首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The capabilities of 20 strains of fungi to transform acetyl-11-keto-β-boswellic (AKBA) were screened. And biotransformation of AKBA by Cunninghamella blakesleana AS 3.970 afforded five metabolites (15), while two metabolites (6, 7) were isolated from biotransformation of Cunninghamella elegans AS 3.1207. The chemical structures of these metabolites were identified by spectral methods including 2D NMR and their structures were elucidated as 7β-hydroxy-3-acety-11-keto-β-boswellic acid (1), 21β-dihydroxy-3-acety-11-keto-β-boswellic acid (2), 7β,22α-dihydroxy-3-acety-11-keto-β-boswellic acid (3), 7β,16α-dihydroxy-3-acety-11-keto-β-boswellic acid (4), 7β,15α-dihydroxy-3-acety-11-keto-β-boswellic acid (5); 7β,15α,21β-trihydroxy-3-acety-11-keto-β-boswellic acid (6) and 15α,21β-dihydroxy-3-acety-11-keto-β-boswellic acid (7). All these products are previously unknown. Their primary structure–activity relationships (SAR) of inhibition activity on LPS-induced NO production in RAW 264.7 macrophage cells were evaluated.  相似文献   

2.
Biotransformation of the anabolic steroid dianabol (1) by suspended-cell cultures of the filamentous fungi Cunninghamella elegans and Macrophomina phaseolina was studied. Incubation of 1 with C. elegans yielded five hydroxylated metabolites 26, while M. phaseolina transformed compound 1 into polar metabolites 711. These metabolites were identified as 6β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (2), 15α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (3), 11α,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (4), 6β,12β,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (5), 6β,15α,17β-trihydroxy-17α-methylandrost-1,4-dien-3-one (6), 17β-hydroxy-17α-methylandrost-1,4-dien-3,6-dione (7), 7β,17β,-dihydroxy-17α-methylandrost-1,4-dien-3-one (8), 15β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (9), 17β-hydroxy-17α-methylandrost-1,4-dien-3,11-dione (10), and 11β,17β-dihydroxy-17α-methylandrost-1,4-dien-3-one (11). Metabolite 3 was also transformed chemically into diketone 12 and oximes 13, and 14. Compounds 6 and 1214 were identified as new derivatives of dianabol (1). The structures of all transformed products were deduced on the basis of spectral analyses. Compounds 114 were evaluated for β-glucuronidase enzyme inhibitory activity. Compounds 7, 13, and 14 showed a strong inhibition of β-glucuronidase enzyme, with IC50 values between 49.0 and 84.9 μM.  相似文献   

3.
The biotransformation of 3β-acetoxypregna-5,16-diene-20-one (1) by using a filamentous fungus Penicillium citrinum resulted in the production of four metabolites 25. The structures of these compounds were elucidated by different spectroscopic analysis (1D- and 2D-NMR) and HR-ESI-MS as 3β,7β-dihydroxy-pregn-5,16(17)-dien-20-one (2), 3β-hydroxy-7α-methoxy-pregn-5,16(17)-dien-20-one (3), 3β,7β,11α-trihydroxy-pregn-5,16(17)-dien-20-one (4), and a known 3β,7α-dihydroxy-pregn-5,16(17)-dien-20-one (5). The 7-O-methylation is a novel reaction in the field of microbial transformation of pregnane steroids.  相似文献   

4.
Microbial transformation of the steroidal sapogenin diosgenin (1) by resting cells of the filamentous fungus, Cunninghamella echinulata CGMCC 3.2716 was studied. Four metabolites were isolated and unambiguously characterized as (25R)-spirost-5-ene-3β,7β-diol-11-one (2), (25R)-spirost-5-ene-3β,7β-diol (3), (25R)-spirost-5-ene-3β,7β,11α-triol (4), and (25R)-spirost-5-ene-3β,7β,12β-triol (5), by various spectroscopic methods (1H, 13C NMR, DEPT, 1H–1H COSY, HMBC, HSQC and NOESY). Compound 2 is a new metabolite. The NMR data and full assignment for the known metabolites (25R)-spirost-5-ene-3β,7β-diol (3) and (25R)-spirost-5-ene-3β,7β,11α-triol (4) are described here for the first time. The biotransformation characteristics observed included were C-7β, C-11α and C-12β hydroxylations. Compounds 1–5 exhibited no significant cytotoxic activity to human glioma cell line U87.  相似文献   

