首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a new diversity threshold theory which states that the specific CTLs to the viral strain become inactivated (that is, some HIV strain can escape from its specific immune response) when the diversity of HIV strains exceeds some threshold number. We call this number “immune diversity threshold”. Our theory can explain the inactivation of specific immune response and a limit of maximum immune diversity. We can conclude that the accumulation of viral diversity eventually leads to AIDS.  相似文献   

2.
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.  相似文献   

3.
DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection.  相似文献   

4.
Dendritic cells (DCs) initiate immune responses by transporting antigens and migrating to lymphoid tissues to initiate T-cell responses. DCs are located in the mucosal surfaces that are involved in human immunodeficiency virus (HIV) transmission and they are probably among the earliest targets of HIV-1 infection. DCs have an important role in viral transmission and dissemination, and HIV-1 has evolved different strategies to evade DC antiviral activity. High mobility group box 1 (HMGB1) is a DNA-binding nuclear protein that can act as an alarmin, a danger signal to alert the innate immune system for the initiation of host defense. It is the prototypic damage-associated molecular pattern molecule, and it can be secreted by innate cells, including DCs and natural killer (NK) cells. The fate of DCs is dependent on a cognate interaction with NK cells, which involves HMGB1 expressed at NK–DC synapse. HMGB1 is essential for DC maturation, migration to lymphoid tissues and functional type-1 polarization of naïve T cells. This review highlights the latest advances in our understanding of the impact of HIV on the interactions between HMGB1 and DCs, focusing on the mechanisms of HMGB1-dependent viral dissemination and persistence in DCs, and discussing the consequences on antiviral innate immunity, immune activation and HIV pathogenesis.  相似文献   

5.
Dendritic cells (DCs) play a pivotal role in host defense against invaded pathogens including fungi, while DCs are targeted by fungi for deleterious regulation of the host immune response. A few studies have reported fungal modulation of DC function in these immunocompromised AIDS patients. Cryptococcus neoformans (C. neoformans) is referred as one of the opportunistic fungi of AIDS. Here, we isolated native C. neoformans from an AIDS patient and investigated its effects on DC activation and function. Stimulation of C. neoformans matured DCs, and enhanced DC-mediated HIV-1 trans-infection; moreover, C. neoformans-stimulated DCs promoted the activation of resting T cells and provided more susceptible targets for HIV-1 infection. Microbial translocation has been proposed as the cause of systemic immune activation in chronic HIV-1 infection. Understanding the potential effects of pathogens on HIV-1-DC interactions could help elucidate viral pathogenesis and provide a new insight for against the spread of HIV.  相似文献   

6.
Dendritic cells (DCs) were recently found to be innate immunity effectors against tumoral cells and viruses. (i) In response to most viruses, including HIV, plasmacytoid DCs are responsible for most of the type I IFN secretion, which is strongly anti-viral and induces TH1 type responses. Myeloid DCs secrete IL-12, which is also important for TH1-type and cytotoxic responses. In HIV patient blood, both DC population numbers decrease as early as the primary stage. Plasmacytoid DC numbers correlate with type I IFN secretion, which is a prognosis predictor, particularly under treatment. IL-12 secretion is also defective. Immunotherapies to replace the defective cytokines or to restore a potentially defective DC-T lymphocyte feed-back might help patients restore their immune responses under antiviral therapy. (ii) After measles and other viral infections, or incubation with dsRNA, DCs become cytotoxic and consequently exhibit natural killer function, through upregulation of type I IFN secretion which enhances TRAIL expression. In HIV infection, this mechanism was not demonstrated yet, but it might a) be responsible for the massive apoptosis of uninfected lymphocytes, and b) increase specific immunity through cross-presentation of antigens from infected cells killed by DCs. (iii) DCs direct expansion and effector functions of NK cells in the absence of adaptive-type cytokines and modulate NKT cell IFN-gamma production. Reciprocally, NK activation triggers DC maturation. HIV-1 Tat inhibits NK cell cytotoxicity directly and probably through inhibition of IL-12 secretion by DC. Therefore, understanding the functions of DCs in innate immune responses and in pathogenesis will help obtain better HIV replication control.  相似文献   

