首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study characterised the permeability of the salmonid posterior intestine in vivo, to two hydrophilic markers of different molecular weight, both in the presence and absence of sodium deoxycholate (SDA), and determined the influence of mucosal secretions. The posterior intestine of chinook salmon was cannulated with a balloon catheter and the lumen infused with a solution of fluorescein and 14C-mannitol. In treated fish, the solution also contained 5.0 mmol · l−1 SDA. Blood samples from the dorsal aorta were taken at regular time intervals over 3 h. Clearances and volumes of distribution were assessed by intravenous administration of the markers to another group of fish. In the absence of SDA, low permeabilities were recorded for both markers; however, permeabilities for both were significantly greater in the treated groups. Both solutes had volumes of distribution similar to values reported elsewhere. Metabolism of fluorescein by the liver resulted in its plasma clearance. In contrast, elimination of mannitol was negligible during the study period, probably due to the lowered glomerular filtration rates observed in sea water adapted fish. Compared to in vitro investigations, in vivo mucus secretions were significantly lower and solute delivery across the epithelium was higher. Results from these in vivo investigations have implications for the oral delivery of peptides to salmonids. Accepted: 6 August 1998  相似文献   

2.
Resting proton, ammonium and sodium fluxes in Salmo trutta were 492.6 ± 19.5 (n = 29); 122.9 ± 34.2 (n = 28) and 277.1 ± 18.5 (n = 50) μmol · kg−1 · h−1, respectively. The resting transepithelial potential was found to be composed of three successive potentials, the outermost averaging −7.36 ± 0.19mV, the second, −14.3 ± 1.4 mV and the third −37 ± 1.7 mV. Amiloride inhibits the proton, ammonium and sodium fluxes in a dose-dependent manner at concentrations of 0.5 mmol · 1−1 and 0.1 mmol · l−1, but at 0.01 mmol · l−1, proton and ammonium fluxes remained at control levels whilst the sodium was reduced to 70.59 ± 7.29 μmol · kg−1 · h−1. The trans-epithelial potential was effected in a bi-phasic manner by 0.5 mmol · l−1 amiloride. An initial hyperpolarisation of ca. 6 mV was followed by a sustained depolarisation of ca. 14 mV (towards zero) which persisted until the amiloride was washed off the gill. The initial hyperpolarisation was thought to reflect a rapid inhibition of a positive inward sodium current and the subsequent depolarisation was due to the inhibition of a positive outward current (proton) which would abolish the transepithelial potential. However, at 0.01 mmol ·  l−1 only the hyperpolarisation was seen, due to the inhibition of only the inward sodium current. Acetazolamide (0.1 mmol · l−1) was found to have no significant effect on the proton, ammonium and sodium fluxes. These results indicate that the proton and sodium fluxes across the gill of the freshwater trout are not tightly linked. While this suggests that the trout gill resembles the model of Ehrenburg et al. (1985) of sodium uptake in frog skin, the apical potentials measured in the pavement epithelial cell(s) are too low to account for sodium uptake unless the activity of the sodium in the cells is very low. Accepted: 8 August 1996  相似文献   

3.
The skin of intact, free-swimming Xenopus laevis transports Ca2+ inwardly in a manner that is proportional to the external [Ca2+] up to about 0.3 mmol · l−1, saturates above 0.3 mmol · l−1, and is opposed to the electrochemical gradient. Efflux is relatively constant at external concentrations between 0.016 and 0.6 mmol · l−1; net flux which is negative below 0.125 mmol · l−1 becomes positive above this external [Ca2+]. Allometric analysis suggests that both Ca2+ influx and efflux scale to the 2/3 power approximately like surface area. There were no significant differences in influx between summer and fall animals; however, efflux was greater in the fall and this resulted in a change from positive balance in the summer to negative balance in the fall. Isolated skins were shown to support a Ca2+ uptake rate of nearly 30 nmol · cm−2 · h−1. The phenylalkylamine verapamil in the apical bathing solution significantly inhibited this at 25 μmol · l−1. The benzothiazepine diltiazem was also effective at 50 μmol · l−1 while the dihydropyradine nifedipine was ineffective up to 100 μmol · l−1. The inorganic ion La3+ was effective at blocking Ca2+ uptake at 300 μmol · l−1; Ni2+ was also effective at 500 μmol · l−1 but Co2+ was ineffective up to 500 μmol · l−1. These results suggest that apical calcium channels in Xenopuslaevis skin have properties similar to mammalian L-channels and fish gill Ca2+ channels. Accepted: 23 January 1997  相似文献   

