首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structures of [3H]pargyline-labeled, flavin-containing polypeptides of monoamine oxidase (MAO) from hybrid NCB20 cells, and their parental cells, A/J mouse brain cells and Chinese hamster brain cells, were analyzed and compared by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and limited proteolysis and one-dimensional peptide mapping in SDS gels. After preincubation of mitochondrial preparations with deprenyl or clorgyline, the flavin-containing polypeptide of type A or type B MAO was selectively labeled with [3H]pargyline. SDS-PAGE of [3H]pargyline-labeled mitochondrial samples revealed that the polypeptide with apparent Mr of 62,000 was associated with type A activity in the three types of cells, and that the polypeptide with apparent Mr of 61,000 or 58,000 was associated with type B activity in Chinese hamster brain cells and NCB20 cells or A/J mouse brain cells, respectively. Chymotrypsin digestion of the [3H]pargyline-labeled polypeptides and the peptide mapping in SDS gels from A/J mouse and Chinese hamster brain cells produced identical map patterns between the two type A MAOs, almost the same map patterns (with the exception of one additional peptide fragment) between the two type B MAOs, and different map patterns between type A and type B MAOs. The results of identical treatments of the [3H]pargyline-labeled polypeptides of MAOs in NCB20 cells showed that type A and type B MAO in NCB20 cells were similar to type A MAO of A/J mouse and Chinese hamster brain cells and to type B MAO of Chinese hamster brain cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The inhibition of the A and B forms of monoamine oxidase (MAO) inside and outside serotonergic, noradrenergic, and dopaminergic synaptosomes in homogenates of rat hypothalamus or striatum by clorgyline, a selective and irreversible MAO-A inhibitor, and selegiline, a selective and irreversible MAO-B inhibitor, was examined. Intrasynaptosomal deamination at low concentrations of the substrates [14C]5-hydroxytryptamine ([14C]5-HT; 0.1 microM), [14C]noradrenaline (0.25 microM), [14C]3,4-dihydroxyphenylethylamine ([14C]dopamine; 0.25 microM), and [14C]tyramine (0.25 microM) was hindered by selective uptake inhibitors (citalopram, maprotiline, and amfonelic acid) in the incubation media. Thus, the difference between the deamination of 14C-amine in the absence and presence of the appropriate selective uptake inhibitor provided a measure of deamination in the specific aminergic synaptosomes. This was verified by determining the loss of MAO activity within noradrenergic and serotonergic systems after degeneration of the nerve terminals by the neurotoxins N-chloroethyl-N-ethyl-2-bromobenzylamine and p-chloroamphetamine. Results with the two inhibitors revealed that the A and B forms were responsible for 80 and 20%, respectively, of the deamination of [14C]5-HT within serotonergic synaptosomes from the hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes from the hypothalamus and that of [14C]dopamine and [14C]tyramine within the striatal dopaminergic synaptosomes were due to MAO-A. About 10% of the deamination of [14C]noradrenaline, [14C]dopamine, and [14C]tyramine outside the noradrenergic or dopaminergic synaptosomes was brought about by the B form, with the remainder being deaminated by MAO-A.  相似文献   

3.
4.
5.
Monoamine oxidase (MAO) A and B are important enzymes that metabolize biogenic amines throughout the body. Previous studies had suggested that both MAO A and B consist of two subunits of molecular masses of 63 and 60 kilodaltons, respectively. The cDNAs encoding one subunit of human liver MAO A and B have been expressed in mammalian cells by transfection of the individual clones. The proteins expressed from these cDNAs are shown to be catalytically active. Similar to the endogenous enzymes, the expressed MAO A prefers serotonin as a substrate and is sensitive to the inhibitor clorgyline. In contrast, the expressed MAO B prefers phenylethylamine as a substrate and is sensitive to the inhibitor deprenyl. These results suggest that a single polypeptide of MAO A (or B), existing as either a monomer or homodimer, is enzymatically active. The ability to obtain functional MAO A and B from their respective cDNA clones allows us to study further the structure and function relationships of these important enzymes.  相似文献   

6.
7.
Genetic variations in monoamine oxidase (MAO)-B activity have been proposed to have a contributory role in several neurologic and psychiatric diseases. Variations in activity could affect rates of degradation of exogenous amines, including toxins, precursors of toxins (like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), or false transmitters, and of endogenous amines, such as neurotransmitters. In this study a highly polymorphic (GT)n repeat element was used to mark alleles at the MAOB locus. The MAOB allele status and levels of platelet MAO-B activity were determined for 41 control males. No correlation was noted between specific alleles and levels of MAO-B activity in this sample set. This suggests that the structural gene for MAOB is not usually the primary determinant of activity levels in platelets.  相似文献   