5.
Three new metabolites, 5-hydroxy-3,7-dimethoxyflavone-4′-O-β-glucopyranoside (1), 2β,19-epoxy-3β,14β-dihydroxy-19-methoxy-5α-card-20(22)-enolide (4) and β-anhydroepidigitoxigenin-3β-O-glucopyranoside (5), along with two known compounds, uzarigenine (2) and β-anhydroepidigitoxigenin (3), were isolated from Calotropis procera (Asclepiadaceae). The structure elucidation was accomplished mainly by nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric methods. To examine putative antimicrobial or cytotoxic activities, various bioassays were performed. Uzarigenine (2) demonstrated moderate cytotoxicity.  相似文献   

6.
Some Geranium species have been used to treat diabetes. To evaluate the scientific basis of this ethnopharmacological use, we aimed to isolate potent α-glucosidase inhibitory metabolites of Geranium asphodeloides Burm. through in vitro bioactivity-guided fractionation. All the tested extracts showed high α-glucosidase inhibitory effect compared to acarbose. Among the tested extracts, the ethyl acetate subextract showed the highest activity with an IC50 value of 0.85 ± 0.01 µM. A hydrolysable tannin, 1,2,4-tri-O-galloyl-β-d-glucopyranose (1), and five flavonoid glycosides, kaempferol-3-O-α-rhamnopyranoside (2), kaempferol-3-O-α-arabinofuranoside (3), quercetin-3-O-β-glucopyranoside (4), quercetin-3-O-α-rhamnopyranoside (5), and quercetin-3-O-α-rhamnofuranoside (6), were isolated from the ethyl acetate subextract. Their structures were identified by 1D- and 2D-NMR experiments. 1 exhibited the highest α-glucosidase inhibitory effect, approximately 61 times more potent than positive control, acarbose, with an IC50 value of 0.95 ± 0.07 µM. Also, 2 was more potent than acarbose. An enzyme kinetics analysis revealed that compounds 2, 3 and 4 were competitive, whereas 1 and 6 uncompetitive inhibitors. Molecular docking studies were performed to get insights into inhibition mechanisms of the isolated compounds in the light of the enzyme kinetic studies using various binding sites of the enzyme model.  相似文献   

7.
A new sesquiterpene glycoside, (?)-epi-α-bisabolol 6-deoxy-β-d-gulopyranodide (1), has been isolated from the glandular trichome exudate of Brillantaisia owariensis (Acanthaceae). The structure of compound 1 was determined by spectroscopic analysis as well as acidic hydrolysis of 1 leading to (?)-epi-α-bisabolol (2) and 6-deoxy-d-gulose (3). This is the first study to analyze secondary metabolites from glandular trichome exudates of plants belonging to the Acanthaceae family. 6-Deoxygulopyranoside is the first example of an epi-α-bisabolol glycoside of plant origin.  相似文献   

8.
Four new flavonoid glycosides, curcucomosides A–D (14), three known flavonoid glycosides, 57, and four known diarylheptanoids, 811, were isolated from the ethanol extract of the aerial parts of Curcuma comosa. The structures of the new compounds were established as rhamnazin 3-O-α-l-arabinopyranoside (1), rhamnocitrin 3-O-α-l-arabinopyranoside (2), rhamnazin 3-O-α-l-rhamnopyranosyl-(1→2)-O-α-l-arabinopyranoside (3), and rhamnocitrin 3-O-α-l-rhamnopyranosyl-(1→2)-O-α-l-arabinopyranoside (4) by spectroscopic analysis and chemical reactions whereas those of the known compounds were identified by spectral comparison with those of the reported values.  相似文献   

9.
α-Mangostin (1), a prenylated xanthone isolated from the fruit hull of Garcinia mangostana L., was individually metabolized by two fungi, Colletotrichum gloeosporioides (EYL131) and Neosartorya spathulata (EYR042), repectively. Incubation of 1 with C. gloeosporioides (EYL131) gave four metabolites which were identified as mangostin 3-sulfate (2), mangostanin 6-sulfate (3), 17,18-dihydroxymangostanin 6-sulfate (4)and isomangostanin 3-sulfate (5). Compound 2 was also formed by incubation with N. spathulata (EYR042). The structures of the isolated compounds were elucidated by spectroscopic data analysis. Of the isolated metabolites, 2 exhibited significant anti-mycobacterial activity against Mycobacterium tuberculosis.  相似文献   

10.
Four new lanostane-type triterpenoids, inonotsuoxodiol B (1), inonotsuoxodiol C (2), epoxyinonotsudiol (3), and methoxyinonotsutriol (4), were isolated from the sclerotia of Inonotus obliquus. Their structures were determined to be 3β,22R-dihydroxylanosta-9(11),24-dien-7-one (1), 3β,22R-dihydroxylanosta-7,24-dien-11-one (2), 9α,11α-epoxy-lanosta-7,24-diene-3β,22R-diol (3), and 7β-methoxylanosta-8,24-diene-3β,11α,22R-triol (4) on the basis of NMR spectroscopy, including 1D and 2D (1H–1H-COSY, NOESY, HMQC, HMBC) NMR spectra, and EIMS.  相似文献   

