首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A P Dawson 《FEBS letters》1985,185(1):147-150
Low concentrations of GTP (10-50 microM) greatly enhance the inositol 1,4,5-trisphosphate stimulated Ca2+ release from rat liver microsomal vesicles. The effect of GTP depends on the presence of low concentrations of polyethylene glycol in the incubation medium. Guanylyl imidodiphosphate is ineffective at mimicking the GTP effect and inhibits the action of GTP added subsequently.  相似文献   

2.
Pancreatic beta-cells isolated from obese-hyperglycaemic mice released intracellular Ca2+ in response to carbamoylcholine, an effect dependent on the presence of glucose. The effective Ca2+ concentration reached was sufficient to evoke a transient release of insulin. When the cells were deficient in Ca2+, the Ca2+ pool sensitive to carbamoylcholine stimulation was equivalent to that released by ionomycin. Unlike intact cells, cells permeabilized by high-voltage discharges failed to generate either inositol 1,4,5-triphosphate (InsP3) or to release Ca2+ after exposure to carbamoylcholine. However, the permeabilized cells released insulin sigmoidally in response to increasing concentrations of Ca2+. Also in the absence of functional mitochondria these cells exhibited a large ATP-dependent buffering of Ca2+, enabling the maintenance of an ambient Ca2+ concentration corresponding to about 150 nM even after several additional pulses of Ca2+. InsP3, maximally effective at 6 microM, promoted a rapid and pronounced release of Ca2+. The InsP3-sensitive Ca2+ pool was rapidly filled and lost its Ca2+ late after ATP depletion. The transient nature of the Ca2+ signal was not overcome by repetitive additions of InsP3. It was possible to restore the response to InsP3 after a delay of approx. 20 min, an effect which had less latency after the addition of Ca2+. These latter findings argue against degradation and/or desensitization as factors responsible for the transiency in InsP3 response. It is suggested that Ca2+ released by InsP3 is taken up by a part of the endoplasmic reticulum (ER) not sensitive to InsP3. On metabolism of InsP3, Ca2+ recycles to the InsP3-sensitive pool, implying that this pool indeed has a very high affinity for the ion. The presence of functional mitochondria did not interfere with the recycling process. The ER in pancreatic beta-cells is of major importance in buffering Ca2+, but InsP3 only modulates Ca2+ transport for a restricted period of time following immediately upon its formation. Thereafter the non-sensitive part of the ER takes over the continuous regulation of Ca2+ cycling.  相似文献   

3.
We have studied arginine vasopressin (AVP)-, thapsigargin- and inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ release in renal epithelial LLC-PK1 cells. AVP-induced changes in the intracellular free calcium concentration ([Ca2+]i) were studied in indo-1 loaded single cells by confocal laser cytometry. AVP-mediated Ca2+ mobilization was also observed in the absence of extracellular Ca2+, but was completely abolished after depletion of the intracellular Ca2+ stores by 2 μM thapsigargin. Using 45Ca2+ fluxes in saponin-permeabilized cell monolayers, we have analysed how InsP3 affected the Ca2+ content of nonmitochondrial Ca2+ pools in different loading and release conditions. Less than 10% of the Ca2+ was taken up in a thapsigargin-insensitive pool when loading was performed in a medium containing 0.1 μM Ca2+. The thapsigargin-insensitive compartment amounted to 35% in the presence of 110 μM Ca2+, but Ca2+ sequestered in this pool could not be released by InsP3. The thapsigargin-sensitive Ca2+ pool, in contrast, was nearly completely InsP3 sensitive. A submaximal [InsP3], however, released only a fraction of the sequestered Ca2+. This fraction was dependent on the cytosolic as well as on the luminal [Ca2+]. The cytosolic free [Ca2+] affected the InsP3-induced Ca2+ release in a biphasic way. Maximal sensitivity toward InsP3 was found at a free cytosolic [Ca2+] between 0.1 and 0.5 μM, whereas higher cytosolic [Ca2+] decreased the InsP3 sensitivity. Other divalent cations or La3+ did not provoke similar inhibitory effects on InsP3-induced Ca2+ release. The luminal free [Ca2+] was manipulated by varying the time of incubation of Ca2+ -loaded cells in an EGTA-containing medium. Reduction of the Ca2+ content to one-third of its initial value resulted in a fivefold decrease in the InsP3 sensitivity of the Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The 5' AMP-activated protein kinase (AMPK) is a nutrient-sensitive kinase that plays a key role in the control of cellular energy metabolism. We have explored here the relationship between AMPK and Ca2+ signaling by looking at the effect of an AMPK activator (A769662) and an AMPK inhibitor (dorsomorphin) on histamine-induced Ca2+-release from the endoplasmic reticulum (ER) in HeLa cells. Our data show that incubation with A769662 (EC50 = 29 μM) inhibited histamine-induced Ca2+-release from the ER in intact cells, as well as inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release in permeabilized cells. On the contrary, dorsomorphin (EC50 = 0.4 μM) activated both histamine and IP3-induced Ca2+-release and reversed the effect of A769662. These results suggest a direct effect of AMPK regulation on IP3 receptor (IP3R) function. A phosphoproteomic study did not reveal changes in IP3R phosphorylation, but showed significant changes in phosphorylation of proteins placed upstream in the IP3R interactome and in several proteins related with Ca2+ metabolism, which could be candidates to mediate the effects observed. In conclusion, our data suggest that AMPK negatively regulates IP3R. This effect constitutes a novel and very important link between Ca2+ signaling and the AMPK pathway.  相似文献   

