首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The utility of the simian immunodeficiency virus of macaques (SIVmac) model of AIDS has been limited by the genetic divergence of the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and the SIVs. To develop a better AIDS animal model, we have been exploring the infection of rhesus monkeys with chimeric simian/human immunodeficiency viruses (SHIVs) composed of SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rev. SHIV-89.6, constructed with the HIV-1 env of a cytopathic, macrophage-tropic clone of a patient isolate of HIV-1 (89.6), was previously shown to replicate to a high degree in monkeys during primary infection. However, pathogenic consequences of chronic infection were not evident. We now show that after two serial in vivo passages by intravenous blood inoculation of naive rhesus monkeys, this SHIV (SHIV-89.6P) induced CD4 lymphopenia and an AIDS-like disease with wasting and opportunistic infections. Genetic and serologic evaluation indicated that the reisolated SHIV-89.6P expressed envelope glycoproteins that resembled those of HIV-1. When inoculated into naive rhesus monkeys, SHIV-89.6P caused persistent infection and CD4 lymphopenia. This chimeric virus expressing patient isolate HIV-1 envelope glycoproteins will be valuable as a challenge virus for evaluating HIV-1 envelope-based vaccines and for exploring the genetic determinants of HIV-1 pathogenicity.  相似文献   

2.
3.
Early after seroconversion, macrophage-tropic human immunodeficiency virus type 1 (HIV-1) variants are predominantly found, even when a mixture of macrophage-tropic and non-macrophage-tropic variants was transmitted. For virus contracted by sexual transmission, this is presently explained by selection at the port of entry, where macrophages are infected and T cells are relatively rare. Here we explore an additional mechanism to explain the selection of macrophage-tropic variants in cases where the mucosa is bypassed during transmission, such as blood transfusion, needle-stick accidents, or intravenous drug abuse. With molecularly cloned primary isolates of HIV-1 in irradiated mice that had been reconstituted with a high dose of human peripheral blood mononuclear cells, we found that a macrophage-tropic HIV-1 clone escaped more efficiently from specific cytotoxic T-lymphocyte (CTL) pressure than its non-macrophage-tropic counterpart. We propose that CTLs favor the selective outgrowth of macrophage-tropic HIV-1 variants because infected macrophages are less susceptible to CTL activity than infected T cells.  相似文献   

4.
A panel of primary syncytium-inducing (SI) human immunodeficiency virus type 1 isolates that infected several CD4+ T-cell lines, including MT-2 and C8166, were tested for infection of blood-derived macrophages. Infectivity titers for C8166 cells and macrophages demonstrated that primary SI strains infected macrophages much more efficiently than T-cell line-adapted HIV-1 strains such as LAI and RF. These primary SI strains were therefore dual-tropic. Nine biological clones of two SI strains, prepared by limiting dilution, had macrophage/C8166 infectivity ratios similar to those of their parental viruses, indicating that the dual-tropic phenotype was not due to a mixture of non-SI/macrophage-tropic and SI/T-cell tropic viruses. We tested whether the primary SI strains used either Lestr (fusin) or CCR5 as coreceptors. Infection of cat CCC/CD4 cells transiently expressing Lestr supported infection by T-cell line-adapted strains including LAI, whereas CCC/CD4 cells expressing CCR5 were sensitive to primary non-SI strains as well as to the molecularly cloned strains SF-162 and JR-CSF. Several primary SI strains, as well as the molecularly cloned dual-tropic viruses 89.6 and GUN-1, infected both Lestr+ and CCR5+ CCC/CD4 cells. Thus, these viruses can choose between Lestr and CCR5 for entry into cells. Interestingly, some dual-tropic primary SI strains that infected Lestr+ cells failed to infect CCR5+ cells, suggesting that these viruses may use an alternative coreceptor for infection of macrophages. Alternatively, CCR5 may be processed or presented differently on cat cells so that entry of some primary SI strains but not others is affected.  相似文献   

