospheric ozone depletion, UV-B radiation.  相似文献   

3.
Ultraviolet (UV) radiation is a component of the solar radiations that alter various physiological and biochemical processes in plants. There have been interests in UV-C and UV-B radiations because of their effects on plant physiology. In this study, we investigated the effect of short term UV irradiance on both biochemical parameters and pathogenicity of several root-infecting fungi in Luffa cylindrica. Plant seedlings were exposed once to UV-B and UV-C radiation for 0, 1, 2, 3, 4, and 5 h. After exposure, plant seedlings were transferred to a potting soil that contained natural populations of root-infecting fungi for 30 days. Initially, the plant height and weight enhanced with the increase of exposure time but then plants showed slower growth at the highest time (5 h) of exposure. Colonization of Macrophomina phaseolina, Rhizoctonia solani, and Fusarium species was reduced when plants were exposed to UV radiation at various time intervals. We also found increased levels of chlorophyll ´a`, chlorophyll ‘b’, and carotenoids in plants exposed to radiation. An increase in protein content was also recorded under UV-B and UV-C exposure. Enhanced catalase (CAT) activity was noted after maximum time exposure with UV-C irradiance. Ascorbate peroxidase (APX) activity was increased with the exposure time to UV radiation. We conclude that short time UV irradiation causes alteration in photosynthetic pigments and stress enzymes activities in L. cylindrica that play a major role in the improvement of resistance against root-infecting fungi.  相似文献   

4.
Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation.  相似文献   

5.
The ecosystems of Tierra del Fuego (in southern Patagonia, Argentina) are seasonally exposed to elevated levels of ultraviolet‐B radiation (UV‐B: 280–315 nm), due to the passage of the ‘ozone hole’ over this region. In the experiments reported in this article the effects of solar UV‐B and UV‐A (315–400 nm) on two UV‐B defence‐related processes: the accumulation of protective UV‐absorbing compounds and DNA repair, were tested. It was found that the accumulation of UV‐absorbing sunscreens in Gunnera magellanica leaves was not affected by plant exposure to ambient UV radiation. Photorepair was the predominant mechanism of cyclobutane‐pyrimidine dimer (CPD) removal in G. magellanica. Plants exposed to solar UV had higher CPD repair capacity under optimal conditions of temperature (25 °C) than plants grown under attenuated UV. There was no measurable repair at 8 °C. The rates of CPD repair in G. magellanica plants were modest in comparison with other species and, under equivalent conditions, were about 50% lower than the repair rates of Arabidopsis thaliana (Ler ecotype). Collectively our results suggest that the susceptibility of G. magellanica plants to current ambient levels of solar UV‐B in southern Patagonia may be related to a low DNA repair capacity.  相似文献   

6.
We previously demonstrated that solar ultraviolet‐B (UV‐B) radiation levels in high altitude vineyards improve berry quality in Vitis vinifera cv. Malbec, but also reduce berry size and yield, possibly as a consequence of increased oxidative damage and growth reductions (lower photosynthesis). The defense mechanisms toward UV‐B signal and/or evoked damage promote production of antioxidant secondary metabolites instead of primary metabolites. Purportedly, the UV‐B effects will depend on tissues developmental stage and interplay with other environmental conditions, especially stressful situations. In this work, grapevines were exposed to high solar UV‐B (+UV‐B) and reduced (by filtering) UV‐B (?UV‐B) treatments during three consecutive seasons, and the effects of UV‐B, developmental stages and seasons on the physiology were studied, i.e. growth, tissues morphology, photosynthesis, photoprotective pigments, proline content and antioxidant capacity of leaves. The +UV‐B reduced photosynthesis and stomatal conductance, mainly through limitation in gas exchange, reducing plant's leaf area, net carbon fixation and growth. The +UV‐B augmented leaf thickness, and also the amounts of photoprotective pigments and proline, thereby increasing the antioxidant capacity of leaves. The defense mechanisms triggered by + UV‐B reduced lipid peroxidation, but they were insufficient to protect the photosynthetic pigments per leaf dry weight basis. The +UV‐B effects depend on tissues developmental stage and interplay with other environmental conditions such as total radiation and air temperatures.  相似文献   