4.
The effect of ambient osmolality on the height of lateral ciliated cells from the gills of two freshwater bivalve species (Dreissena polymorpha, Toxolasma texasensis) was directly observed microscopically. The addition of 1 mmol · l−1 KCl to an artificial pondwater (APW) superfusion medium resulted in an increase in cell height. When the superfusion solution was made hyperosmotic (∼90 mmol · kg−1 H2O) by the addition of 45 mmol · l−1 NaCl to APW, the cell height decreased by about 20–30% and there was no evidence of a regulatory volume increase over 20–30 min. In contrast, when 1 mmol · l−1 KCl was added to the hyperosmotic medium the cell height always partially (40–50%) recovered. When the gill tissue was returned to APW following the hyperosmotic treatment the cells returned to the original cell height. Bivalve gills superfused with the hyperosmotic NaCl and KCl solution in the presence of 1 mmol · l−1 ouabain experienced a similar 25% decrease in cell height. When the ouabain-treated tissues were returned to APW the cells swelled, overshooting the original cell height. These results indicate these freshwater bivalves have a limited ability for cellular volume regulation using inorganic ions, but depend on a suitable balance of Na+ and K+ in the environment to effect regulatory volume changes. Accepted: 17 October 1997  相似文献   

5.
Characteristics of dipeptide transport in pig jejunum in vitro   总被引:4,自引:0,他引:4  
 Characteristics of dipeptide transport in pig jejunum were investigated in vitro by applying the Ussing-chamber technique and mucosal uptake studies. Addition of both glycyl-l-glutamine and glycyl-l-sarcosine (20 mmol · l−1) to the mucosal buffer solution significantly increased the short-circuit current by 2.60 ± 0.15 and 1.57 ± 0.20 μeq · cm−2 · h−1, respectively. Concentration-dependent changes in short-circuit current followed Michaelis-Menten kinetics with similar affinity constants for both dipeptides. From unidirectional flux rates for radiolabelled glycyl-l-sarcosine, a net flux rate for glycyl-l-sarcosine of 49.8 ± 6.7 nmol · cm−2 · h−1 was calculated. In mucosal uptake experiments, the apical influx of 14C-labelled glycyl-l-sarcosine into isolated porcine mucosa was pH dependent and significantly inhibited by glycyl-l-glutamine. Moreover, RT-PCR studies with primers derived from rabbit PepT1 identified two PCR fragments of identical size to rabbit PepT1 from pig intestinal mRNA preparations. In conclusion, our studies revealed key features of mammalian intestinal peptide transporters and give evidence for a PepT1-like transporter in the pig jejunum that could significantly contribute to the overall amino acid absorption from the gut. Accepted: 30 June 1999  相似文献   

6.
The present study investigated the relationship between plasma potassium ion concentration ([K+]) and skeletal muscle torque during three different 15-min recovery periods after fatigue induced by four 30-s sprints. Four males and one female completed the multiple sprint exercise on three separate days; recovery was passive, i.e. no cycling exercise (PRec), active cycling at 30% peak oxygen consumption O2peak (30% Rec) and active cycling at 60% O2peak (60% Rec). Plasma [K+] was measured from blood sampled from an antecubital vein of subjects at rest and at 0, 3, 5, 10 and 15 min into each recovery. Isokinetic leg strength was measured at rest and at 1, 6, 11 and 16 min during each recovery. Following the exhaustive sprints, [K+] increased significantly from an average mean (SEM) resting value of 3.81 (0.07) mmol · l−1 to 4.48 (0.19) mmol · l−1 (P < 0.01). In all recovery conditions, plasma [K+] returned to resting levels within 3 min following the fourth sprint. However, in the two active recovery conditions plasma [K+] increased over the remainder of the recovery periods to 4.36 (0.12) mmol · l−1 in the 30% Rec condition and 4.62 (0.12) mmol · l−1 in the 60% Rec condition, the latter being significantly higher than the former (P < 0.01). The maximum torque measured following the sprints decreased significantly, on average, to 61.1 (8.36)% of peak levels (P < 0.01). After 15 min of recovery, maximum torque was highest in the 30% Rec condition at 92.13 (3.06)% of peak levels (P < 0.01), compared to 85.23 (3.64)% and 85.71 (0.82)% for the PRec and 60% Rec conditions, respectively. In contrast to the significant differences in plasma [K+] across all three recovery conditions, muscle torque recovery was significantly different in only the 30% Rec condition. In summary, recovery of peak levels of muscle torque following fatiguing exercise does not appear to follow changes in plasma [K+]. Accepted: 18 October 1996  相似文献   

