首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants respond to low nutrient availability by modifying root morphology and root system topology. Root responses to nitrogen (N) and phosphorus (P) limitation may affect plant capacity to withstand water stress. But studies on the effect of nutrient availability on plant ability to uptake and transport water are scarce. In this study, we assess the effect of nitrogen and phosphorus limitation on root morphology and root system topology in Pistacia lentiscus L seedlings, a common Mediterranean shrub, and relate these changes to hydraulic conductivity of the whole root system. Nitrogen and phosphorus deprivation had no effect on root biomass, but root systems were more branched in nutrient limited seedlings. Total root length was higher in seedlings subjected to phosphorus deprivation. Root hydraulic conductance decreased in nutrient-deprived seedlings, and was related to the number of root junctions but not to other architectural traits. Our study shows that changes in nutrient availability affect seedling water use by modifying root architecture. Changes in nutrient availability should be taken into account when evaluating seedling response to drought.  相似文献   

2.
As the main forestry species in the Canary Islands (Spain), Pinus canariensis is frequently used in afforestation programs. Several nursery techniques are commonly employed to modify its morphology and physiology with the aim of improving post-planting survival and growth. In this work, we studied how fertilization and light regime treatments applied during the nursery period modify biomass allocation patterns and produce effects in gas exchange and root hydraulic conductance. Seedlings were grown for a 6-month period in the nursery under two light regimes (full sunlight and 40% PAR reduction), and three fertilization levels were applied in each light regime. Morphology, biomass allocation patterns, leaf gas exchange and hydraulic conductance of the whole root system were evaluated. Fertilization treatments produced significant changes in biomass allocation, gas exchange and root hydraulic conductance under both light regimes. In contrast, no differences were found between full sunlight and shade, except for a slight variation in the root:shoot ratio. Photosynthesis rate and WUE increased with fertilization in both light regimes, while E and gs maintained the same values. An opposite trend was observed for root hydraulic conductance, which showed lower values with high fertilization regimes. The results obtained indicate that fertilization is more important, determining high photosynthetic capacity than high hydraulic conductance rates before planting in Pinus canariensis containerized seedlings.  相似文献   

3.
Summer leaf senescence in Pistacia lentiscus L. plants serves to remobilize nutrients from the oldest leaves to the youngest ones, and therefore contributes to plant survival during the adverse climatic conditions typical of Mediterranean summers, i.e. water deficit superimposed on high solar radiation and high temperatures. To evaluate the extent of photo- and antioxidative protection during leaf senescence of this species, changes in carotenoids, including xanthophyll cycle pigments, and in the levels of ascorbate and alpha-tocopherol were measured prior to and during summer leaf senescence in 3-year-old plants grown under Mediterranean field conditions. Although a chlorophyll loss of approx. 20% was observed during the first stages of leaf senescence, no damage to the photosynthetic apparatus occurred as indicated by constant maximum efficiencies of photosystem II photochemistry. During this period the de-epoxidation state of the xanthophyll cycle, and lutein, neoxanthin and ascorbate levels were kept constant. At the same time beta-carotene and alpha-tocopherol levels increased by approx. 9 and 70%, respectively, presumably conferring photo- and antioxidative protection to the photosynthetic apparatus. By contrast, during the later stages of leaf senescence, characterized by severe chlorophyll loss, carotenoids were moderately degraded (neoxanthin by approx. 20%, and both lutein and beta-carotene by approx. 35%), ascorbate decreased by approx. 80% and alpha-tocopherol was not detected in senescing leaves. This study demonstrates that mechanisms of photo- and antioxidative protection may play a major role in maintaining chloroplast function during the first stages of leaf senescence, while antioxidant defences are lost during the latest stages of senescence.  相似文献   

