首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal hyperaccumulation is of great interest in recent years because of its potential application for phytoremediation of heavy metal contaminated soils. In this study, a field survey and a hydroponic experiment were conducted to study the accumulation characteristics of lead (Pb), zinc (Zn) and cadmium (Cd) in Arabis paniculata Franch., which was found in Yunnan Province, China. The field survey showed that the wild population of A. paniculata was hyper-tolerant to extremely high concentrations of Pb, Zn and Cd, and could accumulate in shoots an average level of 2300 mg kg?1 dry weight (DW) Pb, 20,800 mg kg?1 Zn and 434 mg kg?1 Cd, with their translocation factors (TFs) all above one. Under the hydroponic culture, stimulatory effects of Pb, Zn and Cd on shoot dry biomass were noted from 24 to 193 μM Pb, 9 to 178 μM Cd and all Zn supply levels in nutrient solution, while the effects were not obvious in the roots. Chlorophyll concentrations in Pb, Zn and Cd treatments showed an inverted U-shaped pattern, consistent with the change of plant biomass. Pb, Zn and Cd concentrations in the shoots and roots increased sharply with increasing Pb, Zn and Cd supply levels. They reached > 1000 mg kg?1 Pb, 10,000 mg kg?1 Zn and 100 mg kg?1 Cd DW in the 24 μM Pb, 1223 μM Zn and 9 μM Cd treatment, respectively, in which the plants grew healthy and did not show any symptoms of phytotoxicity. The TFs of Zn were basically higher than one and the amount of Zn taken by shoots ranged from 78.7 to 90.4% of the total Zn. However, the TFs of Pb and Cd were well below one, and 55.0–67.5% of total Pb and 57.8–83.5% of total Cd was accumulated in the shoots. These results indicate that A. paniculata has a strong ability to tolerate and hyperaccumulate Pb, Zn and Cd. Meanwhile, suitable levels of Pb, Zn and Cd could stimulate the biomass production and chlorophyll concentrations of A. paniculata. Thus, it provides a new plant material for understanding the mechanisms of stimulatory effect and co-hyperaccumulation of multiple heavy metals.  相似文献   

2.
We investigated the responses of phytochelatins (PCs), glutathione (GSH) and other non-protein thiols in Cd hyperaccumulator Arabis paniculata after Cd exposure. Applying γ-glutamylcysteine synthetase (γ-ECS) inhibitor, l-buthionine-sulfoximine (BSO), the roles of PCs in Cd tolerance and Cd accumulation in A. paniculata were evaluated. Plants were exposed to four Cd concentrations (0, 50, 100 and 250 μM) for different times (2w or 3w) with and without BSO. Overall, Cd exposure had little impact on plant biomass after 2w or 3w of growth except at the highest Cd level. A. paniculata tolerated ≤100 μM Cd with up to 1127 mg kg?1 Cd in the shoots and 5624 mg kg?1 Cd in the roots after 3w of Cd exposure. Cd exposure induced formation of PCs and three unknown thiols in the roots, but none were detected in the shoots. BSO had no significant effect on Cd sensitivity in plants though it reduced Cd accumulation in the roots. In addition, the molar ratio of PCs:Cd, which ranged from 0.7 to 1.3 after exposing to 50–100 μM Cd without BSO in the roots, was close to the value expected for PC-mediated Cd sequestration in plants. Those data indicate that GSH and PCs did not contribute to Cd tolerance in the shoots and Cd transport from the root to shoot in A. paniculata, but they may play an important role in Cd accumulation and Cd complexation in the roots of A. paniculata.  相似文献   