7.
We used nystatin-patch techniques to characterize the responses of squid olfactory receptor neurons to the attractive odorant, L-glutamate, and to study mixture interactions between glutamate and the aversive odorant, betaine. We report that glutamate activates a cation-selective conductance that is permeable to Ca2+, K+, and Na+ and which would depolarize squid olfactory receptor neurons under physiological conditions. The responses to glutamate were concentration dependent. The EC50 of individual cells ranged from 0.3 mmol · l−1 to 85.0 mmol · l−1. We found that individual cells were capable of responding to both glutamate and betaine, and that the relative magnitudes of these responses varied from cell to cell. Finally, we report that current responses to binary mixtures of glutamate and betaine are suppressed relative to the sum of the responses to the individual odors in single squid olfactory receptor neurons. Accepted: 20 October 1999  相似文献   

8.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

9.
When intact crayfish are in an ion-poor medium (KCl, 0.1 mmol·l-1+KHCO3, 0.1 mmol·l-1) there is a large potential difference (transepithelial potential difference),-20 to-40 mV (hemolymph negative), across the gills. Addition of Ca2+ to the medium is followed by a rapid change in transepithelial potential difference to near 0 mV. The transepithelial potential difference showed a non-linear dependence on [Ca2+]out with a limiting value of+2 to+10 mV at>1 mmol·l-1. The concentration generating a half-maximum transepithelial potential difference change (15–20 mV) was 0.1 to 0.2 mmol·l-1. Three other alkaline earth ions were also electrogenic; Ba2+ caused slightly larger transepithelial potential difference changes, Sr2+ and Mg2+ were a little less effective. It has been suggested that the transepithelial potential difference in ion-poor medium (in fish) is due to the diffusive efflux of NaCl across the gills, with a Cl-/Na+ permeability ratio of <1. Evidence is presented that this might be the case in crayfish. The electrogenic effect of Ca2+ might then be due to its effect on gill permeability to Na+ and Cl- such that the permeability ratio increased and approached unity as the transepithelial potential difference approached 0. However, this was shown to be unlikely. An alternative explanation for Ca2+ dependence of the transepithelial potential difference is that active inward Ca2+ transport is electrogenic.Abbreviations FW fresh water - I out ion efflux - IP ion-poor solution - P c Cl-permeability - P Na Na+ permeability - R electrical resistance - SW sea water - TEP transepithelial potential difference  相似文献   

10.
The basidiomycete Cystoderma carcharias transformed citronellol into 3,7-dimethyl-1,6,7-octanetriol as the main product. 3,7-Dimethyl-6,7-epoxy-1-octanol was identified as important intermediary product of the biotransformation, and the allylic diols 2,6-dimethyl-2-octene-1,8-diol, 3,7-dimethyl-5-octene-1,7-diol and 3,7-dimethyl-7-octene-1,6-diol were found to be minor products. Microbial formation of rose oxide, a flavour-impact component, was observed for the first time. The formation of the main products was inhibited by 70% after addition of 0.1 mmol l−1 cytochrome monooxygenase inhibitors. Formation of 3,7-dimethyl-1,6,7-octanetriol was effective in a bioreactor with aeration over a coil of a hydrophobic microporous polypropene capillary membrane. Production rates of up to 150 mg l−1 day−1 were reached and led to a product concentration of 866 mg l−1 (conversion rate: 52%). The total loss of the added volatile substrate via the exhaust air was 4.5% when this aeration method was used. Received: 30 July 1998 / Received revision: 2 November 1998 / Accepted: 7 November 1998  相似文献   

