首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of coactivators with the ligand-binding domain of nuclear receptors (NRs) is mediated by amphipathic alpha-helices containing the signature motif LXXLL. TRAP220 contains two LXXLL motifs (LXM1 and LXM2) that are required for its interaction with NRs. Here we show that the nuclear receptor interaction domain (NID) of TRAP220 interacts weakly with Class I NRs. In contrast, SRC1 NID binds strongly to both Class I and Class II NRs. Interaction assays using nine amino acid LXXLL core motifs derived from SRC1 and TRAP220 revealed no discriminatory NR binding preferences. However, an extended LXM1 sequence containing amino acids -4 to +9, (where the first conserved leucine is +1) showed selective binding to thyroid hormone receptor and reduced binding to estrogen receptor. Replacement of either TRAP220 LXXLL motif with the corresponding 13 amino acids of SRC1 LXM2 strongly enhanced the interaction of the TRAP220 NID with the estrogen receptor. Mutational analysis revealed combinatorial effects of the LXM1 core and flanking sequences in the determination of the NR binding specificity of the TRAP220 NID. In contrast, a mutation that increased the spacing between TRAP220 LXM1 and LXM2 had little effect on the binding properties of this domain. Thus, a 13-amino acid sequence comprising an extended LXXLL motif acts as the key determinant of the NR binding specificity of TRAP220. Finally, we show that the NR binding specificity of full-length TRAP220 can be altered by swapping extended LXM sequences.  相似文献   

2.
3.
4.
5.
6.
7.
Nuclear receptors (NRs) associate with various coactivator proteins via direct interaction with a short LXXLL motif (also called NR box) that is present among coactivators. Here we identified the critical residues within or outside NR box-2 or -3 of SRC-1, which are required for the optimal interaction with LXR/RXR heterodimers using the yeast one- plus two-hybrid screening system. The critical residues of NR box-2 were broadly located from position −4 to +5 of the NR box (where +1 is the first L of LXXLL motif), whereas those of NR box-3 were located between −1 and +5. We assessed the functional and physical interactions between the isolated NR box-2 mutants and various NRs. Among the NR box-2 mutants, H-3Q, I-1T/V and H+2P mutants evidenced different interaction profiles depending on the target NRs, thereby indicating that these residues are the specific determinants required for the selective interaction between the SRC-1 NR box-2 and a given receptor.  相似文献   

8.
9.
10.
11.
12.
Binding of full-length P160 coactivators to hormone response element-steroid receptor complexes has been difficult to investigate in vitro. Here, we report a new application of our recently described fluorescence anisotropy microplate assay to investigate binding and dissociation of full-length steroid receptor coactivator-1a (SRC1a) from full-length estrogen receptor alpha (ERalpha) or estrogen receptor beta (ERbeta) bound to a fluorescein-labeled (fl) estrogen response element (ERE). SRC1a exhibited slightly higher affinity binding to flERE.ERbeta than to flERE.ERalpha. Binding of SRC1a to flERE.ERalpha and to flERE.ERbeta was 17beta-estradiol (E2)-dependent and was nearly absent when ICI 182,780, raloxifene, or 4-hydroxytamoxifen were bound to the ERs. SRC1a binds to flERE.E2-ERalpha and flERE.E2-ERbeta complexes with a t1/2 of 15-20 s. Short LXXLL-containing nuclear receptor (NR) box peptides from P160 coactivators competed much better for SRC1a binding to flERE.E2-ER than an NR box peptide from TRAP220. However, approximately 40-250-fold molar excess of the P160 NR box peptides was required to inhibit SRC1a binding by 50%. This suggests that whereas the NR box region is a primary site of interaction between SRC1a and ERE.E2-ER, additional contacts between the coactivator and the ligand-receptor-DNA complex make substantial contributions to overall affinity. Increasing amounts of NR box peptides greatly enhanced the rate of dissociation of SRC1a from preformed flERE.E2-ER complexes. The data support a model in which coactivator exchange is facilitated by active displacement and is not simply the result of passive dissociation and replacement. It also shows that an isolated coactivator exhibits an inherent capacity for rapid exchange.  相似文献   

13.
Dimerization-induced activation of LXR is a unique allosteric mechanism described only for LXR/RXR heterodimers. Previously, we demonstrated that RXR functions as an allosteric activator of LXR binding to ASC-2 coactivator rather than as a direct interaction partner. Here, we investigated the molecular basis of the interaction between LXR/RXR and TRAP220 fragment (TN1/2) harboring two NR boxes. We found that either LXR binding to NR box-2 or RXR binding to NR box-1 was sufficient for optimal LXR/RXR binding to TN1/2, indicating that both receptors contribute equally in this interaction. Notably, the AF2 deletion of either receptor completely abolished LXR/RXR-TN1/2 interaction, suggesting dual roles for both AF2 domains in direct interaction with target NR boxes as well as in allosteric activation of partner receptors. We also found specific residues within NR box-2 required for LXR binding using one- plus two-hybrid system and identified Pro643 residue as a major determinant for NR specificity.  相似文献   

14.
15.
16.
Gene activation by steroid hormone receptors involves the recruitment of the steroid receptor coactivator (SRC)/p160 coactivator LXXLL motifs to activation function 2 (AF2) in the ligand binding domain. For the androgen receptor (AR), AF2 also serves as the interaction site for the AR NH(2)-terminal FXXLF motif in the androgen-dependent NH(2)-terminal and carboxyl-terminal (N/C) interaction. The relative importance of the AR AF2 site has been unclear, since the AR FXXLF motif interferes with coactivator recruitment by competitive inhibition of LXXLL motif binding. In this report, we identified the X chromosome-linked melanoma antigen gene product MAGE-11 as an AR coregulator that specifically binds the AR NH(2)-terminal FXXLF motif. Binding of MAGE-11 to the AR FXXLF alpha-helical region stabilizes the ligand-free AR and, in the presence of an agonist, increases exposure of AF2 to the recruitment and activation by the SRC/p160 coactivators. Intracellular association between AR and MAGE-11 is supported by their coimmunoprecipitation and colocalization in the absence and presence of hormone and by competitive inhibition of the N/C interaction. AR transactivation increases in response to MAGE-11 and the SRC/p160 coactivators through mechanisms that include but are not limited to the AF2 site. MAGE-11 is expressed in androgen-dependent tissues and in prostate cancer cell lines. The results suggest MAGE-11 is a unique AR coregulator that increases AR activity by modulating the AR interdomain interaction.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号