5.
The effect of inositol 1,4,5-trisphosphate (IP3) on Ca2+ release in the transformed murine mast cells, mastocytoma P-815 cells permeabilized with digitonin was studied. Ca2+ was sequestered by intracellular organelles in the presence of ATP until the medium free Ca2+ concentration was lowered to a new steady-state level. The subsequent addition of IP3 caused a rapid Ca2+ release, which was followed by a slow re-uptake of Ca2+. Fifty percent of the sequestered Ca2+ was released by 10 μM IP3. Maximal Ca2+ release occurred at 10 μM and half maximal activity was at 1.3 μM. These results indicate that IP3 may function as a messenger of intracellular Ca2+ mobilization in mastocytoma cells.  相似文献   

6.
7.
The release of Ca2+ from the intracellular store site, as induced by inositol 1,4,5-trisphosphate, was studied in relation to free Ca2+ concentrations or amounts of stored Ca2+ in smooth muscle cells. The maximal Ca2+ release induced by inositol 1,4,5-trisphosphate was observed when the amount of Ca2+ in the store site was about 50% of the maximal capacity of the Ca2+ storage, and when the extravesicular free Ca2+ concentration was less than 1.5 X 10(-6) M. The Ca2+ release induced by inositol 1,4,5-trisphosphate was accelerated by ATP and 5'-adenylylimidodiphosphate (AMPPNP), but not by ADP and AMP. This inositol 1,4,5-trisphosphate-induced Ca2+ release appeared to be specific for intracellular Ca2+ store sites (mainly sarcoplasmic reticulum), and this Ca2+ release was not apparent in the sarcolemmal fraction.  相似文献   

8.
Inositol 1,4,5-trisphosphate (InsP3)-induced Ca2+ release from intracellular stores displays complex kinetic behavior. While it well established that cytosolic [Ca2+] can modulate release by acting on the InsP3 receptor directly, the role of the filling state of internal Ca2+stores in modulating Ca2+ release remains unclear. Here we have reevaluated this topic using a technique that permits rapid and reversible changes in free [Ca2+] in internal stores of living intact cells without altering cytoplasmic [Ca2+], InsP3 receptors, or sarcoendoplasmic reticulum Ca2+ ATPases (SERCAs). N,N,N',N'-Tetrakis(2-pyridylmethyl)ethylene diamine (TPEN), a membrane-permeant, low affinity Ca2+ chelator was used to manipulate [Ca2+] in intracellular stores, while [Ca2+] changes within the store were monitored directly with the low-affinity Ca2+ indicator, mag-fura-2, in intact BHK-21 cells. 200 microM TPEN caused a rapid drop in luminal free [Ca2+] and significantly reduced the extent of the response to stimulation with 100 nm bradykinin, a calcium-mobilizing agonist. The same effect was observed when intact cells were pretreated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(acetoxymethyl ester) (BAPTA-AM) to buffer cytoplasmic [Ca2+] changes. Although inhibition of Ca2+ uptake using the SERCA inhibitor tBHQ permitted significantly larger release of Ca2+ from stores, TPEN still attenuated the release in the presence of tBHQ in BAPTA-AM-loaded cells. These results demonstrate that the filling state of stores modulates the magnitude of InsP3-induced Ca2+release by additional mechanism(s) that are independent of regulation by cytoplasmic [Ca2+] or effects on SERCA pumps.  相似文献   