11.
Three new D:A friedo-oleanane triterpenes, 3α-p-coumaroyl-D:A-friedo-oleanan-27-oic acid (1), 3α-(3,4-dihydroxycinnamoyl)-D:A-friedo-oleanan-27-oic acid (2), and 3α-(3,4-dihydroxycinnamoyl)-D:A-friedo-oleanan-27,15α-lactone (3) along with three known compounds, trichadenic acid A (4), trichadonic acid (5), and amentoflavone (6), were isolated from the stem barks of Anacolosa poilanei Gagnep. Their structures were established by spectral analysis, such as mass spectrometry, 1D-NMR, and 2D-NMR. Compound 1 exhibited cytotoxicity against LU-1, HepG2, MCF7, and KB cell lines. Compounds 2 and 3 were more active against KB and HepG2 compared to the LU-1 and MCF7 cells.  相似文献   

12.
Cytotoxicity-guided fractionation of a methanol extract of the leaves and twigs of Rolandra fruticosa using the HT-29 human colon cancer cell line led to the isolation of seven sesquiterpene lactones, including the hitherto unknown isorolandrolide, 13-methoxyisorolandrolide (1), and bourbonenolide, 2α,13-diacetoxy-4α-hydroxy-8α-isobutyroyloxybourbonen-12,6α-olide (2), as well as five known compounds, 13-acetoxyrolandrolide (3), 8-desacyl-13-acetoxyrolandrolide-8-O-tiglate (4), 2-epi-glaucolide E (5), 2α,13-diacetoxy-4α-hydroxy-8α-methacryloyloxybourbonen-12,6α-olide (6), and 2α,13-diacetoxy-4α-hydroxy-8α-tigloyloxybourbonen-12,6α-olide (7). The structures of the two sesquiterpenes were elucidated on the basis of spectroscopic methods. All isolates were evaluated for their cytotoxicity using the HT-29 cell line, and only 13-acetoxyrolandrolide (3) was found to possess a potent inhibitory effect against this cell line. Compounds 3, 5 and 6 were also tested in a NF-κB (p65) inhibition assay, and 3 was assessed in an in vivo hollow fiber assay.  相似文献   

13.
Three new cycloartane-type triterpene glycosides were isolated from the roots of Astragalus schottianus Boiss. Their structures were established as 20(R),25-epoxy-3-O-β-d-xylopyranosyl-24-O-β-d-glucopyranosyl-3β,6α,16β,24α-tetrahydroxycycloartane (1), 20(R),25-epoxy-3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl-24-O-β-d-glucopyranosyl-3β,6α,16β,24α-tetrahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,20(S),24(S),25-hexahydroxycycloartane (3) by the extensive use of 1D and 2D-NMR techniques and mass spectrometry.  相似文献   

14.
Four cycloartane- (hareftosides A–D) and oleanane-type triterpenoids (hareftoside E) were isolated from Astragalus hareftae along with fifteen known compounds. Structures of the compounds were established as 3,6-di-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (1), 3,6,24-tri-O-β-d-xylopyranosyl-3β,6α,16β,24(S),25-pentahydroxycycloartane (2), 3-O-β-d-xylopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),25(S)-epoxycycloartane (3), 16-O-β-d-glucopyranosyl-3β,6α,16β,25-tetrahydroxy-20(R),24(S)-epoxycycloartane (4), 3-O-[β-d-xylopyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→2)-O-β-d-glucuronopyranosyl]-soyasapogenol B (5) by the extensive use of 1D- and 2D-NMR experiments along with ESI-MS and HR-MS analyses.  相似文献   

15.
Six new cycloartane-type triterpene glycosides named 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R),25-pentahydroxycycloartane (1), 3-O-[β-d-glucopyranosyl(1  2)-β-d-xylopyranosyl]-3β,16β,23(R),24(R)-tetrahydroxy-25-dehydrocycloartane (2), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (3), 3-O-[β-d-xylopyranosyl]-6α-acetoxy-23α-butoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (4), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-6α-acetoxy-23α-methoxy-16β,23(R)-epoxy-24,25,26,27-tetranorcycloartane (5), 3-O-[β-d-glucopyranosyl(1  2)]-β-d-xylopyranosyl]-23α-methoxy-16β,23(R)-epoxy-4,25,26,27-tetranorcycloartane (6), in addition to three known secondary metabolites consisting of another cycloartane triterpene glycoside and two flavonol glycosides, were isolated from the aerial parts of Astragalus gombo Coss. & Dur. (Fabaceae). The structures of the isolated compounds were established by spectroscopic methods, including 1D and 2D-NMR, mass spectrometry and comparison with literature data.  相似文献   