5.
We have used a focal infectivity method to quantitatively analyze the CD4, CXCR-4, and CCR-5 dependencies for infections by diverse primary patient (PR) and laboratory-adapted (LA) isolates of human immunodeficiency virus type 1 (HIV-1). Infectivities of T-cell-tropic viruses were analyzed in a panel of HeLa-CD4 cell clones that have distinct quantities of CD4 and in human astroglioma U87MG-CD4 cells that express a large quantity of CD4 and become highly susceptible to infection after transfection with a CXCR-4 expression vector. The latter analysis indicated that PR as well as LA T-cell-tropic viruses efficiently employ CXCR-4 as a coreceptor in an optimal human cell line that contains abundant CD4. Previous uncertainties regarding coreceptor usage by PR T-cell-tropic HIV-1 isolates may therefore have derived from the assay conditions. As reported previously, unrelated LA and PR T-cell-tropic HIV-1 isolates differ in infectivities for the HeLa-CD4 clonal panel, with LA viruses infecting all clones equally and PR viruses infecting the clones in proportion to cellular CD4 quantities (D. Kabat, S. L. Kozak, K. Wherly, and B. Chesebro, J. Virol. 68:2570-2577, 1994). To analyze the basis for this difference, we used the HeLa-CD4 panel to compare a molecularly cloned T-cell-tropic PR virus (ELI1) with six of its variants that grow to different extents in CD4-positive leukemic cell lines and that differ only at specific positions in their gp120 and gp41 envelope glycoproteins. All mutations in gp120 or gp41 that contributed to laboratory adaptation preferentially enhanced infectivity for cells that had little CD4 and thereby decreased the CD4 dependencies of the infections. There was a close correlation between abilities of T-cell-tropic ELI viruses to grow in an expanded repertoire of leukemic cell lines, the reduced CD4 dependencies of their infections of the HeLa-CD4 panel, and their sensitivities to inactivation by soluble CD4 (sCD4). Since all of the ELI viruses can efficiently use CXCR-4 as a coreceptor, we conclude that an increase in viral affinity for CD4 rather than a switch in coreceptor specificity is principally responsible for laboratory adaption of T-cell-tropic HIV-1. Syncytium-inducing activities of the ELI viruses, especially when analyzed on cells with low amounts of CD4, were also highly correlated with their laboratory-adapted properties. Results with macrophage-tropic HIV-1 were strikingly different in both coreceptor and CD4 dependencies. When assayed in HeLa-CD4 cells transfected with an expression vector for CCR-5, macrophage-tropic HIV-1 isolates that had been molecularly cloned shortly after removal from patients were equally infectious for cells that had low or high CD4 quantities. Moreover, despite their substantial infectivities for cells that had only a trace of CD4, macrophage-tropic isolates were relatively resistant to inactivation by sCD4. We conclude that T-cell-tropic PR viruses bind weakly to CD4 and preferentially infect cells that coexpress CXCR-4 and large amounts of CD4. Their laboratory adaptation involves corresponding increases in affinities for CD4 and in abilities to infect cells that have relatively little CD4. In contrast, macrophage-tropic HIV-1 appears to interact weakly with CD4 although it can infect cells that coexpress CCR-5 and small quantities of CD4. We propose that cooperative binding of macrophage-tropic HIV-1 onto CCR-5 and CD4 may enhance virus adsorption and infectivity for cells that have only a trace of CD4.  相似文献   

6.
To investigate the mechanism underlying one aspect of the cellular tropism of human immunodeficiency virus type 1 (HIV-1), we used a macrophage-tropic isolate, 89.6, and screened its ability to infect a number of continuous cell lines. HIV-1 (89.6) was able to replicate robustly in a T-cell/B-cell hybrid line, CEMx174, while it replicated modestly or not at all in either of its parents, one of which is the CD4-positive line CEM.3. Analysis by transfection of a molecular clone, a virus uptake assay, and polymerase chain reaction all provided strong evidence that the block to HIV-1(89.6) replication in the CEM.3 line lies at the level of cellular entry. These results were complemented by preparing a CD4-expressing derivative of the B-cell parent, 721.174, and demonstrating that it is permissive for productive HIV-1(89.6) replication. Given these experimental findings, we speculate that there exist cellular accessory factors which facilitate virus entry and infection in CD4-positive cells. Furthermore, these cellular accessory factors may be quite virus strain specific, since not all macrophage-tropic strains of HIV-1 were able to replicate in the CEMx174 hybrid cell line. This experimental model provides a system for the identification of one or more of these putative cellular accessory factors.  相似文献   