7.
Light plays an important role in plants’ growth and development throughout their life cycle. Plants alter their morphological features in response to light cues of varying intensity and quality. Dedicated photoreceptors help plants to perceive light signals of different wavelengths. Activated photoreceptors stimulate the downstream signaling cascades that lead to extensive gene expression changes responsible for physiological and developmental responses. Proteins such as ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) act as important factors which modulate light‐regulated gene expression, especially during seedling development. These factors function as central regulatory intermediates not only in red, far‐red, and blue light pathways but also in the UV‐B signaling pathway. UV‐B radiation makes up only a minor fraction of sunlight, yet it imparts many positive and negative effects on plant growth. Studies on UV‐B perception, signaling, and response in plants has considerably surged in recent times. Plants have developed different strategies to use UV‐B as a developmental cue as well as to withstand high doses of UV‐B radiation. Plants’ responses to UV‐B are an integration of its cross‐talks with both environmental factors and phytohormones. This review outlines the current developments in light signaling with a major focus on UV‐B‐mediated plant growth regulation.  相似文献   

8.
The change in optimal quantum efficiency (F v/F m) of the Arctic species Laminaria saccharina and Palmaria palmata was investigated in a long-term experiment in situ under different radiation levels during the summer of 1997 in the Kongsfjord (Ny-Ålesund, Spitsbergen, Norway, 78°55.5′N, 11°56.0′E). Whole plants were incubated in an open box system made of UV-transparent Perspex and exposed to solar radiation (λ>295?nm), solar radiation excluding UVB (λ?>?320?nm) and solar radiation excluding UVA?+ UVB (λ?>?400?nm). Increasing radiation levels were simulated by transplantation of the pre-adapted algae from their growth depth at 2?m to a water depth of 1?m. Sensitivity to artificially increased UV radiation was determined by exposure of algae from the three treatments to 6?h of strong UV radiation. P. palmata was relatively insensitive to increasing UV radiation and recovered very fast and almost completely in 2?h. Even plants pre-cultured in ambient radiation levels excluding UVA?+?UVB or UVB only showed no photoinhibition after exposure to extra UV radiation in the laboratory. L. saccharina was, in comparison to P. palmata, more sensitive and showed photoinhibition under solar radiation and solar minus UVB radiation after transplantation from 2 to 1?m water depth. However, after 3?weeks at 1?m depth, F v/F m of L. saccharina was equal in all treatments and restored to the original values at the start of the experiment. Sensitivity to extra UV radiation in the laboratory increased in time, although recovery was also fast and occurred within 20?h.  相似文献   

9.
Solar ultraviolet-B radiation (UV-B) can have large impacts on the interactions between plants and herbivorous insects. Several studies have documented effects of UV-B-induced changes in plant tissue quality on the feeding performance of insect larvae. In contrast, the effects of UV-B-induced plant responses on the behavior of adult insects have received little attention. We carried out a series of field and glasshouse experiments using the model plant Arabidopsis thaliana L. and the crucifer-specialist insect Plutella xylostella L. (diamondback moth) to investigate the effects of UV-B on natural herbivory and plant–insect interactions. Natural herbivory under field conditions was less severe on plants exposed to ambient UV-B than on plants grown under filters that attenuated the UV-B component of solar radiation. This reduced herbivory could not be accounted for by effects of UV-B on larval feeding preference and performance, as P. xylostella caterpillars did not respond to changes in plant quality induced by UV-B. In contrast, at the adult stage, the insects presented clear behavioral responses: P. xylostella moths deposited significantly more eggs on plants grown under attenuated UV-B levels than on plants exposed to ambient UV-B. The deterring effect of UV-B exposure on insect oviposition was absent in jar1-1, a mutant with impaired jasmonic acid (JA) sensitivity, but it was conserved in mutants with altered ethylene signaling. The jar1-1 mutant also presented reduced levels of UV-absorbing phenolic compounds than the other genotypes that we tested. Our results suggest that variations in UV-B exposure under natural conditions can have significant effects on insect herbivory by altering plant traits that female adults use as sources of information during the process of host selection for oviposition. These effects of natural UV-B on plant quality appear to be mediated by activation of signaling circuits in which the defense-related hormone JA plays a functional role.  相似文献   