7.
HIV‐1 traffics through dendritic cells (DCs) en route to establishing a productive infection in T lymphocytes but fails to induce an innate immune response. Within DC endosomes, HIV‐1 somehow evades detection by the pattern‐recognition receptor (PRR) Toll‐like receptor 8 (TLR8). Using a phosphoproteomic approach, we identified a robust and diverse signaling cascade triggered by HIV‐1 upon entry into human DCs. A secondary siRNA screen of the identified signaling factors revealed several new mediators of HIV‐1 trans‐infection of CD4+ T cells in DCs, including the dynein motor protein Snapin. Inhibition of Snapin enhanced localization of HIV‐1 with TLR8+ early endosomes, triggered a pro‐inflammatory response, and inhibited trans‐infection of CD4+ T cells. Snapin inhibited TLR8 signaling in the absence of HIV‐1 and is a general regulator of endosomal maturation. Thus, we identify a new mechanism of innate immune sensing by TLR8 in DCs, which is exploited by HIV‐1 to promote transmission.  相似文献   

8.
Hou W  So EY  Kim BS 《PLoS pathogens》2007,3(8):e124
Although persistent viral diseases are a global health concern, the mechanisms of differential susceptibility to such infections among individuals are unknown. Here, we report that differential interactions between dendritic cells (DCs) and virus are critical in determining resistance versus susceptibility in the Theiler murine encephalomyelitis virus-induced demyelinating disease model of multiple sclerosis. This virus induces a chronic demyelinating disease in susceptible mice, whereas the virus is completely cleared in resistant strains of mice. DCs from susceptible mice are more permissive to viral infection, resulting in severe deficiencies in development, expansion, and function, in contrast to DCs from resistant mice. Although protective prior to viral infection, higher levels of type I interferons (IFNs) and IFN-gamma produced by virus-infected DCs from susceptible mice further contribute to the differential inhibition of DC development and function. An increased DC number and/or acquired resistance of DCs to viral infection render susceptible mice resistant to viral persistence and disease progression. Thus, the differential permissiveness of DCs to infectious agents and its subsequent functional and developmental deficiencies determine the outcome of infection- associated diseases. Therefore, arming DCs against viral infection-induced functional decline may provide a useful intervention for chronic infection-associated diseases.  相似文献   

9.
The C-type lectin DC-SIGN expressed on immature dendritic cells (DCs) captures human immunodeficiency virus (HIV) particles and enhances the infection of CD4+ T cells. This process, known as trans-enhancement of T-cell infection, has been related to HIV endocytosis. It has been proposed that DC-SIGN targets HIV to a nondegradative compartment within DCs and DC-SIGN-expressing cells, allowing incoming virus to persist for several days before infecting target cells. In this study, we provide several lines of evidence suggesting that intracellular storage of intact virions does not contribute to HIV transmission. We show that endocytosis-defective DC-SIGN molecules enhance T-cell infection as efficiently as their wild-type counterparts, indicating that DC-SIGN-mediated HIV internalization is dispensable for trans-enhancement. Furthermore, using immature DCs that are genetically resistant to infection, we demonstrate that several days after viral uptake, HIV transfer from DCs to T cells requires viral fusion and occurs exclusively through DC infection and transmission of newly synthesized viral particles. Importantly, our results suggest that DC-SIGN participates in this process by cooperating with the HIV entry receptors to facilitate cis-infection of immature DCs and subsequent viral transfer to T cells. We suggest that such a mechanism, rather than intracellular storage of incoming virus, accounts for the long-term transfer of HIV to CD4+ T cells and may contribute to the spread of infection by DCs.  相似文献   

10.
The identification of surfactant protein A (SP-A) as an important innate immune factor of the lungs, amniotic fluid, and the vaginal tract suggests that it could play an important role during various stages of HIV disease progression and transmission. Therefore, we examined whether SP-A could bind to HIV and also had any effect on viral infectivity. Our data demonstrate that SP-A binds to HIV in a calcium-dependent manner that is inhibitable by mannose and EDTA. Affinity capture of the HIV viral lysate reveals that SP-A targets the envelope glycoprotein of HIV (gp120), which was confirmed by ELISA using recombinant gp120. Digestion of gp120 with endoglycosidase H abrogates the binding of SP-A, indicating that the high mannose structures on gp120 are the target of the collectin. Infectivity studies reveal that SP-A inhibits the infection of CD4+ T cells by two strains of HIV (BaL, IIIB) by >80%. Competition assays with CD4 and mAbs F105 and b12 suggest that SP-A inhibits infectivity by occlusion of the CD4-binding site. Studies with dendritic cells (DCs) demonstrate that SP-A enhances the binding of gp120 to DCs, the uptake of viral particles, and the transfer of virus from DCs to CD4+ T cells by >5-fold at a pH representative of the vaginal tract. Collectively, these results suggest that SP-A acts as a dual modulator of HIV infection by protecting CD4+ T cells from direct infection but enhancing the transfer of infection to CD4+ T cells mediated by DCs.  相似文献   

