首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

3.
Drosophila topoisomerase II-DNA interactions are affected by DNA structure.   总被引:6,自引:0,他引:6  
The binding of purified Drosophila topoisomerase II to the highly bent DNA segments from the SV40 terminus of replication and C. fasciculata kinetoplast minicircle DNA (kDNA) was examined using electron microscopy (EM). The probability of finding topoisomerase II positioned at or near the bent SV40 terminus and Crithidia fasciculata kDNA was two- and threefold higher, respectively, than along the unbent pBR325 DNA into which the elements had been cloned. Closer examination demonstrated that the enzyme bound preferentially to the junction between the bent and non-bent sequences. Using gel electrophoresis, a cluster of strong sodium dodecyl sulfate-induced topoisomerase II cleavage sites was mapped to the SV40 terminus DNA, and two weak cleavage sites to the C. fasciculata kDNA. As determined by EM, Drosophila topoisomerase II foreshortened the apparent length of DNA by only 15 base-pairs when bound, arguing that it does not wrap DNA around itself. When bound to pBR325 containing the C. fasciculata kDNA and the SV40 terminus, topoisomerase II often produced DNA loops. The size distribution was that predicted from the known probability of any two points along linear DNA colliding. In vitro mapping of topoisomerase II on DNA whose ends were blocked by avidin protein revealed that binding is enhanced at sites located near a blocked end as compared to a free end. These observations may contribute towards establishing a framework for understanding topoisomerase II-DNA interactions.  相似文献   

4.
5.
6.
A temperature-sensitive mutant of simian virus 40 (SV40), ts(*)101, has been characterized during productive infection in monkey kidney cells. The mutant virion can adsorb to and penetrate the cell normally at the restrictive temperature, but cannot induce the synthesis of cellular deoxyribonucleic acid (DNA) nor initiate the synthesis of SV40-specific tumor, virion, or U antigens or viral DNA. First-cycle infection with purified ts(*)101 DNA is normal at the restrictive temperature, but the resulting progeny virions are still temperature-sensitive. The mutant neither complements nor inhibits other temperature-sensitive SV40 mutants or wild-type virions. The affected protein in the ts(*)101 mutant may be a regulatory structural protein, possibly a core protein, that is interacting with the viral DNA.  相似文献   

7.
By using a DNA fragment immunoassay, the binding of simian virus 40 (SV40) and polyomavirus (Py) large tumor (T) antigens to regulatory regions at both viral origins of replication was examined. Although both Py T antigen and SV40 T antigen bind to multiple discrete regions on their proper origins and the reciprocal origin, several striking differences were observed. Py T antigen bound efficiently to three regions on Py DNA centered around an MboII site at nucleotide 45 (region A), a BglI site at nucleotide 92 (region B), and another MboII site at nucleotide 132 (region C). Region A is adjacent to the viral replication origin, and region C coincides with the major early mRNA cap site. Weak binding by Py T antigen to the origin palindrome centered at nucleotide 3 also was observed. SV40 T antigen binds strongly to Py regions A and B but only weakly to region C. This weak binding on region C was surprising because this region contains four tandem repeats of GPuGGC, the canonical pentanucleotide sequence thought to be involved in specific binding by T antigens. On SV40 DNA, SV40 T antigen displayed its characteristic hierarchy of affinities, binding most efficiently to site 1 and less efficiently to site 2. Binding to site 3 was undetectable under these conditions. In contrast, Py T antigen, despite an overall relative reduction of affinity for SV40 DNA, binds equally to fragments containing each of the three SV40 binding sites. Py T antigen, but not SV40 T antigen, also bound specifically to a region of human Alu DNA which bears a remarkable homology to SV40 site 1. However, both tumor antigens fail to precipitate DNA from the same region which has two direct repeats of GAGGC. These results indicate that despite similarities in protein structure and DNA sequence, requirements of the two T antigens for pentanucleotide configuration and neighboring sequence environment are different.  相似文献   