10.
Adventitious rooting is a complex developmental response affected by genetic and environmental factors. Radiation quality effects on adventitious rooting depend on characteristics such as species, growth stage, irradiance, spectral quality, and time of exposure. Eucalyptus is an essential genus for the paper industry, and high yield plantations depend on adventitious rooting of selected genotypes. This work addressed two hypotheses: (1) radiation quality equally affects adventitious rooting in Eucalyptus species of different recalcitrance; (2) adventitious rooting outcome depends on both donor plant and cutting radiation quality treatments. To that end, the easy-to-root Eucalyptus grandis and the recalcitrant Eucalyptus globulus were evaluated. The effect of white, blue, red and far-red radiation enrichment on microcuttings and donor plants of both species was evaluated in relation to rooting. There was no effect of radiation quality on adventitious rooting of E. grandis or when radiation treatments were applied to E. globulus microcuttings. In contrast, donor plants of E. globulus, grown in medium devoid of sucrose and exposed to far-red radiation, yielded microcuttings showing higher rooting percentage, even in the absence of exogenous auxin in the rooting medium. Sucrose in donor plant medium abolished the positive effect of far-red radiation. An increase in endogenous soluble sugars and starch contents in basal microcuttings was associated with far-red radiation treatment of donor plants. These results underline the importance of appropriate carbohydrate partitioning in donor plants for adventitious rooting of cuttings and provide a basis for understanding and overcoming rooting recalcitrance in E. globulus clones.  相似文献   

11.

Aims

The objective of this study was to investigate the role of transpiration on accumulation and distribution of thallium (Tl) in young durum wheat (Triticum turgidum L. var ‘Kyle’) and spring canola (Brassica napus L. cv ‘Hyola 401’) plants.

Methods

Seedlings were grown hydroponically and exposed to Tl(I) under different high relative humidity (RH) conditions which resulted in different rates of transpiration among treatments. Plants were harvested prior to exposure, after a dark period of 9 (wheat) or 10?h (canola), and after 24?h of exposure. Harvested plant material was digested and analyzed for Tl by GFAAS.

Results

Our results indicated that accumulation and distribution of Tl by plants was dependent on plant species, Tl(I) dose, duration of exposure and RH, but that the effect of RH was influenced by plant species and Tl dose. Plants exposed to Tl(I) under different RH conditions did not accumulate more Tl overall. In wheat, shoots with higher transpiration rates contained a higher Tl concentration. In canola, the rate of transpiration did not consistently affect the concentration of Tl in shoots.

Conclusions

Overall, our results suggest that accumulation and translocation of Tl by plants is influenced by environmental factors that affect transpiration, in addition to soil characteristics.  相似文献   

12.
The wild-type barley (WT; Hordeum vulgare L.) and its chlorophyll (Chl) b-less mutant chlorina f2 (clo f2) grown under shaded conditions in a greenhouse were transferred to outdoor conditions in early June with predominantly bright sunny days. During 6 days following transfer of plants we monitored the content of photosynthetic pigments, functional state of photosystem II (PSII) by means of Chl fluorescence induction kinetics and epidermal UV-shielding efficiency using Chl fluorescence imaging technique. Clo f2 mutant was more sensitive to exposure to an enhanced natural solar irradiance than WT barley. Nevertheless, clo f2 as well as WT were able to cope with stressful outdoor conditions, as was documented by the recovery of Chl a content and the maximal photochemical efficiency of PSII (FV/FM) after an initial decline. This was due to the immediate carotenoid-mediated photoprotection, reflected by strongly increased total carotenoids content and thermal energy dissipation localized within light-harvesting complexes of PSII (assessed by non-photochemical quenching of minimal fluorescence level). The positive acclimation response was further documented by an enhanced light-saturated electron transport rate through PSII (ETR). Based on the ratios of blue- to UV-excited Chl fluorescence we found that for both WT and clo f2 epidermal UV-shielding increased clearly after transfer to outdoor conditions and reached a saturation level after 3 days. In comparison with WT, clo f2 exhibited lower ability to induce UV-shielding. The kinetics of UV-shielding development during the outdoor treatment was different for the particular leaf regions. We suggest that this is related to the different age and developmental stage of the tissue along the leaf blade. The complementarity of carotenoid-mediated photoprotection and UV-shielding in acclimation of the assimilatory apparatus to increased visible and UV radiation is discussed.  相似文献   