11.
Receptor cell responses in the largest labellar (LL) and tarsal (D) taste hairs of the housefly Musca domestica were investigated electrophysiologically using the tip-recording technique. In LL hairs, test series with lactose in concentrations of 12.5–400 mmol · l−1 yielded a threshold concentration around 12 mmol · l−1 and a calculated concentration eliciting half-maximal response of around 40 mmol · l−1, the maximal response varying between 18 and 30 impulses/300 ms. D hairs are more sensitive towards lactose, indicated by a slightly lower threshold and a by 60% higher response to 400 mmol · l−1 lactose. The high variation in the relative stimulating effectiveness of lactose and sucrose and experiments with sugar mixtures imply that these sugars bind to different receptor sites without noticeable cross affinity. A comparison of the concentration response characteristics for sucrose and lactose in LL and D hairs suggests that sucrose can combine with more than one site type, expressed in different proportions in both hair types. Results obtained with p-nitrophenyl-β-galactoside as stimulus indicate that a β-galactoside link is not sufficient for a substance to interact specifically with the lactose binding site. The exceptional lactose sensitivity of the sugar cell in M. domestica is discussed in the context of food acquirement and digestion. Accepted: 14 November 1997  相似文献   

12.
A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q s max) decreased in the order: PBRC (598 mg l−1 h−1) > PBR (PU, 471 mg l−1 h−1) > PBR (SG, 394 mg l−1 h−1) > FBR (PU, 161 mg l−1 h−1) > FBR (SG, 91 mg l−1 h−1). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100–200 μm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing. Received: 2 December 1999 / Revision received: 2 February 2000 / Accepted: 4 February 2000  相似文献   

13.
Two species of Antarctic fish were stressed by moving them from seawater at −1 °C to seawater at 10 °C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 ± 54 nmol · l−1 noradrenaline and 263 ± 131 nmol · l−1 adrenaline at 10 min. Plasma noradrenaline concentrations rose to 47 ± 14 nmol · l−1 and adrenaline to 73 ± 28 nmol · l−1 in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the β-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines. Accepted: 22 January 1998  相似文献   

14.
Drinking in Atlantic salmon (Salmo salar) juveniles was investigated in fresh water and following transfer to sea water. There was a significant effect of fish size on drinking, and smolts (20–30 g) imbibed about ten times less water than alevins of 0.2–0.3 g. Freshwater smolts drank at a rate of 0.15 ± 0.03 ml · kg−1 · h−1 and administration of doses of 10 or 20 mg · kg−1 of papaverine (stimulator of the renin- angiotensin system RAS) or [Asn1, Val5]-Angiotensin II (0.4 μmol · kg−1) resulted in significant increases in drinking, while administration of the angiotensin converting enzyme inhibitor, enalapril (50 mg · kg−1) had no effect on drinking. Transfer of Atlantic salmon smolts to 1/3, 2/3 and full strength sea water resulted in significant increases in drinking to 1.06 ± 0.12, 1.24 ± 0.0.16 and 3.89 ± 0.28 ml · kg−1 · h−1, respectively. In sea water, stimulation of the endogenous RAS by administration of papaverine (20 mg · kg−1) resulted in a 20% increase in drinking, while administration of enalapril to doses of 50 and 200 mg · kg−1 lowered drinking to 1.99 ± 0.48 and 0.32 ± 0.06 ml · kg−1 · h−1, respectively. All treatments were without effect on blood plasma levels of Na+ and Cl in fresh water, while in sea water smolts both stimulation and inhibition of drinking resulted in hemoconcentration of Na+ and Cl. The role of the renin angiotensin system in control of drinking and hydromineral balance in Atlantic salmon is discussed. Accepted: 27 February 1997  相似文献   