7.
Human immunodeficiency virus type 1 isolates differ in their ability to productively infect macrophages, and several groups have mapped the genetic basis for macrophage tropism to regions of env that include the third hypervariable region (V3 loop). We recently described a primary isolate (89.6) which is highly macrophage tropic and yet differs from other macrophage-tropic strains studied in that it is cytopathic in T cells. Genetic mapping of macrophage tropism determinants in this virus was done by using chimeras generated with the prototypic non-macrophage-tropic strain HXB2. Replacement of a 2.7-kb env-containing region of HXB with corresponding sequences from 89.6 conferred the macrophage-tropic phenotype, but insertion of the 89.6 V3 loop along with V4/V5 sequences did not. Conversely, placement of HXB sequences that included V3 into 89.6 did not impair this strain's ability to replicate in macrophages. Sequence analysis of V3 shows that 89.6 differs markedly from previously described macrophage-tropic consensus sequences and that it is more similar to highly charged non-macrophage-tropic strains. This suggests either that macrophage tropism is defined by structural determinants resulting from complex interactions among multiple env regions rather than V3 sequence-specific requirements or that there are multiple mechanisms by which different strains may establish productive macrophage infection. In addition, because the HXB V3 loop supports productive macrophage infection in the background of 89.6, phenotypic characterization of V3 sequences should be considered specific to the viral context in which they are placed.  相似文献   

8.
The entry tropism of HIV-1 Env proteins from virus isolated from the blood and genital tract of five men with compartmentalized lineages was determined. The Env proteins isolated from the genital tract of subject C018 were macrophage-tropic proteins, while the remaining cloned env genes encoded R5 T cell-tropic proteins. The detection of a macrophage-tropic lineage of HIV-1 within the male genital tract strongly suggests that evolution of macrophage-tropic viruses can occur in anatomically isolated sites outside the central nervous system.  相似文献   

9.
Genome sequences of transmitted/founder (T/F) HIV-1 have been inferred by analyzing single genome amplicons of acute infection plasma viral RNA in the context of a mathematical model of random virus evolution; however, few of these T/F sequences have been molecularly cloned and biologically characterized. Here, we describe the derivation and biological analysis of ten infectious molecular clones, each representing a T/F genome responsible for productive HIV-1 clade B clinical infection. Each of the T/F viruses primarily utilized the CCR5 coreceptor for entry and replicated efficiently in primary human CD4(+) T lymphocytes. This result supports the conclusion that single genome amplification-derived sequences from acute infection allow for the inference of T/F viral genomes that are consistently replication competent. Studies with monocyte-derived macrophages (MDM) demonstrated various levels of replication among the T/F viruses. Although all T/F viruses replicated in MDM, the overall replication efficiency was significantly lower compared to prototypic "highly macrophage-tropic" virus strains. This phenotype was transferable by expressing the env genes in an isogenic proviral DNA backbone, indicating that T/F virus macrophage tropism mapped to Env. Furthermore, significantly higher concentrations of soluble CD4 were required to inhibit T/F virus infection compared to prototypic macrophage-tropic virus strains. Our findings suggest that the acquisition of clinical HIV-1 subtype B infection occurs by mucosal exposure to virus that is not highly macrophage tropic and that the generation and initial biological characterization of 10 clade B T/F infectious molecular clones provides new opportunities to probe virus-host interactions involved in HIV-1 transmission.  相似文献   

10.
The mechanism of the progressive loss of CD4+ T lymphocytes, which underlies the development of AIDS in human immunodeficiency virus (HIV-1)-infected individuals, is unknown. Animal models, such as the infection of Old World monkeys by simian-human immunodeficiency virus (SHIV) chimerae, can assist studies of HIV-1 pathogenesis. Serial in vivo passage of the nonpathogenic SHIV-89.6 generated a virus, SHIV-89.6P, that causes rapid depletion of CD4+ T lymphocytes and AIDS-like illness in monkeys. SHIV-KB9, a molecularly cloned virus derived from SHIV-89.6P, also caused CD4+ T-cell decline and AIDS in inoculated monkeys. It has been demonstrated that changes in the envelope glycoproteins of SHIV-89.6 and SHIV-KB9 determine the degree of CD4+ T-cell loss that accompanies a given level of virus replication in the host animals (G. B. Karlsson et. al., J. Exp. Med. 188:1159-1171, 1998). The envelope glycoproteins of the pathogenic SHIV mediated membrane fusion more efficiently than those of the parental, nonpathogenic virus. Here we show that the minimal envelope glycoprotein region that specifies this increase in membrane-fusing capacity is sufficient to convert SHIV-89.6 into a virus that causes profound CD4+ T-lymphocyte depletion in monkeys. We also studied two single amino acid changes that decrease the membrane-fusing ability of the SHIV-KB9 envelope glycoproteins by different mechanisms. Each of these changes attenuated the CD4+ T-cell destruction that accompanied a given level of virus replication in SHIV-infected monkeys. Thus, the ability of the HIV-1 envelope glycoproteins to fuse membranes, which has been implicated in the induction of viral cytopathic effects in vitro, contributes to the capacity of the pathogenic SHIV to deplete CD4+ T lymphocytes in vivo.  相似文献   