3.
In this study, zinc (Zn) and cadmium (Cd) tolerance, accumulation and distribution was conducted in Potentilla griffithii H., which has been identified as a new Zn hyperaccumulator found in China. Plants were grown hydroponically with different levels of Zn2+ (20, 40, 80 and 160 mg L?1) and Cd2+ (5, 10, 20 and 40 mg L?1) for 60 days. All plants grew healthy and attained more biomass than the control, except 40 mg L?1 Cd treatment. Zn or Cd concentration in plants increased steadily with the increasing addition of Zn or Cd in solution. The maximum metal concentrations in roots, petioles and leaves were 14,060, 19,600 and 11,400 mg kg?1 Zn dry weight (DW) at 160 mg L?1 Zn treatment, and 9098, 3077 and 852 mg kg?1 Cd DW at 40 mg L?1 Cd treatment, respectively. These results suggest that P. griffithii has a high ability to tolerate and accumulate Cd and Zn, and it can be considered not only as Zn but also as a potential cadmium hyperaccumulator. Light microscope (LM) with histochemical method, scanning electron microscope combined with energy dispersive spectrometry (SEM-EDS) and transmission electron microscope (TEM) were used to determine the distribution of Zn and Cd in P. griffithii at tissue and cellular levels. In roots, SEM-EDS confirmed that the highest Zn concentration was found in xylem parenchyma cells and epidermal cells, while for Cd, a gradient was observed with the highest Cd concentration in rhizodermal and cortex cells, followed by central cylinder. LM results showed that Zn and Cd distributed mainly along the walls of epidermis, cortex, endodermis and some xylem parenchyma. In leaves, Zn and Cd shared the similar distribution pattern, and both were mostly accumulated in epidermis and bundle sheath. However, in leaves of 40 mg L?1 Cd treatment, which caused the phytotoxicity, Cd was also found in the mesophyll cells. The major storage site for Zn and Cd in leaves of P. griffithii was vacuoles, to a lesser extent cell wall or cytosol. The present study demonstrates that the predominant sequestration of Zn and Cd in cell walls of roots and in vacuoles of epidermis and bundle sheath of leaves may play a major role in strong tolerance and hyperaccumulation of Zn and Cd in P. griffithii.  相似文献   

4.
The effects of heavy metals (Cd, Cr and Cd + Cr) on the motility parameters and oxidative stress of sterlet (Acipenser ruthenus) sperm were investigated in vitro. Sturgeon sperm were exposed for 2 h to heavy metals at environmental related concentrations (0.1 mg L?1 Cr, 0.001 mg L?1 Cd, 0.1 mg L?1 Cr + 0.001 mg L?1 Cd) and higher concentrations (5.0 mg L?1 Cr, 0.05 mg L?1 Cd, 5.0 mg L?1 Cr + 0.05 mg L?1 Cd). Results revealed that environmental concentrations of heavy metals had no significant influence on motility parameters and antioxidant responses indices in sturgeon sperm, except for LPO level and SOD activity. But higher concentrations of these metals induced oxidative tress in sturgeon sperm in vitro, associated with sperm motility parameters inhibition. Our results suggest that using of sperm in vitro assays may provide a novel and efficiently means for evaluating the effects of residual heavy metals in aquatic environment on sturgeon.  相似文献   

5.
Pot experiments were performed to evaluate the phytoremediation capacity of plants of Atriplex halimus grown in contaminated mine soils and to investigate the effects of organic amendments on the metal bioavailability and uptake of these metals by plants. Soil samples collected from abandoned mine sites north of Madrid (Spain) were mixed with 0, 30 and 60 Mg ha−1 of two organic amendments, with different pH and nutrients content: pine-bark compost and horse- and sheep-manure compost. The increasing soil organic matter content and pH by the application of manure amendment reduced metal bioavailability in soil stabilising them. The proportion of Cu in the most bioavailable fractions (sum of the water-soluble, exchangeable, acid-soluble and Fe–Mn oxides fractions) decreased with the addition of 60 Mg ha−1 of manure from 62% to 52% in one of the soils studied and from 50% to 30% in the other. This amendment also reduced Zn proportion in water-soluble and exchangeable fractions from 17% to 13% in one of the soils. Manure decreased metal concentrations in shoots of A. halimus, from 97 to 35 mg kg−1 of Cu, from 211 to 98 mg kg−1 of Zn and from 1.4 to 0.6 mg kg−1 of Cd. In these treatments there was a higher plant growth due to the lower metal toxicity and the improvement of nutrients content in soil. This higher growth resulted in a higher total metal accumulation in plant biomass and therefore in a greater amount of metals removed from soil, so manure could be useful for phytoextraction purposes. This amendment increased metal accumulation in shoots from 37 to 138 mg pot−1 of Cu, from 299 to 445 mg pot−1 of Zn and from 1.8 to 3.7 mg pot−1 of Cd. Pine bark amendment did not significantly alter metal availability and its uptake by plants. Plants of A. halimus managed to reduce total Zn concentration in one of the soils from 146 to 130 mg kg−1, but its phytoextraction capacity was insufficient to remediate contaminated soils in the short-to-medium term. However, A. halimus could be, in combination with manure amendment, appropriate for the phytostabilization of metals in mine soils.  相似文献   