11.
Mycobacterium tuberculosis is a leading killer of HIV-infected individuals worldwide, particularly in sub-Saharan Africa, where it is responsible for up to 50% of HIV-related deaths. Infection by HIV predisposes individuals to M. tuberculosis infection, and coinfection accelerates the progression of both diseases. In contrast to most other opportunistic infections associated with HIV, an increased risk of M. tuberculosis infection occurs during early-stage HIV disease, long before CD4 T cell counts fall below critical levels. We hypothesized that M. tuberculosis infection contributes to HIV pathogenesis by interfering with dendritic cell (DC)-mediated immune control. DCs carry pathogens like M. tuberculosis and HIV from sites of infection into lymphoid tissues, where they process and present antigenic peptides to CD4 T cells. Paradoxically, DCs can also deliver infectious HIV to T cells without first becoming infected, a process known as trans-infection. Lipopolysaccharide (LPS)-activated DCs sequester HIV in pocketlike membrane invaginations that remain open to the cell surface, and individual virions are delivered from the pocket into T cells at the site of contact during trans-infection. Here we report that M. tuberculosis exposure increases HIV trans-infection and induces viral sequestration within surface-accessible compartments identical to those seen in LPS-stimulated DCs. At the same time, M. tuberculosis dramatically decreases the degradative processing and major histocompatibility complex class II (MHC-II) presentation of HIV antigens to CD4 T cells. Our data suggest that M. tuberculosis infection promotes a shift in the dynamic balance between antigen processing and intact virion presentation, favoring DC-mediated amplification of HIV infections.Dendritic cells (DCs) comprise a diverse family of cell types whose primary function is to initiate and drive immune responses. Myeloid DCs (myDCs) are essential antigen-presenting cells that monitor peripheral tissues for invading pathogens. myDCs bind and internalize bacteria and viruses using a variety of surface receptors. When stimulated by pathogenic or inflammatory signals, peripheral-tissue DCs migrate to lymphoid tissues and undergo maturation, degrading stored antigens into peptides that are loaded onto major histocompatibility complex class II (MHC-II) molecules and expressed on the cell surface for presentation to CD4 T cells (reviewed in reference 4). In addition to presentation of processed peptide antigens, DCs carry intact, unprocessed proteins and pathogens from peripheral tissues to lymph nodes, where they can be passed to other antigen-presenting cells to increase the breadth of the immune response (reviewed in reference 10).HIV can exploit the natural trafficking of DCs to establish and amplify infection of CD4 T cells. DCs efficiently transfer intact, infectious HIV to T cells during immune interactions through a process known as trans-infection (14). DCs trans-infect HIV by binding and concentrating the intact virus at the cellular interface, forming an “infectious synapse” that concentrates HIV receptors on the T cell to the same site (24). Importantly, trans-infection does not require productive infection of the DCs, which are not infected efficiently by HIV in vitro or in vivo (14). Immature DCs significantly enhance infection of T cells through trans-infection, and prior activation by cytokine or bacterial stimuli markedly increases infectious synapse formation and concomitant trans-infection (2, 24, 33).Worldwide, nearly one-third of HIV-infected people are coinfected with Mycobacterium tuberculosis, and active tuberculosis disease (TB) is the number one cause of death in HIV-infected people. Coinfected individuals are 30 times more likely to progress to active TB, which can in turn increase HIV replication and accelerate the progression to AIDS (35). The mechanisms by which coinfection with M. tuberculosis and HIV accelerates the progression of both diseases are poorly understood.Lung macrophages are the primary target of M. tuberculosis infection, and active disease is characterized by unconstrained replication in these cells. Dendritic cells can also be infected by M. tuberculosis, but M. tuberculosis growth is restricted due to a lack of nutrient access in the DC phagolysosomal structure in which it resides (20). Importantly, M. tuberculosis-infected DCs traffic between the infected lung and draining lymph nodes, bringing bacterial antigens into lymphoid tissues to initiate CD4 T cell responses essential for disease control (39).Others have established that M. tuberculosis binds to and is internalized by DCs via an interaction between the mycobacterial cell wall component mannosylated lipoarabinomannan (ManLAM) and the cell surface receptor DC-SIGN on dendritic cells (15). After ManLAM stimulation, DCs begin to secrete interleukin-10 (IL-10) and show defects in immunostimulatory functions (15). However, a more recent study suggests that ManLAM may not be solely responsible for these outcomes (1).Previously, it has been shown that lipopolysaccharide (LPS) potently stimulates HIV trans-infection of CD4 T cells by DCs (24, 33). Therefore, we reasoned that M. tuberculosis and its products might similarly stimulate DC trans-infection during active M. tuberculosis infections. Further, we hypothesized that DC activation by M. tuberculosis would result in downmodulation of processing and MHC-II presentation of newly bound HIV particles, shifting the balance away from immune control in favor of viral dissemination and pathogenesis.Here, we demonstrate that M. tuberculosis infection of DCs enhances HIV trans-infection mediated through surface-accessible, pocketlike invaginations of the plasma membrane. Increased HIV trans-infection is accompanied by decreased MHC-II processing and presentation of HIV antigens to CD4 T cells. Our results suggest one mechanism whereby M. tuberculosis infection can fuel HIV dissemination in coinfected individuals and at the same time decrease immune control of both HIV and M. tuberculosis infections.  相似文献   