13.
The wild-type barley (WT; Hordeum vulgare L.) and its chlorophyll (Chl) b-less mutant chlorina f2 (clo f2) grown under shaded conditions in a greenhouse were transferred to outdoor conditions in early June with predominantly bright sunny days. During 6 days following transfer of plants we monitored the content of photosynthetic pigments, functional state of photosystem II (PSII) by means of Chl fluorescence induction kinetics and epidermal UV-shielding efficiency using Chl fluorescence imaging technique. Clo f2 mutant was more sensitive to exposure to an enhanced natural solar irradiance than WT barley. Nevertheless, clo f2 as well as WT were able to cope with stressful outdoor conditions, as was documented by the recovery of Chl a content and the maximal photochemical efficiency of PSII (FV/FM) after an initial decline. This was due to the immediate carotenoid-mediated photoprotection, reflected by strongly increased total carotenoids content and thermal energy dissipation localized within light-harvesting complexes of PSII (assessed by non-photochemical quenching of minimal fluorescence level). The positive acclimation response was further documented by an enhanced light-saturated electron transport rate through PSII (ETR). Based on the ratios of blue- to UV-excited Chl fluorescence we found that for both WT and clo f2 epidermal UV-shielding increased clearly after transfer to outdoor conditions and reached a saturation level after 3 days. In comparison with WT, clo f2 exhibited lower ability to induce UV-shielding. The kinetics of UV-shielding development during the outdoor treatment was different for the particular leaf regions. We suggest that this is related to the different age and developmental stage of the tissue along the leaf blade. The complementarity of carotenoid-mediated photoprotection and UV-shielding in acclimation of the assimilatory apparatus to increased visible and UV radiation is discussed.  相似文献   

14.
Visual cues leading to host selection and landing are of major importance for aphids and evidence suggests that flight activity is very dependent on ultraviolet (UV)‐A radiation in the environment. At the same time research on insect plant hosts suggest that the UV‐B component can deter some pests via changes in secondary metabolite chemistry. Here, we examine the potential of UV (UV‐A/UV‐B) radiation to control insect pests in the glasshouse environment. We first examined artificial exposure to UV‐B and the potential to trigger morphological and biochemical modifications in pepper (Capsicum annuum L., Solanaceae) with implications for the fitness of green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). UV‐B caused accumulation of leaf secondary metabolites and soluble carbohydrates, and stimulated photosynthetic pigments. However, UV‐B did not impact on foliar protein content and aphid performance was unaffected. Next, we studied how altering the UV‐A/UV‐B ratio environment affected aphid orientation and spatial distribution over time, either directly or by exposing plants to supplemental UV before insect introduction. Aphids directly settled and dispersed on their host pepper plants more readily in the presence of supplemental UV‐A and UV‐B. In the control treatment with ambient glasshouse UV‐A and UV‐B, insects remained more aggregated. Furthermore, insects were less attracted to peppers pre‐exposed to supplemental UV‐A and UV‐B radiation. Our results suggest that suppression of UV‐A and UV‐B inside the protected environment reduces aphid colonization and dispersal. Furthermore, application of moderate exposure of young pepper plants to supplemental UV‐B radiation could aid in protection from the colonization by phytophagous insects.  相似文献   

15.
Jacobs WP 《Plant physiology》1978,61(3):307-310
To test the hypothesis that photoinduction acts by changing the ability of the plant to transport hormones, rather than by changing the ability of organs to synthesize them, the transport of carboxy-labeled indole-3-acetic acid was measured in the short day plant Xanthium pensylvanicum. Plants grown under noninductive conditions were matched for developmental stage, then assigned by a mathematically random method to either short day or noninductive conditions of “short day + light break.” After the plants had been subjected to one to seven cycles, the movement of auxin was followed through sections cut from the middle of petioles of various ages. Photoinduction, even with as many as seven cycles, had no effect on auxin movement in either the basipetal or acropetal direction. Auxin movement in vegetative Xanthium was similar to that in Coleus and Phaseolus: strongly polar in a basipetal direction through younger petioles, but with polarity declining with increasing petiole age and concomitant decreasing elongation.  相似文献   