9.
Ca2+ release triggered by inositol 1,4,5-trisphosphate (IP3) has been measured in saponin-permeabilized human platelets with quin2 or 45Ca2+. Ca2+ was sequestered by intracellular organelles in the presence of ATP, and IP3 released half of the sequestered Ca2+. The addition of cyclic AMP (cAMP) to permeabilized platelets transiently accelerated Ca2+ sequestration, but did not alter the steady-state level. In contrast, IP3-induced Ca2+ release was greatly inhibited by cAMP. Phorbol myristate acetate, an activator of protein kinase C did not affect IP3-induced Ca2+ release. These results indicate that cAMP may be involved in the regulation of IP3-induced Ca2+ release in human platelets.  相似文献   

10.
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells.  相似文献   

11.
Neoplastic rat liver epithelial (261B) cells made permeable by electroporation released 0.2-0.3 microM Ca2+ from intracellular stores in response to 0.5 microM Ins(1,4,5)P3 stimulation. This Ca2+ release response was found to be inhibited by heparin in a dose-dependent manner (Ki of 15 micrograms/ml). Two other glycosaminoglycans, chondroitin sulfate and hyaluronic acid, showed no inhibitory effect at doses as high as 0.2 mg/ml. Passive Ca2+ release, and sequestration of Ca2+ into intracellular storage sites by the action of Ca2+-ATPase were unaffected by heparin treatment. We conclude that the inhibitory action of heparin treatment on Ca2+ mobilization in permeabilized 261B cells is mediated through its interaction at the Ins(1,4,5)P3 receptor binding site.  相似文献   

12.
13.
Huh YH  Jeon SH  Yoo JA  Park SY  Yoo SH 《Biochemistry》2005,44(16):6122-6132
We show here that expression of chromogranins in non-neuroendocrine NIH3T3 cells significantly increased the amount of IP(3)-mediated intracellular Ca(2+) mobilization in these cells, whereas suppression of them in neuroendocrine PC12 cells decreased the amount of mobilized Ca(2+). We have therefore investigated the relationship between the IP(3)-induced intracellular Ca(2+) mobilization and secretory granules. The level of IP(3)-mediated Ca(2+) release in CGA-expressing NIH3T3 cells was 40% higher than in the control cells, while that of CGB-expressing cells was 134% higher, reflecting the number of secretory granules formed. Suppression of CGA and CGB expression in PC12 cells resulted in 41 and 78% reductions in the number of secretory granules, respectively, while the extents of IP(3)-induced Ca(2+) release in these cells were reduced 40 and 69%, respectively. The newly formed secretory granules of NIH3T3 cells contained all three isoforms of the IP(3)Rs. Comparison of the concentrations of the IP(3)R isoforms expressed in the ER and nucleus of chromogranin-expressing and nonexpressing NIH3T3 cells did not show significant differences, indicating that chromogranin expression did not affect the expression of endogenous IP(3)Rs. Nonetheless, the IP(3)R concentrations in secretory granules of chromogranin-expressing NIH3T3 cells were 3.5-4.7-fold higher than those of the ER, similar to the levels found in secretory granules of neuroendocrine chromaffin cells, thus suggesting that the IP(3)Rs targeted to the newly formed secretory granules are newly induced by chromogranins without affecting the expression of intrinsic IP(3)Rs. These results strongly suggest that the extent of IP(3)-induced intracellular Ca(2+) mobilization in secretory cells is closely related to the number of secretory granules.  相似文献   

14.
Our previous studies have demonstrated that calmodulin binds to IP3R type I (IP3R1) in a Ca2+ dependent manner, which suggests that calmodulin regulates the IP3R1 channel. In the present study, we investigated real-time kinetics of interactions between calmodulin and IP3R1 as well as effects of calmodulin on IP3-induced Ca2+ release by purified and reconstituted IP3R1. Kinetic analysis revealed that calmodulin binds to IP3R1 in a Ca2+ dependent manner and that both association and dissociation phase consist of two components with time constants of k(a) = 4.46 x 10(2) and > 10(4) M(-1) s(-1) k(d) = 1.44 x 10(-2) and 1.17 x 10(-1) s(-1). The apparent dissociation constant was calculated to be 27.3 microM. The IP3-induced Ca2+ release through the purified and reconstituted IP3R1 was inhibited by Ca2+/calmodulin, in a dose dependent manner. We interpret our findings to mean that calmodulin binds to IP3R1 in a Ca2+ dependent manner to exert inhibitory effect on IP3R channel activity. This event may be one of the mechanisms governing the negative feedback regulation of IP3-induced Ca2+ release by Ca2+.  相似文献   