8.
9.
Protein-induced bending of the simian virus 40 origin of replication   总被引:10,自引:0,他引:10  
A 3.5 S protein, isolated from mammalian nuclei, specifically binds to DNA fragments containing the simian virus 40 (SV40) origin of replication. Two distinct nucleoprotein complexes are formed, a complex with high electrophoretic mobility carrying probably only one protein molecule, and a complex with reduced electrophoretic mobility carrying probably two protein molecules per DNA fragment. Band shift competition as well as methylation interference assays locate the binding site of the protein in the A + T-rich "late" region of the origin between SV40 nucleotides 13 and 35. The late origin binding (LOB) protein and T antigen bind simultaneously to adjacent sites in the origin. Using circularly permuted DNA fragments of identical lengths we show that the LOB protein induces pronounced bending of the origin fragment. The bending center maps at the 5' end of the adenine tract with one bound protein molecule and at the 3' end when two LOB proteins are bound to one origin fragment.  相似文献   

10.
D A Dean  P P Li  L M Lee    H Kasamatsu 《Journal of virology》1995,69(2):1115-1121
Both a DNA-binding domain and a Vp1 interactive determinant have been mapped to the carboxy-terminal 40 residues of the simian virus 40 (SV40) minor capsid proteins, Vp2 and Vp3 (Vp2/3), with the last 13 residues being necessary for these activities. The role of this DNA-binding domain in SV40 morphogenesis and the ability to separate these two signals were investigated by mutagenesis and assessment of the activity and viability of the mutants. The carboxy-terminal 40 residues of Vp2/3 were expressed as a polyhistidine fusion protein, and five basic residues at the extreme carboxy terminus (Vp3 residues K226, R227, R228, R230, and R233) were mutagenized. The wild-type fusion protein bound DNA with a Kd of 3 x 10(-8) identical to that of the full-length Vp3. Mutant proteins containing either one to three or four amino acid substitutions bound DNA 4- to 7-fold or 20- to 30-fold less well, respectively, than the wild-type protein did. The most severe point mutants showed residual DNA binding similar to that of a truncated protein which lacks the entire 13 carboxy-terminal residues. All of the point mutants were able to interact with Vp1, indicating that the two signals within this region are mediated by different residues. When the mutations were placed into the context of the viral DNA and introduced into cells, all the structural proteins were expressed and localized correctly. Not all, however, were viable: mutant genomes whose Vp2/3 bound DNA with intermediate affinities formed plaques just as well as wild-type SV40 DNA did, but three mutants showing greatly reduced DNA binding failed to form plaques at all. These results are consistent with the hypothesis that Vp2/3 plays an essential role in SV40 virion assembly in the nucleus.  相似文献   

11.
12.
As shown by competition experiments, the single-strand DNA binding protein from normal rat liver (S25) interacts preferentially with supercoiled DNA compared to relaxed DNA duplexes. When followed both by sedimentation analysis and by nitrocellulose filter assay, the binding of S25 to SV40 supercoiled DNA (FI) appears to be non-cooperative. Saturation is reached at a protein to DNA weight ratio of about 2. The S25-DNA complexes prefixed with glutaraldehyde appear as beaded structures having an average of 14 to 16 beads per SV40 DNA molecules. Cross-linking of S25 bound to SV40 DNA by dimethyl suberimidate allows to detect oligomeric structures containing a maximum of twenty monomers of S25. When complexes are treated by glutaraldehyde, 10% of the genome become resistant against micrococcal nuclease. Moreover, S25 affects the DNA helical structure. Superhelical forms are generated by the association of S25 with SV40 DNA, in the presence of nicking-closing enzyme.  相似文献   

13.
Protein-DNA interactions at the simian virus 40 origin of replication   总被引:1,自引:0,他引:1  
Simian Virus 40 (SV40)-encoded large T antigen has an intrinsic ATP-dependent DNA-unwinding activity which is necessary for an early step in the activation of the viral origin of replication. Isolated T antigen unwinds any double-stranded DNA, regardless of whether it is linear or circularly closed. However, initiation of DNA replication depends on an intact origin of replication, and even minor deviations from the wild-type origin sequence abolish the template activity of an origin-bearing plasmid. This discrepancy suggests that T antigen may not be sufficient for origin activation and that other, probably cellular, functions are involved. We have isolated a cellular protein, the LOB protein, which specifically interacts with the AT-rich region of the SV40 origin and which induces a pronounced bending of the bound DNA.  相似文献   