11.
Human immunodeficiency virus type 1 (HIV-1) isolates vary in their in vitro biologic characteristics such as cellular host range, replication kinetics, and cytopathicity. In this study, we molecularly exchanged equivalent regions between two cloned HIV-1 isolates with differing replicative and cytopathic properties. To facilitate generation of recombinant viruses, we used a method involving cotransfection of human monolayer cells with plasmid constructs containing half of the biologically active viral genome. The two halves of the genome were subsequently ligated by intracellular processes to form the complete proviral genome. This method simplifies plasmid construction, since new infectious virus particles can be produced easily from the individual constructs that are correctly ligated in vivo. Results obtained by using recombinant viruses generated in this manner indicate that the ability of HIV to replicate in specific cell types and cytopathicity segregate with the env region of the viral genome.  相似文献   

12.
K Sakai  X Y Ma  I Gordienko    D J Volsky 《Journal of virology》1991,65(11):5765-5773
Two molecularly cloned coisolates of human immunodeficiency virus type 1 (HIV-1) have been found to exhibit different phenotypes of viral expression, either rapid and cytopathic (N1T-A virus) or delayed and noncytopathic (N1T-E virus [X. Ma, K. Sakai, F. Sinangil, E. Golub, and D. J. Volsky, Virology 176:184-194, 1990]). To identify the viral genetic elements responsible for these phenotypes, we prepared reciprocal recombinants in different regions of N1T-A and N1T-E viral genomes. Infectivity experiments with the recombinant viruses revealed that the rapid/cytopathic (N1T-A-like) phenotype assorted cleanly with the V1f-coding region and Vif expression. The smallest HIV-1 DNA region that conferred the complete phenotypic switch was a 284-bp NdeI-StuI fragment within the vif open reading frame. Nucleotide sequence analysis revealed a 35-bp deletion starting at nucleotide 218 in the N1T-E vif gene. A 23-kDa Vif protein was detected by immunoblotting using Vif-specific antiserum in extracts of cells infected with N1T-A but not N1T-E virus. No detectable vif protein was found in association with sedimented particles of either virus. Cotransfection of a eucaryotic vif expression plasmid with N1T-E DNA complemented the N1T-E defect; rapid/cytopathic infection similar to that in N1T-A-transfected cells was observed. We conclude that Vif controls the rate, and consequently the cytopathic outcome, of HIV-1 infection.  相似文献   

13.
Monoclonal antibody SF8/5E11, which recognizes the transmembrane protein (TMP) of simian immunodeficiency virus of macaque monkeys (SIVmac), displayed strict strain specificity. It reacted with cloned and uncloned SIVmac251 but not with cloned SIVmac142 and SIVmac239 on immunoblots. This monoclonal antibody neutralized infection by cloned, cell-free SIVmac251 and inhibited formation of syncytia by cloned SIVmac251-infected cells; these activities were specific to cloned SIVmac251 and did not occur with the other viruses. Site-specific mutagenesis was used to show that TMP amino acids 106 to 110 (Asp-Trp-Asn-Asn-Asp) determined the strain specificity of the monoclonal antibody. This strain-specific neutralizing determinant is located within a variable region of SIVmac and human immunodeficiency virus type 2 (HIV-2) which includes conserved, clustered sites for N-linked glycosylation. The determinant corresponds exactly to a variable, weak neutralizing epitope in HIV-1 TMP which also includes conserved, clustered sites for N-linked glycosylation. Thus, the location of at least one neutralizing epitope appears to be common to both SIVmac and HIV-1. Our results suggest a role for this determinant in the viral entry process. Genetic variation was observed in this neutralizing determinant following infection of a rhesus monkey with molecularly cloned SIVmac239; variant forms of the strain-specific, neutralizing determinant accumulated during persistent infection in vivo. Selective pressure from the host immune response in vivo may result in sequence variation in this neutralizing determinant.  相似文献   