16.
Integrated Pest Management of insects includes several control tactics, such as the use of photoselective nets, which may reduce the flight activity of insects. Limiting the dispersal of pests such as aphids and whiteflies is important because of their major role as vectors of plant viruses, while a minor impact on natural enemies is desired. In this study, we examined for the first time the dispersal ability of three vector species, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) and Myzus persicae (Sulzer) (Hemiptera: Aphididae), in cages covered with photoselective nets. Contrary to the results obtained with aphids, the ability of the whitefly B. tabaci, to reach the target plant was reduced by photoselective nets. In a second set of experiments, the impact of UV-absorbing nets on the visual cues of two important predator species, Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) and Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae), was evaluated. The anthocorid was caught in higher numbers in traps placed under regular nets, whereas the mites preferably chose environments in which the UV radiation was attenuated. We have observed a wide range of effects that impedes generalization, although photoselective nets have a positive effect on pest management of whiteflies and aphids under protected environments.  相似文献   

17.
Ultraviolet (UV) light induces a stocky phenotype in many plant species. In this study, we investigate this effect with regard to specific UV wavebands (UV-A or UV-B) and the cause for this dwarfing. UV-A- or UV-B-enrichment of growth light both resulted in a smaller cucumber (Cucumis sativus L.) phenotype, exhibiting decreased stem and petiole lengths and leaf area (LA). Effects were larger in plants grown in UV-B- than in UV-A-enriched light. In plants grown in UV-A-enriched light, decreases in stem and petiole lengths were similar independent of tissue age. In the presence of UV-B radiation, stems and petioles were progressively shorter the younger the tissue. Also, plants grown under UV-A-enriched light significantly reallocated photosynthates from shoot to root and also had thicker leaves with decreased specific LA. Our data therefore imply different morphological plant regulatory mechanisms under UV-A and UV-B radiation. There was no evidence of stress in the UV-exposed plants, neither in photosynthetic parameters, total chlorophyll content, or in accumulation of damaged DNA (cyclobutane pyrimidine dimers). The abscisic acid content of the plants also was consistent with non-stress conditions. Parameters such as total leaf antioxidant activity, leaf adaxial epidermal flavonol content and foliar total UV-absorbing pigment levels revealed successful UV acclimation of the plants. Thus, the UV-induced dwarfing, which displayed different phenotypes depending on UV wavelengths, occurred in healthy cucumber plants, implying a regulatory adjustment as part of the UV acclimation processes involving UV-A and/or UV-B photoreceptors.

A stocky phenotype develops in healthy cucumber plants as a regulatory adjustment toward UV-A and UV-B-enriched light, revealing a strong interaction between UV acclimation and developmental processes.  相似文献   

18.
The question of whether any specific plant species are typically growing along railway tracks (the so-called “railway-wandering plants”) has been discussed for many years. This study proves the existence of a form of Geranium robertianum species growing along railway tracks in North–Eastern Poland. Floristic studies have been carried out in 246 areas along railway tracks. This particular species was found in 70 studied areas (28 %). Comparative studies were carried out on 12 plant populations growing in the fieldwork and in glasshouse cultivation. Plants growing along the railway tracks in Wali?y were different from all other studied populations. They were small (smaller by 31 %, max. by 57 % than other plants), with little leaf blades representing different shapes and colour. In studies of light absorption by photosynthetic apparatus (chlorophyll fluorescence) under conditions of exposure to high light intensity, the plants from Wali?y were proved to have a better adaptation capacity to stress conditions. Increased levels of anthocyanins—which provided better protection of the photosynthetic apparatus against insolation—were shown. The protective properties against water deficiencies and excessive insolation were genetically preserved and were found in the second generation of plants cultivated in a glasshouse. For the first time, a new plant form of G. robertianum—a “railway-wandering plant” adapted to the conditions prevailing along railway tracks—was confirmed to exist. The form has developed probably after 1886, when the Bia?ystok–Zubki railway was built, featuring the Wali?y railway station.  相似文献   