8.
Abstract: A monoamine oxidase assay utilizing generally labeled [3H]-serotonin as substrate became nonlinear after only ~5% conversion of initial c.p.m. to product. Subsequent analysis showed that a significant proportion of the tritium label was readily exchangeable into water and that monoamine oxidase activity increased release of label as water. The use of generally labeled substrates for oxidase activities is not recommended.  相似文献   

9.
Abstract: K m and V max values of monoamine oxidase (MAO) A and B towards 5-hydroxytryptamine were determined for rat brain homogenates after the in vitro inhibition of one of the two forms by the selective inhibitors clorgyline and l -deprenyl. K m values of 178 and 1170μ m , and V max values of 0.73 and 0.09 nmol·mg protein−1·min−1 towards 5-hydroxytryptamine were found for MAO-A and -B, respectively. The K 1 for 5-hydroxytryptamine as a competitive inhibitor of β-phenethylamine oxidation by MAO-B was found to be 1400 μm. The significance of these findings is discussed.  相似文献   

10.
Intracerebroventricular injections of angiotensin II caused 108, 62, and 54% increases in monoamine oxidase A activities in rat hippocampus, hypothalamus, and striatum, respectively. These activatory effects were abolished by simultaneous injections of eledoisin. No significant changes of monoamine oxidase B activities were found under the same experimental conditions. Neither angiotensin II nor elodoisin changed substrate/inhibitor affinities of both isoenzymes. These data indicate that angiotensin II and tachykinin transmitter systems may exert opposite, long-term regulatory effects on monoaminergic neurons in rat brain.  相似文献   

11.
An increase of free 3,4-dihydroxyphenylethylamine (DA, dopamine) in the rat brain such as is found following 3,4-dihydroxyphenylalanine (L-DOPA) administration or an intraventricular injection of free dopamine did not result in DA sulfate formation, despite the presence of phenolsulfotransferase activity in various regions of the brain and the high affinity of DA for this enzyme. However, when rats were pretreated with pargyline, a monoamine oxidase inhibitor, the same treatment with L-DOPA or free DA led to active synthesis of DA sulfate. The increase in DA sulfate was significantly correlated with the degree of monoamine oxidase inhibition and directly proportional to free DA concentrations in the hypothalamus (r = 0.86), striatum (r = 0.54), and brainstem (r = 0.89). The highest ratio of DA sulfate to free DA was found in the hypothalamus, suggesting that sulfoconjugation is most active in this region. Prior treatment of rats with 6-hydroxydopamine did not decrease DA sulfate concentrations, indicating that sulfoconjugation occurs most likely in extraneuronal tissues not destroyed by the neurotoxin. The results are compatible with the notion that phenolsulfotransferase may be highly compartmentalized and that inhibition of monoamine oxidase allows the newly generated free DA to become accessible to the sulfoconjugating enzyme, resulting in increase in DA sulfation.  相似文献   

12.
Influence of C Terminus on Monoamine Oxidase A and B Catalytic Activity   总被引:1,自引:0,他引:1  
Abstract: Monoamine oxidase (MAO) A and B play important roles in the metabolism of neurotransmitters and dietary amines. The domains important for enzyme specificities were studied by construction of chimeric MAOA/B enzymes. Exchange of the N-terminal 45 amino acids of MAOA with the N-terminal 36 residues of MAOB (chimeric enzymes B36A and A45B) resulted in the same substrate and inhibitor sensitivities as the wild-type MAOA or B. Thus, the N terminus may not be responsible for MAOA or B enzyme specificities. When MAOB C-terminal residues 393–520 were replaced with MAOA C-terminal residues 402–527 (chimeric B393A) catalytic activity was not detectable. Chimeric B393A consists of eight residues with different charges, three less proline residues (458, 476, and 490), and one additional proline at 518 compared with wild-type MAOB. These differences may have induced conformational changes and affected MAOB catalytic activity. Thus, the C terminus of MAOB is critical for maintaining MAOB in an active form. It is interesting that when the C terminus of MAOA was switched with MAOB (chimeric A402B), little effect was observed on MAOA catalytic activity. This new information is valuable for further studies of the structure and function relationship of this important enzyme.  相似文献   