12.
Dendritic cells (DC) have an instrumental role in the activation and function of both innate and adaptive immune responses. In humans, at least two distinct DC subsets have been characterized based on phenotypic markers: the myeloid DC (MDC) and the plasmacytoid DC (PDC). Both subsets are critical producers of cytokines (IL-12 for MDC and type I/II IFNs for PDC) and are functionally different. We show in this study that HIV(+) individuals have a significant decrease in the number of the Lin(-)HLA-DR(+)CD123(+) and BDCA-2(+) PDC compared with uninfected donors (p = 0.0001). HIV(+) individuals also have a sustained impairment in viral-induced IFN-alpha production (p < 0.0001). The decrease of the PDC subsets did not correlate with CD4 count or viral load and was not reversed in subjects under virally suppressive treatment, suggesting an irreversible change after infection. By contrast, the absolute number and median frequency of MDC in HIV-infected individuals were similar to those observed in uninfected controls, while a significant decrease was present in subjects with >5000 HIV-1 copies/ml. The inverse association with viral load of the MDC number, but not of IFN-alpha secretion or the number of PDC, suggests a role for MDC in viral control. Our data suggest that DC subsets are differentially reconstituted during the immune recovery associated with antiviral therapy. The persistent impairment of certain DC subsets may result in a sustained defect in DC-mediated innate immune functions despite an effective treatment regimen.  相似文献   

13.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals and the elderly exhibit the highest risk for the development of severe RSV-induced disease. Murine studies demonstrate that CD8 T cells mediate RSV clearance from the lungs. Murine studies also indicate that the host immune response contributes to RSV-induced morbidity as T-cell depletion prevents the development of disease despite sustained viral replication. Dendritic cells (DCs) play a central role in the induction of the RSV-specific adaptive immune response. Following RSV infection, lung-resident DCs acquire viral antigens, migrate to the lung-draining lymph nodes and initiate the T-cell response. This article focuses on data generated from both in vitro DC infection studies and RSV mouse models that together have advanced our understanding of how RSV infection modulates DC function and the subsequent impact on the adaptive immune response.  相似文献   

14.
Dendritic cells (DCs) and natural killer (NK) cells have central roles in antiviral immunity by shaping the quality of the adaptive immune response to viruses and by mediating direct antiviral activity. HIV-1 infection is characterized by a severe dysregulation of the antiviral immune response that starts during early infection. This Review describes recent insights into how HIV-1 infection affects DC and NK cell function, and the roles of these innate immune cells in HIV-1 pathogenesis. The importance of understanding DC and NK cell crosstalk during HIV infection for the development of effective antiviral strategies is also discussed.  相似文献   

15.
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for “decoding” these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-β- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-β-suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKCδ-MAPK-dependent activation of NF-κB. This study provides mechanistic and functional insights into TLR2- and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.  相似文献   