6.
In this study an experiment was carried out to study the process of stress adaptation in Groenlandia densa (opposite-leaved pondweed) grown under cadmium stress (0–20 mg L?1 Cd). The results showed that Cd concentrations in plants increased with increasing Cd supply levels and reached a maximum of 0.43 mg kg?1 DW at 0.5 mg L?1 Cd concentrations. The level of photosynthetic pigments and soluble proteins decreased only upon exposure to high Cd concentrations. At the same time, the level of malondialdehyde (MDA) increased with increasing Cd concentration. These results suggested an alleviation of stress that was presumably the result of by antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST) as well as ascorbate peroxidase (APX), which increased linearly with increasing Cd levels. Cellular antioxidants levels showed a decline suggesting a defensive mechanism to protect against oxidative stress caused by Cd. In addition, the proline content in G. densa increased with increasing cadmium levels. These findings suggest that G. densa is equipped with an efficient antioxidant mechanism against Cd-induced oxidative stress which protects the plant's photosynthetic machinery from damage.Our present work concluded that G. densa has a high level of Cd tolerance and accumulation. We also found that moderate Cd treatment (0.05–5 mg L?1 Cd) alleviated oxidative stress in plants, while the addition of higher amounts of Cd (10–20 mg L?1) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

7.
Nickel (Ni) may impair plant water balance through detrimental effects on the belowground level. Bilberry (Vaccinium myrtillus L.) plants were grown in a mesic heath forest-type soil and subjected to Ni sulphate (NiSO4·6H2O) concentrations of 0, 10, 50, 100 and 500 mg m−2 during an entire growing season in northern Finland (65°N). Biomass of belowground rhizomes, and tissue water content (TWC) and anthocyanin concentrations of aerial shoots were determined from mature plants in order to study rhizospheric Ni stress, and its possible long-distance effects on aerial shoots. As the major proportion of biomass of bilberry is invested in belowground parts, it was hypothesised that Ni-induced rhizospheric disturbance causes water stress in aerial shoots and increases their anthocyanin concentrations for osmotic regulation. Uptake of Ni from the soil to the rhizome and aerial shoots was measured with X-ray fluorescence spectrometry. Ni concentrations in the soil and rhizome exhibited a dose–response relationship, but the concentrations in the rhizome were about 10-fold lower (<3 mg Ni kg−1) than those in the soil (<30 mg Ni kg−1). Translocation of Ni from the rhizome to aerial shoots did not occur, as Ni concentrations in shoots remained at 1 mg Ni kg−1. Although Ni concentrations in the rhizome were below the threshold values of Ni toxicity (i.e. 10–50 mg Ni kg−1), Ni decreased the rhizome biomass. Anthocyanins decreased in aerial shoots along with the Ni accumulation in the rhizome, while TWC was unaffected. The result suggests that anthocyanins are not involved in osmotic regulation under Ni stress, since anthocyanins in aerial shoots responded to the Ni concentrations in the rhizome despite the lack of water stress.  相似文献   