15.
It has been suggested that the release of Ca2+ from intracellular stores by inositol 1,4,5-trisphosphate (InsP3) is modulated by the luminal Ca2+ content of the stores and that such an effect could underlie the apparent ‘quantal’ nature of InsP3-induced release. Although initial studies failed to find evidence in support of such a modulation, several subsequent reports have indicated luminal Ca2+ effects that become apparent only after a greater than 70–75% depletion of Ca2+ stores. In these studies, Ca2+ release was expressed as a percentage of an A23187-releasable pool which comprised both InsP3-sensi-tive and InsP3-insensitive components. In model calculations we have found that the presence of even a minor InsP3-insensitive component in the total Ca2+ pool significantly distorts interpretation of the data. We show that the published results can be accurately duplicated without any requirement for a shift in the true InsP3 sensitivity of Ca2+ release if either: (a) the InsP3-insensitive component does not remain a constant proportion of the total pool during depletion (i.e. depletion disproportionally affects the InsP3-sensitive component); or (b) during generation of InsP3-response curves, additional Cal 2+ is released from the InsP3-insensitive component as the InsP3-sensitive component is progressively emptied. Examination indicates that either, or both, of these conditions apply in the published reports and we conclude that the demonstrated effects of luminal Ca2+ may be artifacts.  相似文献   

16.
Ca2+ dependence of the inositol 1,4,5-trisphosphate (IP3)-induced Ca release was studied in saponin-skinned smooth muscle fiber bundles of the guinea pig taenia caeci at 20-22 degrees C. Ca release from the skinned fiber bundles was monitored by microfluorometry of fura-2. Fiber bundles were first treated with 30 microM ryanodine for 120 s in the presence of 45 mM caffeine to lock open the Ca-induced Ca release channels which are present in approximately 40% of the Ca store of the smooth muscle cells of the taenia. The Ca store with the Ca-induced Ca release mechanism was functionally removed by this treatment, but the rest of the store, which was devoid of the ryanodine-sensitive Ca release mechanism, remained intact. The Ca2+ dependence of the IP3-induced Ca release mechanism was, therefore, studied independently of the Ca-induced Ca release. The rate of IP3-induced Ca release was enhanced by Ca2+ between 0 and 300 nM, but further increase in the Ca2+ concentration also exerted an inhibitory effect. Thus, the rate of IP3-induced Ca release was about the same in the absence of Ca2+ and at 3 microM Ca2+, and was about six times faster at 300 nM Ca2+. Hydrolysis of IP3 within the skinned fiber bundles was not responsible for these effects, because essentially the same effects were observed with or without Mg2+, an absolute requirement of the IP3 phosphatase activity. Ca2+, therefore, is likely to affect the gating mechanism and/or affinity for the ligand of the IP3-induced Ca release mechanism. The biphasic effect of Ca2+ on the IP3-induced Ca release is expected to form a positive feedback loop in the IP3-induced Ca mobilization below 300 nM Ca2+, and a negative feedback loop above 300 nM Ca2+.  相似文献   

17.
Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], arising from hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], is proposed as the link between membrane-receptor activation and mobilization of Ca2+ from intracellular sites in hormone-secreting cells. The location of Ins(1,4,5)P3-sensitive membranes was investigated in cultured neonatal beta-cells. Membranes were obtained after lysis of cells attached to positively charged Sephadex. After lysis the presence of the enzyme markers 5'-nucleotidase, glucose-6-phosphatase, NADH-cytochrome c reductase, UDP-galactosyltransferase and succinate dehydrogenase indicated the mixed nature of the preparation. After sonication, however, UDP-galactosyltransferase and succinate dehydrogenase activities were undetectable, but 4.8% of total cellular glucose-6-phosphatase and 3.4% of total cellular NADH-cytochrome c reductase remained with 5'-nucleotidase in the preparation, indicating endoplasmic-reticulum association. ATP-dependent 45Ca2+ accumulation was shown in this preparation (410 +/- 24 pmol/mg of protein at 150 nM free Ca2+) and was inhibited by vanadate (100 microM). Ca2+ release was effected by Ins(1,4,5)P3, with half-maximal release at 0.5 +/- 0.14 microM-Ins(1,4,5)P3, t1/2 11.2 +/- 1.1 s. GTP- and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG)-promoted release of 45Ca2+ was demonstrated in this preparation, but the kinetics of release (half-maximal Ca2+ release at 5.4 +/- 0.7 microM, with t1/2 77.3 +/- 6.9 s, and at 51.1 +/- 4.2 microM, with t1/2 19.0 +/- 2.2 s, for GTP and p[NH]ppG respectively), and the ability of neomycin sulphate to block p[NH]ppG-induced release only, are indicative of separate release mechanisms after treatment with these agents. A close association between plasma membrane and elements of the endoplasmic reticulum is indicated in this model, providing a possible mechanism for local alterations in free Ca2+ in the sub-plasma-membrane region.  相似文献   