14.
W A O'Brien  S H Mao  Y Cao    J P Moore 《Journal of virology》1994,68(8):5264-5269
Molecular clones of three macrophage-tropic and three T-cell line-adapted strains of human immunodeficiency virus type 1 (HIV-1) were used to explore the mechanism of HIV-1 resistance to neutralization by soluble CD4 (sCD4). The three macrophage-tropic viruses, each possessing the V3 and flanking regions of JR-FL, were all resistant to sCD4 neutralization under the standard conditions of a short preincubation of the virus and sCD4 at 37 degrees C prior to inoculation of peripheral blood mononuclear cells. In contrast, the three T-cell line-adapted viruses, NL4-3 and two chimeras possessing the V3 and flanking regions of NL4-3 in the envelope background of JR-FL, were all sCD4 sensitive under these conditions. Sensitivity to sCD4 neutralization at 37 degrees C corresponded with rapid, sCD4-induced gp120 shedding from the viruses. However, when the incubation temperature of the sCD4 and virus was reduced to 4 degrees C, the three macrophage-tropic viruses shed gp120 and became more sensitive to sCD4 neutralization. In contrast, the rates of sCD4-induced gp120 shedding and virus neutralization were reduced for the three T-cell line-adapted viruses at 4 degrees C. Thus, HIV resistance to sCD4 is a conditional phenomenon; macrophage-tropic and T-cell line-adapted strains can be distinguished by the temperature dependencies of their neutralization by sCD4. The average density of gp120 molecules on the macrophage-tropic viruses exceeded by about fourfold that on the T-cell line-adapted viruses, suggesting that HIV growth in T-cell lines may select for a destabilized envelope glycoprotein complex. Further studies of early events in HIV-1 infection should focus on primary virus strains.  相似文献   

15.
In an attempt to generate a suitable animal model to study the infectivity and possible pathogenicity of human immunodeficiency viruses, we intravenously inoculated juvenile rhesus macaques and African green monkeys with a molecularly cloned virus, human immunodeficiency virus type 2 HIV-2sbl/isy, as well as with the uncloned HIV-2nih-z virus. Infection was monitored by virus recovery from the peripheral blood cells and by seroconversion against HIV-2 antigens measured by Western immunoblot, radioimmunoprecipitation, and enzyme-linked immunosorbent assay. We successfully infected two out of two macaques with the molecularly cloned virus and one macaque out of two with the HIV-2nih-z. No evidence of infection was seen in the African green monkeys with either virus. We followed the infected animals for 2 years. The animals remained healthy, although we observed intermittent lymphadenopathy and a transient decrease in the absolute number of circulating CD4+ T lymphocytes in both animals infected with the molecularly cloned virus. Virus isolation from the peripheral blood cells of the infected animals was successful only within the first few months after inoculation. Evidence of persistent infection was provided by the detection of proviral DNA by polymerase chain reaction analysis of the blood cells of the inoculated animals and by the stability of antiviral antibody titers. To evaluate the genetic drift of the proviral DNA, we molecularly cloned viruses which were reisolated 1 and 5 months postinoculation from one of these animals. Comparison of the DNA sequences of the envelope genes of both these isolates indicated that a low degree of variation (0.2%) in the envelope protein had occurred in vivo during the 5-month period. These data suggest that the use of HIV-2sbl/isy in rhesus macaques may represent a good animal model system to study prevention of viral infection. In particular, molecularly cloned virus can be manipulated for functional studies of viral genes in the pathogenesis of acquired immune deficiency syndrome and provides a reproducible source of virus for vaccine studies.  相似文献   

16.
To characterize the role of CD4 in human immunodeficiency virus type 1 (HIV-1) infection of macrophages, we examined the expression of CD4 by primary human monocyte-derived macrophages and studied the effect of recombinant soluble CD4 and anti-CD4 monoclonal antibodies on HIV-1 infection of these cells. Immunofluorescence and Western blot (immunoblot) studies demonstrated that both monocytes and macrophages display low levels of surface CD4, which is identical in mobility to CD4 in lymphocytes. Recombinant soluble CD4 and the anti-CD4 monoclonal antibody Leu3a blocked infection of macrophages by three different macrophage-tropic HIV isolates, and the cytopathic effects of HIV-1 infection were similarly prevented. Dose-response experiments using a prototype isolate which replicates in both macrophages and T lymphocytes showed that recombinant soluble CD4 inhibited infection of macrophages more efficiently than in lymphocytes. These results indicate that CD4 is the dominant entry pathway for HIV-1 infection of macrophages. In addition, recombinant soluble CD4 effectively blocks HIV-1 infection by a variety of macrophage-tropic strains and thus has the potential for therapeutic use in macrophage-dependent pathogenesis in HIV disease.  相似文献   