8.
Kentucky bluegrass (Poa pratensis) and tall fescue (Festuca arundinacea) are hypertolerant grasses to soil cadmium contamination. Little information is available on their tolerance mechanism. A sand culture and a hydroponic culture experiment were designed to investigate the Cd chemical form changes and its translocation in different tissues. The results showed that Kentucky bluegrass and tall fescue can tolerate 50–200 mg kg−1 of soil Cd stresses and accumulate as high as 4275 and 2559 mg Cd kg−1 DW, respectively, in their shoots without the loss of shoot biomass. Their Cd hypertolerance was correlated with an increase of the undissolved Cd phosphates in the leaves in both grass species, as determined by sequential solvent extraction procedures. The superior Cd tolerance of tall fescue to Kentucky bluegrass was associated with less Cd translocation into the stele of roots and less Cd transported to leaves. The pectate- and protein-integrated Cd forms may be involved in the symplastic translocation of Cd from cortex into stele, and this may lead the higher Cd concentrations in the stele of roots and then above ground leaves via long-distance transport in Kentucky bluegrass.  相似文献   

9.
Arsenic hyperaccumulation by Pteris vittata L. (Chinese brake fern) may serve as a defense mechanism against herbivore attack. This study examined the effects of arsenic exposure (0, 5, 15 and 30 mg kg?1) on scale insect (Saissetia neglecta) infestation of P. vittata. Scale insects were counted as a percentage fallen from the plant to the total number of insects after 1 week of As-treatment. The arsenic concentrations in the fronds ranged from 5.40 to 812 mg kg?1. Greater arsenic concentrations resulted in higher percentage of fallen-scale insects (17.2–55.0%). Lower arsenic concentrations (≤5 mg kg?1) showed significantly lower effect on the population compared to 15–30 mg kg?1 (p < 0.05). Arsenic content in the fallen-scale insects was as high as 194 mg kg?1, which indicated that arsenic has been ingested by the scale insects via plant sap. This study is consistent with the hypothesis that arsenic may help P. vittata defend against herbivore's attack.  相似文献   

10.
Chlor-alkali plants are known to be major sources of Hg emissions into the air. Therefore level of this metal in their surrounding must be carefully controlled. The aim of this work was to study the impact of the chlor-alkali industry in Brzeg Dolny (SW Poland) on the length of the vegetative short shoots of the pollution tolerant Betula pendula using the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in the ubiquitous, terrestrial moss Brachythecium rutabulum as the pollution indicator of the environment. This investigation showed up to 14 mg kg−1 elevated concentrations of Hg in mosses from sites the most close (0–500 m) to the chlor-alkali factory. This concentration decreased with increasing distance from the factory. Two and half km away from the factory the Hg concentration falls to values of 0.1–0.2 mg kg−1 being still higher than background concentrations of 0.03–0.04 mg kg−1. Decreasing concentrations of Co, Cr, Fe and Ni were also correlated with increasing distance from the plant. The results indicate that B. rutabulum may be a suitable ecological indicator of metal pollution by chlor-alkali industry. Higher concentration of accumulated metals by this moss corresponds with longer vegetative short shoots of B. pendula. Vegetative short shoots may be used as bioindicators of metal pollution where mosses are absent. This study demonstrates the importance of controlling the emissions of chlor-alkali industry especially if situated in the midst of densely populated areas with potential risks to the inhabitants.  相似文献   

11.
This study investigated the distribution and accumulation of strontium (Sr) in the shoots and roots of Euphorbia macroclada (EU), Verbascum cheiranthifolium (VR), and Astragalus gummifer (AS), with respect to their potential use in phytoremediation. Plant samples and their associated soils were collected from the arid and semi-arid Keban mining area and were analyzed inductively by ICP-MS for Sr. Mean Sr values in the shoots, roots and soil were, respectively, 453, 243 and 398 mg kg?1 for E. macroclada; 149, 106 and 398 mg kg?1 for V. cheiranthifolium; and 278, 223 and 469 mg kg?1 for A. gummifer. The enrichment factors for root (ECR) and shoot (ECS) of these plants were lower than 1 or close to 1, except for the shoot of E. macroclada. The mean translocation factors (TLF) of these plants were higher than 1 and 2.08 for E. macroclada, 1.47 for V. cheiranthifolium, 1.18 for A. gummifer. It thus appeared that the shoots of these plants can be an efficient bioaccumulator plant for Sr and it can be used in cleaning or rehabilitating of the contaminated soil and areas by Sr because of their high translocation factors.  相似文献   