14.
K L Collins  A A Russo  B Y Tseng    T J Kelly 《The EMBO journal》1993,12(12):4555-4566
DNA polymerase alpha is the only enzyme in eukaryotic cells capable of starting DNA chains de novo and is required for the initiation of SV40 DNA replication in vitro. We have cloned the 70 kDa subunit of human DNA polymerase alpha (hereafter referred to as the B subunit) and expressed it as a fusion protein in bacteria. The purified fusion protein forms a stable complex with SV40 T antigen, both in solution and when T antigen is bound to the SV40 origin of DNA replication. Analysis of mutant forms of the B subunit indicates that the N-terminal 240 amino acids are sufficient to mediate complex formation. The B subunit fusion protein promotes formation of a complex containing T antigen and the catalytic subunit (subunit A) of DNA polymerase alpha, suggesting that it serves to tether the two proteins. These physical interactions are functionally significant, since the ability of T antigen to stimulate the activity of the catalytic subunit of DNA polymerase alpha is highly dependent upon the B subunit. We suggest that the interactions mediated by the B subunit play an important role in SV40 DNA replication by promoting DNA chain initiation at the origin and/or facilitating the subsequent priming and synthesis of DNA chains on the lagging strand template. The protein may play similar roles in cellular DNA replication.  相似文献   

15.
A nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2(+)ND(1), has been plaque-isolated from an Ad2-SV40 hybrid population. This virus, unlike the defective Ad-SV40 hybrid populations previously described, replicates without the aid of nonhybrid adenovirus helper. Consequently, the hybrid virus deoxyribonucleic acid (DNA) can be obtained free of nonhybrid adenovirus DNA. The DNA of the Ad2(+)ND(1) virus was shown by ribonucleic acid (RNA)-DNA hybridization to consist of nucleotide sequences complementary to Ad2- and SV40-specific RNA. Techniques of equilibrium density and rate zonal centrifugation were employed to demonstrate that these Ad2 and SV40 nucleotide sequences were linked together in the same DNA molecules by alkali-resistant bonds. Calibration curves were established relating the amount of tritium-labeled SV40-specific RNA (prepared in vitro or in vivo) bound to given amounts of SV40 DNA in a hybridization reaction, and these curves were employed to determine the equivalent amount of SV40 DNA in the Ad2(+)ND(1) molecule. From the results obtained, it was estimated that 1% of the Ad2(+)ND(1) DNA consists of SV40 nucleotide sequences.  相似文献   

16.
The replication of DNA containing either the polyoma or SV40 origin has been done in vitro. Each system requires its cognate large-tumour antigen (T antigen) and extracts from cells that support its replication in vivo. The host-cell source of DNA polymerase alpha - primase complex plays an important role in discriminating between polyoma T antigen and SV40 T antigen-dependent replication of their homologous DNA. The SV40 origin- and T antigen-dependent DNA replication has been reconstituted in vitro with purified protein components isolated from HeLa cells. In addition to SV40 T antigen, HeLa DNA polymerase alpha - primase complex, eukaryotic topoisomerase I and a single-strand DNA binding protein from HeLa cells are required. The latter activity, isolated solely by its ability to support SV40 DNA replication, sediments and copurifies with two major protein species of 72 and 76 kDa. Although crude fractions yielded closed circular monomer products, the purified system does not. However, the addition of crude fractions to the purified system resulted in the formation of replicative form I (RFI) products. We have separated the replication reaction with purified components into multiple steps. In an early step, T antigen in conjunction with a eukaryotic topoisomerase (or DNA gyrase) and a DNA binding protein, catalyses the conversion of a circular duplex DNA molecule containing the SV40 origin to a highly underwound covalently closed circle. This reaction requires the action of a helicase activity and the SV40 T antigen preparation contains such an activity. The T antigen associated ability to unwind DNA copurified with other activities intrinsic to T antigen (ability to support replication of SV40 DNA containing the SV40 origin, poly dT-stimulated ATPase activity and DNA helicase).  相似文献   