19.
At Helgoland, in the North Sea, growth of the high sublittoral brown macroalga Dictyota dichotoma (Hudson) Lamoroux was examined in October (the time of tetraspore release) in an outdoor tank by exposing 2-day-old germlings to four solar radiation treatments achieved with different filter materials or an additional artificial light source: photosynthetically active radiation (PAR; 395–700 nm), PAR plus ultraviolet (UV)-A (320–700 nm), full solar spectrum, or solar spectrum plus artificial UV radiation (UVR). Based on length measurements over a period of 3 weeks, the growth rate in germlings strongly decreased in conditions with UVR compared to PAR: by 14% under PAR+UV-A, by 31% under the full solar spectrum and by 65% with additional UVR. Although growth rates of germlings under UVR were reduced mainly in the first week, the plants did not regain the size of the untreated plants even after 9 weeks. Regardless of the exposure, no defects in morphology or anatomy including the exposed apical meristem were detected, except for a reduction in cell division rates perhaps due to additional cost for photoprotective or repair mechanisms. Depending on the actual position of D. dichotoma plants in the natural habitat, individuals in high positions receive substantial amounts of the more harmful UV-B while those lower down might only receive UV-A during part of the day, thus the effect of UV-B on the growth of D. dichotoma will depend on its position in the field. The effects of tidal variation of the light climate and the implications of our results for the zonation of D. dichotoma are discussed. Received in revised form: 6 July 2000 Electronic Publication  相似文献   

20.
Cornelius Lütz 《Protoplasma》2010,244(1-4):53-73
The life of plants growing in cold extreme environments has been well investigated in terms of morphological, anatomical, and ecophysiological adaptations. In contrast, long-term cellular or metabolic studies have been performed by only a few groups. Moreover, a number of single reports exist, which often represent just a glimpse of plant behavior. The review draws together the literature which has focused on tissue and cellular adaptations mainly to low temperatures and high light. Most studies have been done with European alpine plants; comparably well studied are only two phanerogams found in the coastal Antarctic. Plant adaptation in northern polar regions has always been of interest in terms of ecophysiology and plant propagation, but nowadays, this interest extends to the effects of global warming. More recently, metabolic and cellular investigations have included cold and UV resistance mechanisms. Low-temperature stress resistance in plants from cold environments reflects the climate conditions at the growth sites. It is now a matter of molecular analyses to find the induced genes and their products such as chaperones or dehydrins responsible for this resistance. Development of plants under snow or pollen tube growth at 0°C shows that cell biology is needed to explain the stability and function of the cytoskeleton. Many results in this field are based on laboratory studies, but several publications show that it is not difficult to study cellular mechanisms with the plants adapted to a natural stress. Studies on high light and UV loads may be split in two parts. Many reports describe natural UV as harmful for the plants, but these studies were mainly conducted by shielding off natural UV (as controls). Other experiments apply additional UV in the field and have had practically no negative impact on metabolism. The latter group is supported by the observations that green overwintering plants increase their flavonoids under snow even in the absence of UV. Thus, their defense and antioxidant role dominates. Ultrastructural comparisons were unable to find special light adaptations in plants taken from polar regions vs. high alpine species. The only adaptation found at the subcellular level for most alpine and polar plants are protrusions of the chloroplast envelopes. They are seen as a demand for fast membrane transport requiring additional membrane surface area, whereby the increase in stroma volume may help to support carbohydrate formation. Plants forming such protrusions have to cope with a short vegetation time. These observations are connected to the question as to how photosynthesis works quite well even at or under zero temperatures. The interplay between plastids, mitochondria, and peroxisomes, known as photorespiration, seems to be more intense than in lowland plants. This organelle cooperation serves as a valve for a surplus in solar energy input under cold conditions. Additional metabolic acclimations are under investigation, such as the role of an alternative plastid terminal oxidase. Plants from cold environments may also be seen as ideal objects for studying the combined effects of high light plus cold resistance—from the molecular level to the whole plant adaptation. Modern instrumentation makes it possible to perform vital metabolic measurements under outdoor conditions, and research stations in remote polar and alpine areas provide support for scientists in the preparation of samples for later cellular studies in the home laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号