12.
There is a major need to understand the historical condition and chemical/biological functions of the ecosystems following a conversion of wetlands to agricultural functions. To better understand the dynamics of soil total organic carbon (TOC) and phosphorus (P) during beef cattle pastures to wetland reconversion, soil core samples were collected from the beef cattle pasture and from the natural wetland at Plant City, FL, during five summer seasons (2002–2007). The levels of TOC and soil P were significantly affected by changing land use and hydrology. Draining natural wetlands to grazed pastures resulted in very pronounced reduction of TOC from 180.1 to 5.4 g g?1. Cumulative concentrations of total phosphorus (TP) in soils (1134 mg kg?1) under drained condition are two to three times lower than those in soils (2752 mg kg?1) under flooded condition over the periods of land use reconversion. There was a declining trend (r = 0.82**; p  0.01) in total soil P from natural wetland (763 mg kg?1) to altered pastures (340 mg kg?1), largely as organic-bound P (natural wetland, 48%; grazed pastures, 44%; altered pastures, 29%). These results are important in establishing baseline information on soil properties in pasture and wetland prior to restoring and reconverting pasture back to wetland conditions. The results further suggest that changes in soil properties due to changing land use and hydrologic conditions (drying and re-wetting) could be long lasting.  相似文献   

13.
Biodegradation rate and the high molecular weight hydrocarbons are among the important concerns for bioremediation of crude oil. Inoculation of a non-oil-degrading bacterium as supplementary bacteria increased oil biodegradation from 57.1% to 63.0% after 10 days of incubation. Both the oil-degrading bacteria and the non-oil-degrading bacteria were isolated from Malaysian marine environment. Based on the 16S rDNA sequences, the oil-degrading bacteria was identified as Pseudomonas pseudoalcaligenes (99% similarity) while the non-oil-degrading bacterium was Erythrobacter citreus (99% similarity). E. citreus does not grow on crude oil enriched medium under present experimental condition but it withstands 5000 mg kg?1 Tapis blended crude oil in sediment. Under optimal condition, the oil-degrading bacterium; P. pseudoalcaligenes, alone utilized 583.3 ± 3.8 mg kg?1 (57.1%) at the rate of 3.97 × 10?10 mg kg?1 cell?1 day?1 Tapis blended crude oil from 1000 mg kg?1 oil-contaminated sediment. Inoculation of E. citreus as the supplementary bacteria to P. pseudoalcaligenes enhanced biodegradation. The bacterial consortium degraded 675.8 ± 18.5 mg kg?1 (63.0%) Tapis blended crude oil from the 1000 mg kg?1 oil-contaminated sediment. Biodegradation rate of the bacterial consortium increased significantly to 4.59 × 10?10 mg kg?1 cell?1 day?1 (p = 0.02). Improvement of the oil degradation by the bacterial consortium was due to the synergetic reaction among the bacterial inoculants. There are two implications: (1) E. citreus may have a role in removing self-growth-inhibiting compounds of P. pseudoalcaligens. (2) P. pseudoalcaligenes degraded Tapis blended crude oil while E. citreus competes for the partially degraded hydrocarbons by P. pseudoalcaligenes. P. pseudoalcaligenes forced to breakdown more hydrocarbons to sustain its metabolic requirement. The bacterial consortium degraded 78.7% of (C12–C34) total aliphatic hydrocarbons (TAHs) and 74.1% of the 16 USEPA prioritized polycyclic aromatic hydrocarbons.  相似文献   