4.
Photosynthetic-induction response and light-fleck utilization were investigated for the current-year seedlings of Quercus serrata, a deciduous tree found in temperate regions of Japan. The tree seedlings were grown under three light regimes: a constant low photosynthetic photon flux density (PFD) regime of 50 mol m–2 s–1, a constant high PFD regime of 500 mol m–2 s–1, and a lightfleck regime with alternated low (lasting 5 s) and high (lasting 35 s) PFD. The photosynthetic-induction response following a sudden increase of PFD from 50 to 500 mol m–2 s–1 exhibited two phases: an initial fast increase complete within 3–5 s, and a second slow increase lasting for 15–20 min. Induction times required to reach 50% and 90% of steady-state assimilation rates were significantly shorter in leaves from the constant low PFD than those from the high PFD regime. During the first 60–100 s, the ratio of observed integrated CO2 uptake to that predicted by assuming that a steady-state assimilation would be achieved instantaneously after the light increase was significantly higher for leaves from the low PFD regime than from the high PFD regime. Lightfleck utilization was examined for various durations of PFD of 500 mol m–2 s–1 on a background PFD of 50 mol m–2 s–1. Lightfleck utilization efficiency was significantly higher in low PFD leaves than in the high PFD leaves for 5-s and 10-s lightflecks, but showed no difference among different light regimes for 100-s lightflecks. The contribution of post-illumination CO2 fixation to total carbon gain decreased markedly with increasing lightfleck durations, but exhibited no significant difference among growth regimes. Photosynthetic performances of induction response and lightfleck utilization in leaves from the lightfleck regime were more similar to those in leaves from the low PFD regime. It may be the total daily PFD rather than PFD dynamics in light regimes that affects the characteristics of transient photosynthesis in Q. serrata seedlings.  相似文献   

5.
Seasonal changes in leaf water potential (Φ) and leaf conductance (g1) were determined in almond trees under different irrigation regimes. The development of water stress in the rainfed treatment induced a specific seasonal dynamics of Φ values and an important reduction in g1 values. A decrease in g1 values occurred independently of the irrigation treatment through the growing season. No statistically significant differences were obtained in g1 values within the drip irrigated treatments.  相似文献   

6.
Restoration of degraded Mediterranean areas often requires the reintroduction of key-stone woody species but the establishment of seedlings of native species is frequently poor. This is partly due to insufficient knowledge of the ecology of these species at the seedling stage. Fast rooting and efficient water supply under water limiting conditions may be crucial to withstand summer drought and ensure establishment. However, knowledge of the relationship between root morphology and the water transport capacity of Mediterranean woody species in response to drought is still scarce. We evaluated the effect of low water availability on biomass allocation, root morphology and transpiration of a common Mediterranean shrub species, Pistacia lentiscus L. Seedlings of this species were grown in pots filled with soil under glasshouse conditions for 6 months, and irrigated either weekly (W+) or monthly (W?). Low water availability strongly reduced all fractions of biomass, and decreased relative biomass allocation belowground. Average diameter of fine roots colonising the soil was higher in W+ plants, but this resulted in only marginal effects on specific root length. Water limitation did not affect the topology of secondary roots colonising the soil. Surprisingly, the ratio of leaf area to coloniser roots surface area was higher in W? seedlings. Sapwood area was strongly correlated with leaf area, secondary roots cross-sectional area, and surface area of fine roots colonising the soil when all seedlings were pooled. In agreement with the pipe stem theory, the ratio of sapwood area to leaf area was not affected by watering regime. Plant water loss when soils were taken to field capacity was significantly correlated with leaf area, sapwood area, secondary roots cross-section area and coloniser roots surface area. Water loss at high water availability was greatly reduced in W? plants, as leaf area decreased and transpiration rates on a leaf area basis were similar in W+ and W? seedlings. P. lentiscus showed limited capacity to acclimate to low water availability by modifying biomass allocation and root morphology. Thus, parallel to what has been observed aboveground, this species can benefit from periods of high water availability by showing relatively high root growth rates, but may respond poorly to water scarcity.  相似文献   

7.
比较研究了华南丘陵地区植被恢复8种乔木树种在不同光条件下的光饱和点、日平均净光合速率、叶温、气孔导度日平均值、内在水分利用效率和光合辐射利用效率等生理生态特征。结果表明,火力楠和藜蒴具有演替后期种的特征,在荫蔽条件下生存和生长良好,它们不宜用作构建先锋群落的树种。大叶相思、马占相思和樟树是典型的阳生性树种,具有鲜明的演替后期种的特征;红椎和海南红豆显示除叶温以外的阳生性的特征。这些种类可被选作构建先锋群落的组成成分。桂西红荷则只能作为演替的过渡种类,它兼具有演替前期种和演替后期种的特征,尤其适用于对先锋群落进行林分改造。  相似文献   

8.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

9.
In order to reveal the drought resistance and adaptation of the C4 desert plant Haloxylon ammodendron under artificially controlled soil moisture regimes,representative plants were selected to measure canopy photosynthesis using canopy photosynthetic measurement system.The results showed that appropriate soil moisture significantly enhances the canopy and leaf photosynthetic capacity,and extremely high soil moisture is not conducive to the photosynthesis of H.ammodendron.  相似文献   