16.
Although retroviruses have been extensively studied for many years, basic questions about how retroviral infections are detected by the immune system and which innate pathways are required for the generation of immune responses remain unanswered. Defining these pathways and how they contribute to the anti-retroviral immune responses would assist in the development of more effective vaccines for retroviral pathogens such as HIV. We have investigated the roles played by CD11c+ dendritic cells (DCs) and by Toll-like receptor (TLR) signaling pathways in the generation of an anti-retroviral immune response against a mouse retroviral pathogen, Friend murine leukemia virus (F-MLV). Specific deletion of DCs during F-MLV infection caused a significant increase in viral titers at 14 days post-infection, indicating the importance of DCs in immune control of the infection. Similarly, Myd88 knockout mice failed to control F-MLV, and sustained high viral titers (107 foci/spleen) for several months after infection. Strikingly, both DC-depleted mice and Myd88 knockout mice exhibited only a partial reduction of CD8+ T cell responses, while the IgG antibody response to F-MLV was completely lost. Furthermore, passive transfer of immune serum from wild-type mice to Myd88 knockout mice rescued control of F-MLV. These results identify TLR signaling and CD11c+ DCs as playing critical roles in the humoral response to retroviruses.  相似文献   

17.
Dendritic cells (DCs) are crucial for the generation and the regulation of adaptive immunity. Because DCs have a pivotal role in marshalling immune responses, HIV has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. Defining the mechanisms that underlie cell-cell transmission of HIV and understanding the role of DCs in this process should help us in the fight against HIV infection. This Review highlights the latest advances in our understanding of the interactions between DCs and HIV, focusing on the mechanisms of DC-mediated viral dissemination.  相似文献   

18.
Suppression of dendritic cell (DC) function in HIV-1 infection is thought to contribute to inhibition of immune responses and disease progression, but the mechanism of this suppression remains undetermined. Using the rhesus macaque model, we show B7-H1 (programmed death [PD]-L1) is expressed on lymphoid and mucosal DCs (both myeloid DCs and plasmacytoid DCs), and its expression significantly increases after SIV infection. Meanwhile, its receptor, PD-1, is upregulated on T cells in both peripheral and mucosal tissues and maintained at high levels on SIV-specific CD8(+) T cell clones in chronic infection. However, both B7-H1 and PD-1 expression in SIV controllers was similar to that of controls. Expression of B7-H1 on both peripheral myeloid DCs and plasmacytoid DCs positively correlated with levels of PD-1 on circulating CD4(+) and CD8(+) T cells, viremia, and declining peripheral CD4(+) T cell levels in SIV-infected macaques. Importantly, blocking DC B7-H1 interaction with PD-1(+) T cells could restore SIV-specific CD4(+) and CD8(+) T cell function as evidenced by increased cytokine secretion and proliferative capacity. Combined, the results indicate that interaction of B7-H1-PD-1 between APCs and T cells correlates with impairment of CD4(+) Th cells and CTL responses in vivo, and all are associated with disease progression in SIV infection. Blockade of this pathway may have therapeutic implications for HIV-infected patients.  相似文献   

19.
Coinfection with human immunodeficiency virus (HIV) and hepatitis C virus (HCV) challenges the immune system with two viruses that elicit distinct immune responses. Chronic immune activation is a hallmark of HIV infection and an accurate indicator of disease progression. Suppressing HIV viremia by antiretroviral therapy (ART) effectively prolongs life and significantly improves immune function. HIV/HCV coinfected individuals have peripheral immune activation despite effective ART control of HIV viral load. Here we examined freshly isolated CD14 monocytes for gene expression using high-density cDNA microarrays and analyzed T cell subsets, CD4 and CD8, by flow cytometry to characterize immune activation in monoinfected HCV and HIV, and HIV-suppressed coinfected subjects. To determine the impact of coinfection on cognition, subjects were evaluated in 7 domains for neuropsychological performance, which were summarized as a global deficit score (GDS). Monocyte gene expression analysis in HIV-suppressed coinfected subjects identified 43 genes that were elevated greater than 2.5 fold. Correlative analysis of subjects’ GDS and gene expression found eight genes with significance after adjusting for multiple comparisons. Correlative expression of six genes was confirmed by qPCR, five of which were categorized as type 1 IFN response genes. Global deficit scores were not related to plasma lipopolysaccharide levels. In the T cell compartment, coinfection significantly increased expression of activation markers CD38 and HLADR on both CD4 and CD8 T cells but did not correlate with GDS. These findings indicate that coinfection is associated with a type 1 IFN monocyte activation profile which was further found to correlate with cognitive impairment, even in subjects with controlled HIV infection. HIV-suppressed coinfected subjects with controlled HIV viral load experiencing immune activation could benefit significantly from successful anti-HCV therapy and may be considered as preferential candidates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号