14.
Duckweeds, as a group, are important early warning indicators for the assessment of contaminated ecosystems due to their propensity to accumulate pollutants. In the present study, we investigated the potential use of Lemna gibba L. (Lemnaceae) as an ecological indicator for boron (B) mine effluent containing B concentration above 10 mg l−1. For this purpose, L. gibba fronds were grown for 7 days in simulated water contaminated with B mine effluent. The important note is that this study was carried out in Kırka (Eskişehir, Turkey) B reserve area, which is the largest borax reserve in all over the world, under natural climatic conditions in the field. The results demonstrated that accumulations of B by L. gibba gradually increased based on the initial B concentrations (10, 25, 50, 100, and 150 mg l−1) of the mine effluent. B concentration in the dry weight of the plant reached 639 mg kg−1 when the minimum initial dosage (10 mg l−1) was applied and 2711 mg kg−1 when the maximum initial dosage (150 mg l−1) was applied during the study. However, significant reductions in their relative growth rates occurred in 50, 100 and 150 mg l−1 initial B concentrations. Results suggest that 25 mg l−1 B concentration in water seemed to be a sensitive endpoint for L. gibba that could be used as a critical bioindicator level of B contaminated water. Following our data, we also constructed a simple growth model under the climatic conditions in this region of Turkey, but in instructive as a worldwide model. L. gibba is, therefore, suggested to be able to use as both an indicator and a phytoremediation tool because of its high accumulation capacity for B contaminated water.  相似文献   

15.
Bechmeria nivea (L.) Gaud. (Ramie) is a promising species for Cd phytoextraction with large biomass and fast growth rate. Nevertheless, little information is available on its tolerance mechanisms towards Cd. Determination of Cd distribution and chemical speciation in ramie is essential for understanding the mechanisms involved in Cd accumulation, transportation and detoxification. In the present study, ramie plants were grown in hydroponics with increasing Cd concentrations (0, 1, 3, 7 mg l?1). The subcellular distribution and chemical forms of Cd in different tissues were determined after 20 days exposure to this metal. To assess the effect of Cd uptake on plant performance, nitrate reductase activity in leaves and root activity were analyzed during the entire experimental period. Increased Cd level in the medium caused a proportional increase in Cd uptake, and the highest Cd concentration occurred in roots, followed by stems and leaves. Subcellular fractionation of Cd-containing tissues indicated that about 48.2–61.9% of the element was localized in cell walls and 30.2–38.1% in soluble fraction, and the lowest in cellular organelles. Cd taken up by ramie rapidly equilibrated among different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 1 M NaCl and 2% HAC, and the least in residues in all test tissues. In roots, the subdominant amount of Cd was extracted by d-H2O and 80% ethanol, followed by 0.6 M HCl. While in stems and leaves, the amount of 0.6 M HCl-extractable Cd was comparable with that extracted by 80% ethanol or d-H2O. 1 mg l?1 Cd stimulated nitrate reductase activity in leaves and root activity, while a concentration-dependent inhibitory effect was observed with increasing Cd concentration, particularly at 7 mg l?1 Cd. It could be suggested that the protective mechanisms evolved by ramie play an important role in Cd detoxification at relatively low Cd concentrations (below 3 mg l?1 Cd) but become restricted to maintain internal homeostasis with higher Cd stress.  相似文献   

16.
This work illustrates the feasibility of vermitechnology to stabilize sludge from an agro-industry. To achieve the goal, industrial sludge (IS) was mixed with three different bulky agents, i.e. cow dung (CD), biogas plant slurry (BGS) and wheat straw (WS), in different ratios to produce nine different feed mixtures for earthworm Eisenia fetida. Vermicomposting bedding material was analyzed for its different physic-chemical parameters after 15 weeks of experimentations. In all waste mixtures, a decrease in pH, organic C and C:N ratio, but increase in total N, available P, exchangeable K, exchangeable Ca and trace elements (Mg, Fe and Zn) was recorded. IS (40%) + CD (60%) and IS (40%) + BGS (60%) vermibeds showed the highest mineralization rate and earthworm growth patterns during vermicomposting process. Vermicompost contains (dry weight basis) a considerable range of plant available forms of P (17.5–28.9 g kg?1), K (13.8–21.4 g kg?1), Ca (41.1–63.4 g kg?1), Mg (262.4–348.3 mg kg?1), Fe (559.8–513.0 mg kg?1) and Zn (363.1–253.6 mg kg?1). Earthworm growth parameters, i.e. biomass gain, total cocoon production, individual growth rate (mg wt. worm?1 day?1), natality rate, total fecundity were optimum in bedding containing 20–40% industrial sludge. C:N ratio of worm-processed material was within the agronomic acceptable or favorable limit (<15–20). The results clearly suggested that vermitechnology can be a potential technology to convert industrial sludges into vermifertilizer for sustainable land restoration practices.  相似文献   

