首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The luminescent entomopathogenic bacterium Photorhabdus luminescens produces several yet-uncharacterized broad-spectrum antibiotics. We report the identification and characterization of a cluster of eight genes (named cpmA to cpmH) responsible for the production of a carbapenem-like antibiotic in strain TT01 of P. luminescens. The cpm cluster differs in several crucial aspects from other car operons. The level of cpm mRNA peaks during exponential phase and is regulated by a Rap/Hor homolog identified in the P. luminescens genome. Marker-exchange mutagenesis of this gene in the entomopathogen decreased antibiotic production. The luxS-like signaling mechanism of quorum sensing also plays a role in the regulation of the cpm operon. Indeed, luxS, which is involved in the production of a newly identified autoinducer, is responsible for repression of cpm gene expression at the end of the exponential growth phase. The importance of this carbapenem production in the ecology of P. luminescens is discussed.  相似文献   

2.
Photorhabdus luminescens, an entomopathogenic bacterium and nematode symbiont, has homologues of the Hca and Mhp enzymes. In Escherichia coli, these enzymes catalyze the degradation of the aromatic compounds 3-phenylpropionate (3PP) and cinnamic acid (CA) and allow the use of 3PP as sole carbon source. P. luminescens is not able to use 3PP and CA as sole carbon sources but can degrade them. Hca dioxygenase is involved in this degradation pathway. P. luminescens synthesizes CA from phenylalanine via a phenylalanine ammonia-lyase (PAL) and degrades it via the not-yet-characterized biosynthetic pathway of 3,5-dihydroxy-4-isopropylstilbene (ST) antibiotic. CA induces its own synthesis by enhancing the expression of the stlA gene that codes for PAL. P. luminescens bacteria release endogenous CA into the medium at the end of exponential growth and then consume it. Hca dioxygenase is involved in the consumption of endogenous CA but is not required for ST production. This suggests that CA is consumed via at least two separate pathways in P. luminescens: the biosynthesis of ST and a pathway involving the Hca and Mhp enzymes.  相似文献   

3.
The production of the blue pigment indigoidine has been achieved in the entomopathogenic bacterium Photorhabdus luminescens by a promoter exchange and in Escherichia coli following heterologous expression of the biosynthesis gene indC. Moreover, genes involved in the regulation of this previously “silent” biosynthesis gene cluster have been identified in P. luminescens.  相似文献   

4.
5.
Photorhabdus luminescens is a species of Gram‐negative bacteria that is pathogenic to insects while also maintaining a mutualistic association with nematodes from the family Heterorhabditis. P. luminescens elaborates an extensive secondary metabolism during the post‐exponential phase of growth that includes the production of an antibiotic called 3‐5‐dihydroxy‐4‐isopropylstilbene (ST), an anthraquinone pigment (AQ) and bioluminescence. In this study we identified a mutant that was unable to produce ST, AQ and light. This mutation was found to be in the mdh gene, encoding malate dehydrogenase, a key enzyme in the tricarboxylic acid (TCA) cycle. Interestingly the mdh mutant was unaffected in virulence but was unable to support nematode growth and development in vivo or in vitro. This clearly establishes that secondary metabolism in P. luminescens is required for the mutualistic interaction with the nematode. Furthermore, the construction of mutations in key genes in other central metabolic pathways confirmed the critical role for the TCA cycle in both secondary metabolism and mutualism, but not in virulence. Therefore, we conclude that the TCA cycle is required for the transition of P. luminescens from pathogen to mutualist implicating the involvement of a metabolic switch in the regulation of lifestyle decisions in this bacterium.  相似文献   

6.
7.
Cell-free supernatants from growing Bacillus cereus strain ATCC 10987 induced luminescence in a Photorhabdus luminescens ΔluxS mutant, indicating the production of functional autoinducer 2 (AI-2). The exogenous addition of in vitro synthesized AI-2 had an inhibitory effect on biofilm formation by B. cereus and promoted release of the cells from a preformed biofilm.  相似文献   