15.
Isolated perfused gills of stenohaline crabs Cancer pagurus adapted to seawater, brackish water-adapted euryhaline shore crabs Carcinus maenas and freshwater-adapted extremely euryhaline Chinese crabs Eriocheir sinensis were tested for their capacity to excrete ammonia. Gills were perfused with haemolymph-like salines and bathed with salines equal in adaptation osmolality. Applying 100 μmol · l−1 NH4Cl in the perfusion saline and concentrations of NH4Cl in the bath that were stepwise increased from 0 to 4000 μmol · l−1 allowed us to measure transbranchial fluxes of ammonia along an outwardly as well as various inwardly directed gradients. The gills of all three crab species were capable – to different extents – of active excretion of ammonia against an inwardly directed gradient. Of the three crab species, the gills of Cancer pagurus revealed the highest capacity for active excretion of ammonia, being able to excrete it from the haemolymph (100 μmol · l−1 NH+ 4) through the gill epithelium against ambient concentrations of up to 800 μmol · l−1, i.e. against an eightfold gradient. Carcinus maenas and E. sinensis were able to actively excrete ammonia against approximately fourfold gradients. Within the three crab species, the gills of E. sinensis exhibited the greatest capacity to resist influx at very high external concentrations of up to 4000 μmol · l−1. We consider the observed capacities for excretion of ammonia against the gradient as ecologically meaningful. These benthic crustaceans protect themselves by burying themselves in the sediment, where, in contrast to the water column, concentrations of ammonia have previously been reported that greatly increase haemolymph levels. Electrophysiological results indicate that the permeabilities of the gill epithelia are a clue to understanding the species-specific differences in active excretion of ammonia. During the invasion of brackish water and freshwater, the permeabilities of the body surfaces greatly decreased. The gills of marine Cancer pagurus exibited the greatest permeability (ca. 250 mS cm−2), thus representing practically no influx barrier for ions including NH+ 4. We therefore assume that C. pagurus had to develop the strongest mechanism of active excretion of ammonia to counteract influx. On the other hand, freshwater-adapted E. sinensis exhibited the lowest ion permeability (ca. 4 mS cm−2) which may reduce passive NH+ 4 influxes at high ambient levels. Accepted: 14 October 1998  相似文献   

16.
 Although isolated on 4-aminobenzoate, Burkholderia cepacia strain PB4 is also able to grow on 4-nitrobenzoate. Degradation of an equimolar mixture of the nitroaromatic compound 4-nitrobenzoate and its corresponding aminoaromatic derivative 4-aminobenzoate by this strain was investigated. Batch experiments showed that, irrespective of preculturing conditions, both compounds were degraded simultaneously. The mixture-degrading ability of B. cepacia strain PB4 was subsequently tested in continuous packed bed reactors (PBR) with the strain immobilized on Celite grade R-633 or R-635. Higher degradation rates were achieved with the larger particles of Celite R-635. Maximum simultaneous degradation rates per liter of packed bed of 0.925 mmol l−1 h−1 4-nitrobenzoate and 4-aminobenzoate were obtained for an applied loading rate of the same value (0.925 mmol l−1 h−1 of each compound). Even when the applied load was not removed in its entirety, neither of the two compounds was degraded preferentially but a percentage of both of them was mineralized. The present study shows the possibility for a pure strain to biodegrade not only a nitroaromatic compound (4-nitrobenzoate) but also its corresponding amino derivative (4-aminobenzoate) continuously and simultaneously. Received: 23 November 1998 / Revision received: 6 April 1999 / Accepted: 9 April 1999  相似文献   

17.
To assess muscle metabolism and inorganic phosphate (Pi) peak splitting during exercise, 31-phosphorus nuclear magnetic resonance spectroscopy was performed during ramp incremental and submaximal step exercise with and without circulatory occlusion. Seven healthy men performed calf flexion in a superconducting magnet. There was no Pi splitting during ramp incremental exercise with the circulation present and phosphocreatine (PCr) decreased linearly by 0.07 (SEM 0.01) mmol · l−1 · s−1, while exercise with the circulation occluded caused the Pi peak to split into a high and a low pH peak. The rate of PCr decrease during exercise with the circulation occluded was 0.15 (SEM 0.03) mmol · l−1 · s−1 which with the efficiency of the adenosine 5′-triphosphate (ATP) hydrolysis reaction corresponded well to the mechanical energy. Both with and without occlusion of the circulation PCr decreased with some time lag which may reflect the consumption of residual oxygen. In submaximal step exercise PCr decreased exponentially at the onset of exercise with the circulation open whereas it decreased linearly by 0.15␣mmol · l−1 · s−1 when the circulation was occluded. After exercise, occlusion of the circulation was maintained for 1 min more and there was no PCr resynthesis. It is suggested that ATP synthesis was limited by the availability of oxygen. Accepted: 14 August 1996  相似文献   