10.
The effects of temperature on root and shoot hydraulic conductances (g(shoot) and g(root)) were investigated for Quercus robur L. saplings. In a first experiment, conductances were measured with a High Pressure Flow Meter on excised shoots and detopped root systems. The g(root) and g(shoot) increased considerably with temperature from 0-50 degrees C. Between 15 degrees C and 35 degrees C, g(shoot) and g(root) varied with water viscosity. In a second experiment, the impact of temperature-induced changes in g(root) on sapling transpiration (E) and leaf water potential (psileaf) was assessed. Intact plants were placed in a growth cabinet with constant air and variable soil temperatures. E increased linearly with soil temperature but psileaf remained constant. As a consequence, a linear relationship was found between E and g(plant). The results illustrate the significance of g(plant) for the stomatal control of transpiration and the significance of temperature for tree water transport.  相似文献   

11.
The experiment was carried out in a research field near Murcia, Spain, over a 3-week period between September 26 and October 16, 2000. Sixteen trees were used in the experiment, eight of which were placed under a rectangular shading net, while the other eight were maintained in the open air. Trees were irrigated once per day and, after October 5th, water was witheld from eight trees (four shaded and four unprotected for 5 days). The leaf stomatal conductance and the photosynthesis rates were higher in the shaded trees than in the exposed plants, probably because the leaf water potential was lower in the unshaded plants. This higher leaf conductance partially compensated for the effect of low radiation on transpiration, and the reduction of daily sap flow registered in shaded trees was only around 10-20%. The net also affected trunk diameter changes, with the shaded trees showing lower values of maximum daily shrinkage. Soil water deficit and high radiation had a similar effect on plant water parameters, lowering leaf water potential, leaf stomatal conductance, and the photosynthesis rate. The effects of both conditions were accumulative and so the exposed water-stressed plants showed the lowest values of total hydraulic resistance and water use efficiency, while the shaded well-irrigated trees registered the highest values for both parameters. For this reason, we think that net shading could be extended to apricot culture in many areas in which irrigation water is scarce and insolation is high.  相似文献   

12.
The effects of different fertilization regimes on root growth characteristics, nutrient uptake and biomass production of Japanese larch (Larix kampferi Sarg.) and its hybrid larch (L. gmelinii × L. kampferi) seedlings were examined for one growing season. Seedlings were raised in the greenhouse under three fertilizer levels (10, 20, 40 mg N seedling–1 season–1) and two delivery schedules, conventional (C) and exponential (E) for 12 weeks. Root growth, biomass allocation and nutrient loading capacity of seedlings were measured for a 3-week interval. By the end of growing season, seedlings fertilized with low dose conventionally (10C) and exponentially (10E) developed relatively longer root and larger root surface areas than those fertilized at high dose exponential loading (40E). At final harvest, the 40E treated Japanese larch had 134% and 155% more shoot mass as compared with those raised under 20E and 10E treated seedlings, respectively. The seedlings fertilized under 10C and 10E showed a high root mass ratio, while 40E treated seedlings showed a low root mass ratio. These data indicated that different nutrient levels (10 mg, 20 mg and 40 mg) strongly affected root growth characteristics. The same seasonal dose (10 mg) applied exponentially (10E) accumulated more N in seedlings compared to the 10C treatment. Exponential fertilization enhanced an increase in N concentration of the whole plant suggesting exponential delivery schedule is an efficient fertilization technique for greater nutrient uptake of plants. In contrast, N concentration of whole plant was declined for seedlings treated with conventional fertilization due to growth dilution. Late in the growing season, seedlings raised under 40E did not significantly improved dry mass production of root, but nutrient accumulation increased without a concomitant increased in root dry mass production. The result suggests that seedlings fertilized exponentially at medium and high dose rates (20E and 40E) induced luxury nutrient consumption within the plant.  相似文献   