17.
Plants of miscanthus were grown in a Cd-free solution up to 1 month before heading and then were exposed to 0, 0.75, 1.5, 2.25 and 3 mg l−1 cadmium for 36 days. All cadmium levels were toxic to miscanthus. Growth response was not dose-dependent and two toxicity thresholds were identified: one between 0 and 0.75 mg l−1 Cd, the other between 2.25 and 3 mg l−1 Cd. The former caused a biomass decrease by about 50%, whereas the latter completely inhibited growth and disrupted the mechanisms that restricted Cd translocation to the shoot. Growth of the aerial part was affected by cadmium more than that of the hypogeal one. Cadmium did not change the N concentration of different plant parts, but markedly reduced the N uptake of the plant, the N net uptake rate (NUR) and the N net translocation rate (NTR) from the rhizome to the aerial part. These two indexes equalled zero when plants ceased to grow. Otherwise, the Cd-NUR increased with Cd supply and the Cd-NTR from rhizome to aerial part showed the highest increment when plants did not grow at all. This suggests different uptake pathways for the two elements, active for nitrogen and passive for cadmium. The Cd concentration and the Cd content markedly increased with all Cd levels, following the order roots  rhizome > culms > leaves. The Cd concentration and the Cd content of aerial organs increased with Cd supply, but increments were highest between 2.25 and 3 mg l−1 Cd. The highest Cd concentrations were recorded in plants grown with 3 mg l−1 Cd and were 41 and 122 mg kg−1, respectively, for the aerial and the hypogeal plant parts. The hypogeal plant part retained most of the cadmium taken up from solution, accounting for approximately 87% of total plant cadmium with the three lower Cd levels, and for 73% with the highest one. The maximum Cd content of the entire plant was achieved with the two higher Cd levels and was approximately 4.7 mg, while the Cd content of the aerial part was highest with 3 mg l−1 Cd (1.2 mg Cd per plant) and that of the hypogeal one with 2.25 mg l−1 Cd (4 mg Cd per plant). The highest aerial content achieved in this experiment was 10-fold that obtained in a previous research when small-sized plants were exposed to the same Cd level.  相似文献   

18.
The bioaccumulation of chromium(VI), nickel(II), copper(II), and reactive dye by the yeast Rhodotorula mucilaginosa has been investigated in media containing molasses as a carbon and energy source. Optimal pH values for the yeast cells to remove the pollutants were pH 4 for copper(II) and dye, pH 6 for chromium(VI) and dye, and pH 5 for nickel(II) and dye in media containing 50 mg l?1 heavy metal and 50 mg l?1 Remazol Blue. The maximum dye bioaccumulation was observed within 4–6 days and uptake yields varied from 93% to 97%. The highest copper(II) removal yields measured were 30.6% for 45.4 mg l?1 and 32.4% for 95.9 mg l?1 initial copper(II) concentrations. The nickel(II) removal yield was 45.5% for 22.3 mg l?1, 38.0% for 34.7 mg l?1, and 30.3% for 62.2 mg l?1. Higher chromium(VI) removal yields were obtained, such as 94.5% for 49.2 mg l?1 and 87.7% for 129.2 mg l?1 initial chromium(VI) concentration. The maximum dye and heavy metal bioaccumulation yield was investigated in media with a constant dye (approximately 50 mg l?1) and increasing heavy metal concentration. In the medium with 48.9–98.8 mg l?1 copper(II) and constant dye concentration, the maximum copper(II) bioaccumulation was 27.7% and 27.9% whereas the maximum dye bioaccumulation was 96.1% and 95.3%. The maximum chromium(VI) bioaccumulation in the medium with dye was 95.2% and 80.3% at 48.2 and 102.2 mg l?1 chromium(VI) concentrations. In these media dye bioaccumulation was 76.1% and 35.1%, respectively. The highest nickel(II) removal was 6.1%, 20.3% and 16.0% in the medium with 23.8 mg l?1 nickel(II) + 37.8 mg l?1 dye, 38.1 mg l?1 nickel(II) + 33.4 mg l?1 dye and 59.0 mg l?1 nickel(II) + 39.2 mg l?1 dye, respectively. The maximum dye bioaccumulation yield in the media with nickel(II) was 94.1%, 78.0% and 58.7%, respectively.  相似文献   