18.
The cleavage signal transferred to the future cleavage cortex during anaphase has been proposed as "cleavage stimulus," but no signal has proved to induce cleavage furrows. The local Ca2+ transient along the cleavage furrow has been reported, but the Ca2+ source has remained unknown. To address these questions, we studied functions of Ca2+ stores in dividing newt eggs and found that microinjection of the Ca2+ store-enriched microsome fraction to the dividing newt egg induced a local extra-cleavage furrow at the injection site in 64-67% of the injected newt eggs while coinjection with inositol 1,4, 5-trisphosphate receptor (IP(3)R) antagonists heparin or anti-type 1-IP(3)R antibody clearly suppressed this induction (5 and 11% in induction rates, respectively). Injection of cerebellar microsomes from the type 1-IP(3)R-deficient mice induced extracleavage furrows albeit at a low rate (19%). Our observations strongly suggest that Ca2+ stores with IP(3)R induce and position a cleavage furrow via IP(3)-induced Ca2+ release (IICR) as Ca(2+)-releasing machinery and putative cleavage stimulus itself.  相似文献   

19.
Calreticulin (CRT) is a highly conserved Ca(2+)-binding protein that resides in the lumen of the endoplasmic reticulum (ER). We overexpressed CRT in Xenopus oocytes to determine how it could modulate inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) influx. Under conditions where it did not affect the spatially complex elevations in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) due to InsP(3)-induced Ca(2+) release, overexpressed CRT decreased by 46% the Ca(2+)-gated Cl(-) current due to Ca(2+) influx. Deletion mutants revealed that CRT requires its high capacity Ca(2+)-binding domain to reduce the elevations of [Ca(2+)](i) due to Ca(2+) influx. This functional domain was also required for CRT to attenuate the InsP(3)-induced decline in the free Ca(2+) concentration within the ER lumen ([Ca(2+)](ER)), as monitored with a "chameleon" indicator. Our data suggest that by buffering [Ca(2+)](ER) near resting levels, CRT may prevent InsP(3) from depleting the intracellular stores sufficiently to activate Ca(2+) influx.  相似文献   

20.
Intracellular applications of a fixed amount (0.2 to 8 nmol) of inositol 1,4,5-trisphosphate (InsP3) over a brief period (2 s) into barnacle muscle fibers induced vigorous contractures. Peak tension attained during the first application depended on [InsP3]: the maximum tension evoked by the injection of 8 nmol was 1.6 kg/cm2. Peak tension during a second application of a high dose of InsP3 (greater than 10 microM) was always smaller than that during the first application. Extracellular Ca2+ could be omitted with no measurable effects on either the amplitude or time course of the contractures evoked by InsP3. Aequorin was used to measure InsP3-evoked Ca2+ release from intracellular stores in minced muscle fibers from lobster and in skinned muscle fibers from barnacle. Provided the sarcoplasmic reticulum was preloaded with Ca2+, application of InsP3 induced a transient Ca2+ release that was [InsP3] dependent. During each transient, [Ca2+] rose rapidly to a peak value (t1/2 less than 5 s) and then slowly returned (t1/2 less than 100 s) to a basal level. Maximum Ca2+ release was obtained at [InsP3] less than 100 microM and amounted to 4 nmol Ca2+/g of muscle, enough to increase [Ca2+]i from 0.1 to 8 microM had the Ca2+ release occurred in the intact fiber. Successive applications of a fixed amount of InsP3 elicited successive transient increases in Ca2+. The effects of [Ca2+] on the incorporation of [3H]inositol into the pools of phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate pools were measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号