16.
Chemical investigation of an acidic methanol extract of the whole plants of Datura metel resulted in the isolation of two new guainane sesquiterpenes, 1β,5α,7β-guaiane-4β,10α,11-triol (1) and 1α,5α,7α-11-guaiene-2α,3β,4α,10α,13-pentaol (2), along with eight known compounds: pterodontriol B (3), disciferitriol (4), scopolamine (5), kaempferol 3-O-β-d-glucosyl(1  2)-β-d-galactoside 7-O-β-d-glucoside (6), kaempferol 3-O-β-glucopyranosyl(1  2)-β-glucopyranoside-7-O-α-rhamnopyranoside (7), pinoresinol 4′′-O-β-d-glucopyranoside (8), (7R,8S,7′S,8′R)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxy-lignan-4-O-β-d-glucopyranoside (9), and (7S,8R,7′S,8′S)-4,9,4′,7′-tetrahydroxy-3,3′-dimethoxy-7,9′-epoxylignan-4-O-β-d-glucopyranoside (10). Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D NMR and MS spectra. Compounds 2-4 and 6-10 were shown to have modest anti-inflammatory effects through inhibition of NO production in LPS-stimulated BV cells.  相似文献   

17.
Twenty-two compounds were isolated from the 70% EtOH–H2O extract of Pulsatilla cernua (Thunb.) Bercht. ex J. Presl roots, and their structures were determined based on 1H NMR, 13C NMR and MS spectroscopic data, including (+)-pinoresinol (1), matairesinol (2), 4-ethoxycinnamic acid (3), p-hydroxy ethyl cinnamate (4), 3-(4′-methoxyphenyl)-2(E)-propenoic acid (5), methyl 4-hydroxycinnamate (6), radicol (7), cryptomeridiol (8), fraxinellone (9), diolmycin B2 (10), hederagonic acid (11), hederagenin (12), oleanolic acid (13), 3-O-α-L-arabinopyranosyl-oleanolic acid (14), hederagenin 3-O-α-L-arabinopyranoside (15), 3-O-[α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl] oleanolic acid (16), hederasaponin B (17), kizutasaponin K12 (18), patrinia saponin H3 (19), hederacholichiside F (20), cernuoside A (21) and cernuoside B (22). Eight compounds (310) were isolated and identified from the genus Pulsatilla for the first time.  相似文献   

18.
Three new phenolic glycosides, salviifosides A?C (13), and three known compounds salicin (4), kaempferol (5), and kaempferol 3-O-β-d-glucopyranoside (6) were isolated from the leaves of Alangium salviifolium (L.f.) Wangerin (Alangiaceae). The structures of the new metabolites were determined on the basic of spectroscopic analyses including two dimensional NMR. The anti-inflammatory activities of new compounds (1?3) were investigated on lipopolysaccharide (LPS)-induced murine macrophage cells line, RAW 264.7. Salviifoside B (2) potentially inhibits the productions of nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α).  相似文献   

19.
Fractionation of the deacetylated acetolyzate of the borate-insoluble fraction of the dextran elaborated by Leuconostoc mesenteroides NRRL B-1299 gave five tetrasaccharide fractions, isolated after chromatography on charcoal—Celite, paper chromatography, and paper electrophoresis. Examination of partial acid hydrolyzates of the tetrasaccharide fractions and their corresponding alditols, the relation between the logarithm of their partition functions (α') and molecular size, and methylation studies, showed them to be (a) 23-α-d-glucosyl-nigerotriose (1), (b) a mixture of 6-α-nigerotriosyl-d-glucose (2) and 61-α-d-glucosyl-nigerotriose (3) and/or 62-α-d-glucosyl-nigerotriose (4), (c) a mixture of 21-α-nigerosyl-isomaltose (5) and 32-α-isomaltosyl-kojibiose (6) and/or 62-α-nigerosyl-kojibiose (7), (d) 2-α-nigerotriosyl-d-glucose (8) and (e) nigerotetraose (9).  相似文献   

20.
Microbial transformation of bavachin (1), one of the major bioactive components of Psoralea corylifolia L., was performed by using Absidia coerulea. Three oxidized metabolites were obtained in the biotransformation of 1, and their structures were elucidated as bavachinone A (2), (2S)-4′-hydroxy-6,7-[(R)-2-(1-hydroxy-1-methylethyl)-2,3-dihydrofurano]flavanone (3), and (2S)-4′,7-dihydroxy-6-(2,3-dihydroxy-3-methylbutyl)flavanone (4) based on the spectroscopic analyses. Among them, metabolites 3 and 4 were new compounds. The biotransformation study suggested that 1 was fully oxidized to its metabolites within 5 days. Thus, biotransformation by A. coerulea can be used as a promising method for oxidation of bavachin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号