19.
Numerous studies have demonstrated that endotoxin plays an important role in the development and progression of hepatic cirrhosis. However, there is no effective remedy for the prevention and treatment of intestinal endotoxemia. Taurine has been reported to have beneficial effects on endotoxemia. Oats have been shown to absorb intestinal toxins and increase excretion of intestinal toxins. The present study was to investigate whether a combination of taurine and oat has an additive inhibitory effect on endotoxin release in a rat liver ischemia/reperfusion model. Our results showed that the combination of taurine (300 mg kg?1 d?1) and oat fiber (15 g kg?1 d?1) significantly reduced endotoxin levels in the portal vein by 36.3% when compared to the control group (0.168 ± 0.035 Eu/ml in the treatment group vs 0.264 ± 0.058 Eu/ml in the control group, P < 0.01). The treatment of taurine (300 mg kg?1 d?1) and oat fiber (15 g kg?1 d?1) induced 21.5% and 18.4% reduction in endotoxin levels, respectively, when compared to the control group (P < 0.05). We conclude that the combination of taurine and oat fiber achieved an additive inhibitory effect on intestinal endotoxin release, which might be an effective approach for the treatment of intestinal endotoxemia.  相似文献   

20.
A hydroponics culture experiment was conducted to investigate the effect of iron plaque on Cd uptake by and translocation within rice seedlings grown under controlled growth chamber conditions. Rice seedlings were pre-cultivated for 43 days and then transferred to nutrient solution containing six levels of Fe (0, 10, 30, 50, 80 and 100 mg L−1) for 6 days to induce different amounts of iron plaque on the root surfaces. Seedlings were then exposed to solution containing three levels of Cd (0, 0.1 and 1.0 mg L−1) for 4 days. In order to differentiate the uptake capability of Cd by roots with or without iron plaque, root tips (white root part without iron plaque) and middle root parts (with iron plaque) of pre-cultivated seedlings treated with 0, 30 and 50 mg L−1 Fe were exposed to 109Cd for 24 h. Reddish iron plaque gradually became visible on the surface of rice roots but the visual symptoms of the iron plaque on the roots differed among treatments. In general, the reddish color of the iron plaque became darker with increasing Fe supply, and the iron plaque was more homogeneously distributed all along the roots. The Fe concentrations increased significantly with increasing Fe supply regardless of Cd additions. The Cd concentrations in dithionite–citrate–bicarbonate (DCB)-extracts and in shoots and roots were significantly affected by Cd and Fe supply in the nutrient solution. The Cd concentrations increased significantly with increasing Cd supply in the solution and were undetectable when no Cd was added. The Cd concentrations in DCB-extracts with Fe supplied tended to be higher than that at Fe0 at Cd0.1, and at Cd1.0, DCB-Cd with Fe supplied was significantly lower. Cd concentrations in roots and shoots decreased with increasing Fe supply at both Cd additions. The proportion of Cd in DCB-extracts was significantly lower than in roots or shoots. Compared to the control seedlings without Fe supply, the radioactivity of 109Cd in shoots of seedlings treated with Fe decreased when root tips were exposed to 109Cd and did not change significantly when middle parts of roots were exposed. Our results suggest that root tissue rather than iron plaque on the root surface is a barrier to Cd uptake and translocation within rice plants, and the uptake and translocation of Cd appear to be related to Fe nutritional levels in the plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号