13.
We investigated phloem-xylem interactions in relation to leaf hydraulic capacity in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) by using phloem girdling method. Removal of bark tissues (phloem girdling) at the branch base resulted in a substantial decline in stomatal conductance (gS), net photosynthetic rate (PN), and leaf hydraulic efficiency, and in increase of leaf water potential (ΨL). Although gS declined more than PN (83 versus 78 %), the ratio of intercellular to ambient CO2 concentrations (ci/ca) increased from 0.67 to 0.87 in three days after girdling. Girdling induced a decrease in leaf hydraulic conductance (KL) on average by 43 % (P = 0.006). The changes in gS and leaf conductance to water vapour were co-ordinated with KL only in girdled branches whereas intrinsic water-use efficiency was invariant to KL. The declines in KL with girdling were not accompanied by changes in potassium ion concentration ([K+]), electrical conductivity, or pH of xylem sap. The results suggest that phloem girdling at the branch base does not influence the recirculation of ions between the phloem and xylem in hybrid aspen and the decrease of KL in response to the manipulation is not related to changes in [K+] and total ionic content of xylem sap.  相似文献   

14.
Geranium plants are an important part of urban green areas but suffer from drought, especially when grown in containers with a limited volume of medium. In this experiment, we examined the response of potted geraniums to different irrigation levels. Geranium (Pelargoniumxhortorum L.) seedlings were grown in a growth chamber and exposed to three irrigation treatments, whereby the plants were irrigated to container capacity (control), 60% of the control (moderate deficit irrigation, MDI), or 40% of the control (severe deficit irrigation, SDI). Deficit irrigation was maintained for 2 months, and then all the plants were exposed to a recovery period of 112 month. Exposure to drought induced a decrease in shoot dry weight and leaf area and an increase in the root/shoot ratio. Height and plant width were significantly inhibited by the SDI, while flower color parameters were not affected by deficit treatment. The number of wilting and yellow leaves increased, coinciding with the increase in the number of inflorescences and open flowers. Deficit irrigation led to a leaf water potential of about -0.8MPa at midday, which could have caused an important decrease in stomatal conductance, affecting the photosynthetic rate (Pn). Chlorophyll fluorescence (Fvm) values of 0.80 in all treatments throughout the experiment demonstrate the lack of drought-induced damage to PSII photochemistry. Pressure-volume analysis revealed low osmotic adjustment values of 0.2MPa in the SDI treatment, accompanied by increases in the bulk tissue elastic modulus (epsilon, wall rigidity) and resulting in turgor loss at lower leaf water potential values (-1.38MPa compared with -1.0MPa for the control). Leaf water potential values throughout the experiment below those for Psitlp were not found at any sampling time. By the end of the recovery period, the leaf water potential, stomatal conductance and net photosynthesis had recovered. We infer from these results that moderate deficit irrigation in geranium reduced the consumption of water, while maintaining the good overall quality of plants. However, when SDI was applied, a reduction in the number of flowers per plant was observed.  相似文献   

15.

This work aimed to evaluate the effects of lower water levels on leaf intercellular spaces and to assess their relations with the gas exchange, anatomy, and growth of Sorghum bicolor. Experiments were conducted in a greenhouse, in which plants were subjected to three water conditions (ten replicates, n = 30): well-irrigated, decreased irrigation, and limited irrigation. Lower water levels had no significant effect on the growth of S. bicolor but increased the biomass of the roots. Moreover, the number of leaves, leaf area, and leaf size as well as the chlorophyll content were not affected by lower water levels, and no significant changes were detected for whole plant photosynthesis, transpiration, or stomatal conductance. The water content of the plants and the water potential remained unchanged. However, compared with other treatments, the decreased irrigation decreased water loss and increased the water retention. Lower water levels increased the intercellular CO2 percentage, mesophyll area, and proportion of stomatal cavities and promoted minor changes in leaf tissue and stomatal traits. The increased stomatal cavities provided higher CO2 uptake and prevented excessive water loss. Thus, modifications to the intercellular spaces promoted conditions to avoid excessive water loss while concurrently improving CO2 uptake, which are important traits for drought-tolerant plants.

  相似文献   

16.
Bothriochloa ischaemum L. is an important species in many temperate regions, but information about the interactive effects of water stress and fertilization on its photosynthetic characteristics was inadequate. A pot experiment was conducted to investigate the effects of three water [80% (HW), 40% (MW), and 20% (LW) of field capacity (FC)] and four fertilization regimes [nitrogen (N), phosphorus (P), nitrogen with phosphorus (NP), and no fertilization] on leaf photosynthesis. Leaf gas exchange and photosynthetic light-response curves were measured at the flowering phase of B. ischaemum. Water stress decreased not only the leaf gas-exchange parameters, such as net photosynthetic rate (P N), stomatal conductance (g s), transpiration rate (E), and water-use efficiency (WUE) of B. ischaemum, but also downregulated P N-photosynthetically active radiation (PAR) curve parameters, such as light-saturated net photosynthetic rate (P Nmax), apparent quantum efficiency (AQE), and light compensation point (LCP). Fertilization (N, P, and NP) enhanced the daily mean P N values and P Nmax under the HW regime. Addition of N (either alone or with P) improved the photosynthetic capacity of B. ischaemum under the MW and LW regimes by increasing P N, P Nmax, and AQE and reducing dark respiration rate and LCP, but the addition of P alone did not significantly improve the photosynthetic performance. Decline in P N under each fertilization regime occurred during the day and it was caused mainly by nonstomatal limitation. Our results indicated that water was the primary limiting factor for photosynthesis in B. ischaemum, and that appropriate levels of N fertilization improved its potential photosynthetic capacity under water-deficit conditions.  相似文献   