13.
Brain microdialysis was used to examine the in vivo efflux and metabolism of dopamine (DA) in the rat striatum following monoamine oxidase (MAO) inhibition. Relevant catecholamines and indoleamines were quantified by HPLC coupled with a electrochemical detection system. The MAO-B inhibitor selegiline only affected DA deamination at a dose shown to inhibit partially type A MAO. Alterations in DA and metabolite efflux were not observed when using the MAO-B-selective dose of 1 mg/kg of selegiline. At 10 mg/kg, selegiline reduced the efflux of DA metabolites to approximately 70% of basal values without affecting DA efflux. K(+)- and veratrine-stimulated DA efflux was not affected by selegiline. Experiments using amphetamine and the DA uptake inhibitor nomifensine demonstrated that the effect of selegiline on DA metabolism was unlikely to be mediated either by inhibition of DA uptake or by an indirect effect of its metabolite amphetamine. The possibility that the effect of selegiline is mediated via a nonspecific inhibition of MAO is discussed. In contrast, the MAO-A inhibitor clorgyline inhibited basal DA metabolism and increased basal and depolarisation-induced DA efflux. A 1 mg/kg dose of clorgyline reduced basal DA metabolite efflux (40-60% of control values) without affecting DA efflux. At 10 mg/kg of clorgyline, DA efflux increased to 253 +/- 19% of basal values, whereas efflux of DA metabolites was reduced to between 15 and 26% of control values. The release of DA induced by K+ and veratrine was not affected by 1 mg/kg of clorgyline but was increased by approximately 200% following pretreatment with 10 mg/kg of clorgyline. The nonselective MAO inhibitor pargyline caused similar but more pronounced alterations in these parameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We studied the enzyme monoamine oxidase (MAO) in isolated cerebral microvessels, and in mitochondria-enriched brain and liver preparations from six mammalian species, including human. We also studied MAO distribution in various tissues and in discrete brain regions of the rat. MAO was assessed by measuring the specific binding of [3H]pargyline, an irreversible MAO inhibitor, and the rates of oxidation of known MAO substrates: benzylamine, tyramine, tryptamine, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Molecular forms of MAO were examined by using specific MAO inhibitors, and by polyacrylamide gel electrophoresis after [3H]pargyline binding. In general, the liver from all species had higher MAO levels than the brain, with minor variation among species in their brain and liver MAO content. However, there were remarkable species differences in brain microvessel MAO, with rat microvessels having one of the highest MAO activity among all tissues, whereas MAO activities in brain microvessels from humans, mice, and guinea pigs were very low. In most rat tissues, including the brain, there was a preponderance of MAO-B over MAO-A. The only exceptions were the heart and skeletal muscle. Estimates of MAO half-life in rat brain microvessels, rat brain, and rat liver indicated that microvessel MAO had a higher turnover rate. The reasons underlying the remarkable enrichment of rat cerebral microvessels with MAO-B are unknown, but it is evident that there are marked species differences in brain capillary endothelium MAO activity. The biological significance of these findings vis a vis the role of MAO as a "biochemical blood-brain barrier" that protects the brain from circulating neurotoxins and biogenic amines should be investigated.  相似文献   

15.
In the rat brain, dopamine is metabolised by both A and B forms of monoamine oxidase (MAO), although the A form of the enzyme is the major component. The Km of MAO-A toward dopamine (120 microM) is lower than the Km of MAO-B toward this substrate (340 microM). The activity of MAO-A was lower in old rats than in young rats, and the same degree of decrease was found for 5-hydroxytryptamine as for dopamine as substrates for this enzyme form. The activity of MAO-B was higher in the old rats, the degree of increase being the same for dopamine as for beta-phenethylamine as substrates for this enzyme form. The Ki values of the inhibition of MAO-A by cimoxatone and MD770222 (the principal plasma metabolite of cimoxatone) were independent of the substrate used to assay for activity, but were lower than the Ki values for the inhibition of MAO-B by these compounds.  相似文献   

16.
Monoamine oxidase (MAO), an important enzyme for the degradation of amine neurotransmitters, has been implicated in neuropsychiatric illness. The amino acid sequence for one form of the enzyme, MAO-A, has been deduced from human cDNA clones and verified against proteolytic peptides. The covalent binding site for the flavin adenine dinucleotide (FAD) cofactor is near the C-terminal region. The presence of features characteristic of the ADP-binding fold suggests that the N-terminal region is also involved in the binding of FAD. These cDNAs should facilitate the study of the structure, function, and intracellular targeting of MAO, as well as the analysis of its expression in normal and pathological states.  相似文献   