8.
The enteric gamma‐proteobacterium Photorhabdus luminescens kills a wide range of insects, whilst also maintaining a mutualistic relationship with soil nematodes from the family Heterorhabditis. Pathogenicity is associated with bacterial exponential growth, whilst mutualism is associated with post‐exponential (stationary) phase. During post‐exponential growth, P. luminescens also elaborates an extensive secondary metabolism, including production of bioluminescence, antibiotics and pigment. However, the regulatory network that controls the expression of this secondary metabolism is not well understood. The stringent response is a well‐described global regulatory system in bacteria and mediated by the alarmone (p)ppGpp. In this study, we disrupted the genes relA and spoT, encoding the two predicted (p)ppGpp synthases of P. luminescens TTO1, and we showed that (p)ppGpp is required for secondary metabolism. Moreover, we found the (p)ppGpp is not required for pathogenicity of P. luminescens, but is required for bacterial survival within the insect cadaver. Finally, we showed that (p)ppGpp is required for P. luminescens to support normal nematode growth and development. Therefore, the regulatory network that controls the transition from pathogenicity to mutualism in P. luminescens requires (p)ppGpp. This is the first report outlining a role for (p)ppGpp in controlling the outcome of an interaction between a bacteria and its host.  相似文献   

9.
10.
Photorhabdus luminescens are bacterial symbionts of entomopathogenic nematodes of the genus Heterorhabditis. The bacto-helminthic complexes are used in biocontrol of insect pests in cryptic environments. For in vitro production, liquid media are incubated with P. luminescens for 24 h prior to the inoculation of nematode dauer juveniles. The nematodes develop to self-fertilizing hermaphrodites and produce offspring. The exit from the developmentally arrested dauer stage (recovery) is a response to a yet undescribed food signal. Major process instability is caused by low and unsynchronized recovery of the dauers. In living insects, dauer recovery is approximately 95% within 1 day. In liquid cultures of P. luminescens the recovery is spread over several days and varies between 0 and 81%. In complex culture media no food signal was detected. A food signal is produced by P. luminescens and excreted into the culture medium. The maximum food signal production was recorded during the late exponential growth phase. Compared to the food signal found in insects, the efficacy of the bacterial signal is much lower. The reasons for the variable activity of the bacterial food signal and its function during the nematode life cycle are discussed. Received: 13 March 1998 / Received revision: 15 June 1998 / Accepted: 19 June 1998  相似文献   

11.
Syrbactins are cyclic peptide derivatives which are known to inhibit the eukaryotic proteasome by irreversible covalent binding to its catalytic sites. The only two members of this family characterized to date, syringolin A and glidobactin A, are secreted by certain strains of Pseudomonas syringae pv. syringae and strain K481-B101 from the order Burkholderiales, respectively. Syrbactins are the products of mixed non-ribosomal peptide/polyketide synthases encoded by gene clusters with a characteristic architecture. Similar, but not identical gene clusters are present in several other bacterial genomes, including that of Photorhabdus luminescens subsp. laumondii TT01, which is therefore hypothesized to be able to produce a syrbactin-type proteasome inhibitor. Here we report the cloning of the putative syrbactins synthetase encoding gene cluster of Ph. luminescens into a cosmid vector and its heterologous expression in Pseudomonas putida. Analysis of culture supernatants of transformed Ps. putida by HPLC and mass spectrometry revealed the presence of glidobactin A, indicating that the syrbactins-like gene cluster of Ph. luminescens encodes a glidobactin A synthetase and that this organism has the capacity to synthesize glidobactin A.  相似文献   

12.

Background  

Campylobacter jejunicontains a homologue of theluxSgene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) inVibrio harveyiandVibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controllingC. jejunigene expression when it is produced at high levels during mid exponential growth phase.  相似文献   

13.
14.
《Genomics》2021,113(4):1659-1670
Lactobacillaceae presents potential for interspecific Quorum Sensing (QS) in spontaneous cocoa fermentation, correlated with high abundance of luxS. Three Brazilian isolates from cocoa fermentation were characterized by Whole Genome Sequencing and luxS gene was surveyed in their genomes, in comparison with public databases. They were classified as Lactiplantibacillus plantarum, Limosilactobacillus fermentum and Pediococcus acidilactici. LuxS genes were conserved in core genomes of the novel isolates, but in some non-cocoa related Lactic Acid Bacteria (LAB) it was accessory and plasmid-borne. The conservation and horizontal acquisition of luxS reinforces that QS is determinant for bacterial adaptation in several environments, especially taking into account the luxS has been correlated with modulation of bacteriocin production, stress tolerance and biofilm formation. Therefore, in this paper, new clade and species-specific primers were designed for future application for screening of luxS gene in LAB to evaluate the adaptive potential to diverse food fermentations.  相似文献   