17.
Purified simian virus 40 (SV40) virions, grown in primary African green monkey kidney cells labeled prior to infection with (3)H-thymidine, contain a variable quantity of (3)H-labeled deoxyribonucleic acid (DNA). This DNA is resistant to deoxyribonuclease, sediments at 250S, and is enclosed in a particle that can be precipitated with SV40-specific antiserum. DNA-DNA hybridization experiments demonstrate that this (3)H-labeled component in purified SV40 virions is cellular DNA. When this (3)H-labeled DNA is released from purified virus with sodium dodecyl sulfate, it has an average sedimentation constant of 14S. Sedimentation through neutral and alkaline sucrose gradients shows that this 14S DNA is composed of a collection of different sizes of DNA molecules that sediment between 11 and 15S. As a result of this size heterogeneity, SV40 virions containing cellular DNA (pseudovirions) have a variable DNA to capsid protein ratio and exhibit a spectrum of buoyant densities in a CsCl equilibrium gradient. Pseudovirions are enriched, relative to true virions, on the lighter density side of infectious SV40 virus banded to equilibrium in a CsCl gradient. Little or no cellular DNA was found in purified SV40 virus preparations grown in BSC-1 or CV-1 cells.  相似文献   

18.
The ability of the two early simian virus 40 (SV40) coded proteins, the large and small T-antigens, to abortively induce the disappearance of cytoplasmic actin-containing networks in cultured cells has been studied in rat embryo fibroblasts after microinjection of intact SV40 DNA, DNA fragments from the early region of SV40, and a purified SV40 large T-antigen related protein (the D2 hybrid protein) isolated from cells infected with the adenovirus-SV40 hybrid virus Ad2+D2. Injection of either the 107,000-dalton D2 hybrid protein or SV40 DNA from the deletion mutant dl 884 SV40, which lacks part of the region (0.54 to 0.59) encoding small t-antigen, failed to cause any detectable change in the structure of actin cables in recipient cells over a period of 72 h. By contrast, injection of wild-type SV40 DNA or a DNA fragment containing the entire region coding for a small-t antigen leads to the disruption of actin cable networks within 24 h of injection. It appears likely that the SV40 small-t protein is necessary for the abortive loss of actin cables in injected cells. Epidermal growth factor also causes loss of actin cables in rat embryo fibroblasts or Rat 1 cells (an established rat embryo line), but only after exposure of the cells to epidermal growth factor in the culture medium and not after injection of epidermal growth factor into the cells.  相似文献   

19.
The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.  相似文献   

20.
Simian virus 40 (SV40) large T antigen (TAg), both free and bound to mature 70S and replicating 90S SV40 chromosomes, was prepared from lytically infected cells. The relative reactivity of the different TAg-containing fractions toward 10 monoclonal antibodies directed against three different regions in SV40 TAg and toward an antibody against the p53 protein was measured. The results for free TAg indicated that all of the determinants in both the amino-terminal (0.65 to 0.62 map units) and carboxy-terminal (0.28 to 0.17 map units) regions were highly reactive, whereas all five determinants located between 0.43 and 0.28 map units in the midregion of TAg were poorly reactive. For TAg bound to replicating chromosomes, all but one of the antibodies specific for TAg were highly reactive. Thus, antigenic sites in the middle of TAg, the region important for nucleotide binding and ATP hydrolysis (an activity required for viral DNA replication), were more accessible in TAg-replicating DNA complexes. As replicating molecules matured into 70S chromosomes, three or more determinants at different locations in TAg bound to chromatin became two- to fivefold less reactive, indicating other changes in TAg structure. Overall, at least nine different antigenic determinants in the TAg molecule were identified. Anti-p53 was reactive with about 10% of the free TAg and the same amount of SV40 chromosomes of all ages, suggesting that p53-TAg complexes are not preferentially associated with either replicating or mature viral chromosomes. When the reactivity of both mature and replicating labeled SV40 chromosomes with polyclonal tumor anti-T was measured as a function of time after purification, TAg bound to mature chromosomes appeared to dissociate about fourfold faster than that bound to replicating chromosomes. The relative amount of TAg in various subcellular fractions was measured by an enzyme-linked immunosorbent assay. Approximately 1.3% of the total TAg was estimated to be associated with SV40 chromosomes in infected cells. Based on the relative amounts of TAg and viral DNA in the 70S and 90S fractions, replicating chromosome-TAg complexes were estimated to bind 4.8 times more TAg per DNA molecule, on the average, than mature chromosome-TAg complexes. Together, these results are consistent with major differences in TAg structure when free and associated with replicating and nonreplicating SV40 chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号