17.
Abstract: The sex-dependent differentiation of monoamine oxidase (MAO) in the hypothalamus of 60-day-old, Charles River rats was found to involve only type A (MAO-A), and not type B (MAO-B) enzyme. In vivo inhibition of type A by clorgyline, and type B by (−)deprenyl, however, tended to decrease the specific activity of both types of MAO to a smaller extent in the female than in the male hypothalamus. When masculinization was prevented by neonatal administration of estradiol (E) to males, hypothalamic MAO-A and MAO-B activities increased in both control and MAO-inhibited rats. Androgenization of females, however, had little effect on the MAO activity. Whereas the effects of neonatal estrogenization were attributable neither to a direct influence of E nor to a sexual difference in the peripheral clearance of the MAO-inhibitor used, single, high doses of steroids to adult, but not to newborn rats, did acutely affect the kinetics of MAO-A. The activity of MAO-A was also decreased by high concentrations of E or TS in vitro. The imprinting for patterns of hypothalamic MAO-A and MAO-B in the two sexes results, probably, from genetic predetermination. Neonatal changes in the homeostasis of gonadal hormones may result in type-MAO nonspecific effects in adulthood, whereas the short-term effects of high concentrations of steroids may be selective for the A form.  相似文献   

18.
A dialysis cannula was implanted into rat striatum while the animals were anesthetized, and the area was perfused with Ringer solution while the animals were unanesthetized after at least 3 days following surgery. Concentrations of the metabolites of 3,4-dihydroxyphenylethylamine (DA) and 5-hydroxytryptamine (5-HT) in the perfusate were determined by HPLC with electrochemical detection. Levels of the DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the perfusate significantly decreased after pargyline administration (50 mg/kg i.p.), which may inhibit not only monoamine oxidase (MAO)-B but also MAO-A in these high doses. The level of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) also decreased after pargyline treatment, although change in the relative level of 5-HIAA was less than that of DOPAC or HVA. To clarify the mechanisms for the metabolism of monoamines in rat striatum, highly specific MAO-A and -B inhibitors were used in the following experiments. Treatment with l-deprenyl (10 mg/kg), a specific inhibitor for MAO-B, did not cause any statistically significant change in DOPAC, HVA, and 5-HIAA levels. No significant change was found in rat striatal homogenates at 2 h after the same treatment with l-deprenyl. In contrast, low-dose treatment (1 mg/kg) with clorgyline, a specific inhibitor for MAO-A, caused a significant decrease in levels of these three metabolites in both the perfusates and tissue homogenates. In addition to the above three metabolites, the level of 3-methoxytyramine, which is an indicator of the amount of DA released, greatly increased after treatment with a low dose (1 mg/kg) of clorgyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Abstract

The monoamine oxidase catalyses the oxidative deamination of neuroactive amines. This enzyme exists in two forms A and B, which differ by substrates preference and inhibitors specificity. Investigation of the structures of these enzymes and design new selective inhibitors are of greatly interesting since MAO A inhibitors are used in therapeutic practice as antidepressants and MAO B inhibitors – in the treatment Parkinson's diseases. The three dimension structures of monoamine oxidases are still unknown. Therefore, one of the most perspective approach to define significant features of structure active site is method based on analysis of structure-activity relationship (3D QSAR) with comparison of molecular fields analysis (CoMFA) allowing to get the spatial distribution of important properties affecting the activity.

In present study we investigate the structures of active sites MAO A and B using 16 pyrazinocarbazole derivatives in variant conformation. Majority of pyrazinocarbazole derivatives have a rigit conformation, but three of those is sufficiently flexible. The latters can be in two conformation types: long molecules (substitution accommodate along axis of main structure) and short molecules (substitution accommodate at acute angle about of main structure). Several 3D QSAR and CoMFA models of MAO A and B active sites were design for data sets containing various types of flexible molecules conformation. All obtained models are statistical reliable and have sufficient predictive power for tested compound tetrindole. The best MAO A model that include two flexible molecules in long conformations was obtained, and the longest one of those in short conformation. In contrast, for MAO B model containing all flexible molecules in the short conformations is more preferred.

On the basis of obtained data the schematic models of MAO A and B active sites structures are proposed. According to these models MAO A active site have the narrow long cavity that accommodate long molecules, while MAO B active site is broader and shorter.  相似文献   

20.
Abstract: Cimoxatone is a fully reversible inhibitor selective for the A form of monoamine oxidase. The inhibition is so potent against this enzyme form that it acts as a tight-binding inhibitor. Use of this inhibitor indicates that in rat brain homogenates the concentration of monoamine oxidase A is approximately 8–11 pmol-mg protein−1. Values similar to this were obtained by clor-gyline titration and both methods gave values similar to those found with a [3H]harmaline binding assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号