17.
Alterations in plasma membrane function are induced by many cytopathic viruses, including human immunodeficiency virus type 1 (HIV-1). These alterations can result in changes in the intracellular content of ions and other small molecules and can contribute to cytolysis and death of the infected cell. The pH-sensitive fluorescent probe 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein-acetoxymethyl ester was used to quantitate intracellular pH (pHi) in HIV-1-infected T cells. Infection of cells from the CD4+ T-lymphoblastoid line HUT-78 (RH9 subclone) with HIV-1 strain LAI resulted in a significant decrease of pHi, from approximately 7.2 in mock-infected cells to below 6.7 by day 4 after infection, when cells were undergoing acute cytopathic effects. The pHi in persistently infected cells that survived the acute cytopathic effects of HIV-1 was approximately 6.8 to 7.0. Studies with amiloride, an inhibitor of the Na+/H+ exchange system, suggest that HIV-1-induced intracellular acidification in lymphocytes is due, in part, to dysfunction of this plasma membrane ion transport system. The alterations in pHi may mediate certain cytopathic effects of HIV-1, thereby contributing to depletion of CD4+ T lymphocytes in patients with AIDS.  相似文献   

18.
To explore the roles played by specific human immunodeficiency virus type 1 (HIV-1) genes in determining the in vivo replicative capacity of AIDS viruses, we have examined the replication kinetics and virus-specific immune responses in rhesus monkeys following infection with two chimeric simian/human immunodeficiency viruses (SHIVs). These viruses were composed of simian immunodeficiency virus SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rep. Virus replication was assessed during primary infection of rhesus monkeys by measuring plasma SIVmac p27 levels and by quantifying virus replication in lymph nodes using in situ hybridization. SHIV-HXBc2, which expresses the HIV-1 env of a T-cell-tropic, laboratory-adapted strain of HIV-1 (HXBc2), replicated well in rhesus monkey peripheral blood leukocytes (PBL) in vitro but replicated only to low levels when inoculated in rhesus monkeys. In contrast, SHIV-89.6 was constructed with the HIV-1 env gene of a T-cell- and macrophage-tropic clone of a patient isolate of HIV-1 (89.6). This virus replicated to a lower level in monkey PBL in vitro but replicated to a higher degree in monkeys during primary infection. Moreover, monkeys infected with SHIV-89.6 developed an inversion in the PBL CD4/CD8 ratio coincident with the clearance of primary viremia. The differences in the in vivo consequences of infection by these two SHIVs could not be explained by differences in the immune responses elicited by these viruses, since infected animals had comparable type-specific neutralizing antibody titers, proliferative responses to recombinant HIV-1 gp120, and virus-specific cytolytic effector T-cell responses. With the demonstration that a chimeric SHIV can replicate to high levels during primary infection in rhesus monkeys, this model can now be used to define genetic determinants of HIV-1 pathogenicity.  相似文献   

19.
Z Q Liu  C Wood  J A Levy    C Cheng-Mayer 《Journal of virology》1990,64(12):6148-6153
Human immunodeficiency virus type 1 (HIV-1) strains isolated from the central nervous system (CNS) may represent a subgroup that displays a host cell tropism different from those isolated from peripheral blood and lymph nodes. One CNS-derived isolate, HIV-1SF128A, which can be propagated efficiently in primary macrophage culture but not in any T-cell lines, was molecularly cloned and characterized. Recombinant viruses between HIV-1SF128A and the peripheral blood isolate HIV-1SF2 were generated in order to map the viral gene(s) responsible for the macrophage tropism. The env gene sequences of the two isolates are about 91.1% homologous, with variations scattered mainly in the hypervariable regions of gp120. Recombinant viruses that have acquired the HIV-1SF128A env gene display HIV-1SF128A tropism for macrophages. Furthermore, the gp120 variable domains, V1, V2, V4, and V5, the CD4-binding domain, and the gp41 fusion domain are not directly involved in determining macrophage tropism.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of HIV-1-associated dementia (HAD). We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF) of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5) T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells). Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号