15.
The entomopathogenic bacterium Photorhabdus luminescens exhibits phase variation when cultured in vitro. The variant forms of P. luminescens are pleiotropic and are designated phase I and phase II variants. One of the characteristic phenotypes of phase I cells is the production of two types of intracellular protein inclusions. The genes encoding the protein monomers that form these inclusions, designated cipA and cipB, were cloned and characterized. cipA and cipB encode hydrophobic proteins of 11,648 and 11,308 Da, respectively. The deduced amino acid sequences of CipA and CipB have no significant amino acid sequence similarity to any other known protein but have 25% identity and 49% similarity to each other. Insertional inactivation of cipA or cipB in phase I cells of P. luminescens produced mutants that differ from phase I cells in bioluminescence, the pattern and activities of extracellular products, biochemical traits, adsorption of dyes, and ability to support nematode growth and reproduction. In general, the cip mutants were phenotypically more similar to each other than to either phase I or phase II variants.  相似文献   

16.
17.

Background

The luxS/AI-2 signaling pathway has been reported to interfere with important physiological and pathogenic functions in a variety of bacteria. In the present study, we investigated the functional role of the streptococcal luxS/AI-2 system in metabolism and diverse aspects of pathogenicity including the adaptation of the organism to stress conditions using two serotypes of Streptococcus pyogenes, M1 and M19.

Results

Exposing wild-type and isogenic luxS-deficient strains to sulfur-limited media suggested a limited role for luxS in streptococcal activated methyl cycle metabolism. Interestingly, loss of luxS led to an increased acid tolerance in both serotypes. Accordingly, luxS expression and AI-2 production were reduced at lower pH, thus linking the luxS/AI-2 system to stress adaptation in S. pyogenes. luxS expression and AI-2 production also decreased when cells were grown in RPMI medium supplemented with 10% serum, considered to be a host environment-mimicking medium. Furthermore, interaction analysis with epithelial cells and macrophages showed a clear advantage of the luxS-deficient mutants to be internalized and survive intracellularly in the host cells compared to the wild-type parents. In addition, our data revealed that luxS influences the expression of two virulence-associated factors, the fasX regulatory RNA and the virulence gene sibA (psp).

Conclusion

Here, we suggest that the group A streptococcal luxS/AI-2 system is not only involved in the regulation of virulence factor expression but in addition low level of luxS expression seems to provide an advantage for bacterial survival in conditions that can be encountered during infections.  相似文献   

18.
LuxS catalyzes the synthesis of the quorum-sensing signaling molecule autoinducer 2. We show that in Salmonella enterica serovar Typhimurium, deletion of the luxS gene polarizes flagellar phase variation toward the more immunogenic phase 1 flagellin. This phenotype is complementable by luxS in trans but is independent of quorum-sensing signals.  相似文献   

19.
20.
Sponges harbor highly diverse and dense microbial communities, providing an environment in which bacterial signaling may be important. Quorum sensing (QS) is a cell density-dependent signaling process that bacteria employ to coordinate and regulate their gene expression. Previous studies have found that bacteria isolated from sponges are able to produce acyl-homoserine lactones (AHLs), an important class of QS molecules found in proteobacteria. Autoinducer-2 (AI-2) is a second class of QS molecule, and is considered to be an interspecies signal. However, AI-2 signaling has not been reported in sponge bacterial symbionts. In this study, degenerate primers were designed based on known Vibrio luxS sequences to amplify the luxS genes encoding AI-2 synthases of several Vibrio isolates from marine sponges Mycale laxissima and Ircinia strobilina. All the vibrios isolated from these two sponges had luxS genes and were able to produce signals with AI-2 activity as detected using a biological reporter. A novel group of luxS sequences was found, thus extending the known diversity of luxS genes. One isolate was chosen for further analysis of its luxS gene by expression of the gene in Escherichia coli DH5α and by characterization of the profile of AI-2 activity. This work provides the first information about luxS genes and AI-2 activity in sponge-associated bacterial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号