18.
Isometric force development of electrically paced preparations isolated from the systemic heart of Octopus vulgaris were utilized to examine the regulation of contractility by Ca2+. Increases in extracellular Ca2+, to the physiological level, resulted in enhancement of twitch force. For instance, at 36 beats · min−1 an increase in Ca2+ from 3 to 9 mmol · l−1 resulted in a threefold increase in twitch force development. When steady-state contraction at 12 beats · min−1 was followed by a rest period of either 5 or 10 min, the first contraction always exhibited either an increase in twitch force or stayed unchanged such that post-rest twitch force was about 133% of the last value in the steady-state train. Ryanodine (12.5 μmol · l−1), which is considered to be a specific inhibitor of the Ca2+ storage and release capabilities of the sarcoplasmic reticulum (SR), was applied to further assess Ca2+ handling. Twitch force fell to about 22% of the preteatment level in preparations paced at either 12 or 36 beats · min−1. In all preparations the frequency transition from 12 to 36 beats · min−1 was associated with an increase in resting tension. The␣increase␣was 37 ± 14% prior to ryanodine treatment and was significantly elevated to 127 ± 33% following treatment. When steady-state contraction at 36 beats · min−1 was followed by a rest period of 10 s, the first contraction was not significantly different from the last beat in the train prior to ryanodine; however, with ryanodine treatment, post-rest twitch force development significantly decreased. Twitch force development was regular at pacing rates of up to 300 beats · min−1. Twitch force was maintained up to rates of 84 beats · min−1 but␣decreased thereafter and reached a value of about 10% at 300 beats · min−1. Resting tension increased substantially as frequency was elevated from 12 to 36 beats · min−1 and then gradually increased as frequency was further elevated to 180 beats · min−1. In conclusion, the Octopus ventricle is dependent upon extracellular Ca2+ for contraction. A post-rest potentiation of force development, the negative impact of ryanodine, and the ability to respond regularly at high pacing rates imply a strong reliance on the SR in Ca2+ cycling based on criteria established for vertebrate hearts. Accepted: 19 January 1997  相似文献   

19.
Whereas the inhibitory innervation of the deep extensor abdominal muscle in crayfish is mediated by a weakly acting common inhibitor, the opener muscle exhibits a stronger inhibition. In the present study the most abundant γ-aminobutyric acid-activated chloride channel on distal fibers of crayfish opener muscle was characterized by measuring the current responses after applying pulses of γ-aminobutyric acid to outside-out patches. The results were compared to those obtained earlier with the chloride channel on the deep extensor abdominal muscle of the same species. The double logarithmic plot of the dose-response relationship had a slope of n H = 2.2 in contrast to n H = 5.3 for the channel on the deep extensor abdominal muscle. The rise time of the current response declined to 1 ms at a γ-aminobutyric acid concentration of 50 mmol · l−1. With lower concentrations the rise time increased to a maximal value of 280 ms. No peak of the rise time at low γ-aminobutyric acid concentrations, as observed for the channel on the deep extensor abdominal muscle, was obvious. The open and closed times were similar to those of the channel of the deep extensor abdominal muscle. Different reaction schemes were discussed to describe the kinetics of the chloride channel of the opener muscle. Accepted: 12 August 1996  相似文献   

20.
Crayfish neuromuscular junctions are good models for the α-amino-hydroxy-5-methyl-4-isoxazol-propionic acid-type of vertebrate brain excitatory synapses. The action of a typical volatile anaesthetic, isoflurane, was studied on the excitatory postsynaptic currents recorded with a perfused macropatch electrode. Isoflurane reduced quantal exitatory postsynaptic currents in amplitude, in their rise time and in the decay time constant. Small such effects were elicited by <1 mmol · l−1 isoflurane, while the maximal isoflurane concentration of 7 mmol · l−1 reduced the amplitude to about a quarter and shortened the decay time constant even more, while the rise time was diminished by about a quarter. This combination of effects is typical for an open channel block for which an approximate binding rate constant of isoflurane of 6 · 105 mol−1l · s−1 and an unbinding rate of 10–100 s−1 is derived. In addition to this postsynaptic effect, isoflurane inhibited the release of transmitter quanta from the terminal, for instance with 2.5 mmol · l−1 isoflurane by a factor of 7.3 ± 6.3 (SD). In the glutamatergic nerve terminals release is modulated by low glutamate concentrations via a metabotropic autoreceptor which is blocked by the combination of 6-cyano-7-nitro-quinoxaline-2,3-dione and dl-2-amino-5-phosphor-valeric acid. This blocker combination also can prevent the inhibition of release by isoflurane, and it may be suggested that isoflurane elicits inhibition of release through the metabotropic presynaptic glutamate receptors. Accepted: 29 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号