17.
Abstract Root fatty acid composition, photosynthesis, leaf water potentials, stomatal resistances, leaf specific weights, and root: shoot ratios of soybean were measured in two temperature regimes. Groups of soybean plants were grown in controlled chambers of the Duke University Phytotron under two thermoperiods. One group of the plants was grown from seed for 3 weeks in either 29/23°C or 17/11°C thermoperiods, and another group was grown for 2 weeks in 29/23°C and then transferred to the 17/11°C thermoperiod where it remained for 8 days. Broccoli was also grown in either 29/23°C or 17/11°C thermoperiods. Soybean roots contained more unsaturated fatty acids than broccoli roots, although broccoli roots showed a larger increase in unsaturation than soybean roots with decreased temperature. The fatty acid unsaturation in the roots of soybean began to increase rapidly after the temperature regime was changed. The increase was in the new roots produced in the cold regime rather than in the pre-existing roots. The soybean leaf water and osmotic potentials decreased about 0.4 MPa, beginning one day after the transfer from 29/23°C to 17/11°C, but recovered significantly after 8 d. Plants grown at 17/11 °C had lower rates of photosynthesis and adaxial stomatal resistances, but higher root: shoot ratios and specific leaf weights compared to plants grown at 29/23°C. Plants grown and maintained at 29/23°C showed a steady increase in photosynthetic rates over the 8-d experimental period, whether rates were measured in 1 mol m?3 or 9 mol m?3 oxygen. Plants transferred to 17/11°C however maintained constant rates of photosynthesis at 1 mol m?3 O2, whereas at 9 mol m?3 rates declined for 2 d then were constant for the remaining 6 d of the experimental period. These results suggest that changes in membrane fatty acid unsaturation is an important aspect of plant acclimation to chilling temperatures in terms of maintaining root permeability and water uptake. However, the degree of unsaturation is not a good indicator of differences in chilling tolerance among species. The apparent acclimation of photorespiration to a constant percentage of photosynthesis suggests a role of photorespiration in the plant.  相似文献   

18.
19.
Mustard (Brassica juncea) Coss., chickpea (Cicer arietinum L. and barley (Hordeum vulgare) L. were grown under different moisture levels. Diurnal changes in leaf water potential showed lower values and higher fluctuation in mustard, chickpea and barley grown with no irrigation as compared to one supplemental irrigation. Diurnal maximum of adaxial stomatal conductance in mustard and barley was higher under one irrigation treatment. In mustard stomatal conductance of abaxial surface of leaf remained higher than adaxial surface of leaf throughout the day, whereas the reverse was true in barley. Also the leaf and soil temperature and reflectance were slightly higher in all the three crops under no irrigation.  相似文献   

20.
L. L. Wallace 《Oecologia》1981,49(2):272-278
Summary Root samples collected in grasslands of the Serengeti ecosystem, Tanzania, were found to be mycorrhizal and infection frequency was positively correlated with grazing intensity across sites. To examine the role of mycorrhizae in a grazing ecosystem, I analyzed the growth, morphology and gas exchange of mycorrhizal and nomycorrhizal plants of Panicum coloratum L. under different fertilization and clipping regimes. Both severe clipping and high nitrogen promoted more prostrate shoot growth but inhibited root growth. However, mycorrhizal infection promoted a prostrate shoot morphology and enhanced root growth. Photosynthesis was inhibited by clipping, however; at the most severe clipping and nitrogen regime, photosynthesis of the mycorrhizal plants was not affected whereas the largest inhibition of photosynthesis occurred in similarly treated nonmycorrhizal plants. Discussion of the putative roles of mycorrhizae in intensely grazed ecosystems is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号