首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a procedure for estimating kinetic parameters in biochemically structured models was developed. The approach is applicable when the structure of a kinetic model has been set up and the kinetic parameters should be estimated. The procedure consists of five steps. First, initial values were found in or calculated from literature. Hereafter using sensitivity analysis the most sensitive parameters were identified. In the third step physiological knowledge was combined with the parameter sensitivities to manually tune the most sensitive parameters. In step four, a global optimisation routine was applied for simultaneous estimation of the most sensitive parameters identified during the sensitivity analysis. Regularisation was included in the simultaneous estimation to reduce the effect of insensitive parameters. Finally, confidence intervals for the estimated parameters were calculated. This parameter estimation approach was demonstrated on a biochemically structured yeast model containing 11 reactions and 37 kinetic constants as a case study.  相似文献   

2.
P Paneth  M H O'Leary 《Biochemistry》1985,24(19):5143-5147
The carbon-13 kinetic isotope effect on the dehydration of HCO3- by bovine carbonic anhydrase has been measured. To accomplish this, bicarbonate was added to a buffer solution at pH 8 containing carbonic anhydrase under conditions where purging of the product CO2 from the solution is rapid. Measurement of the isotopic composition of the purged CO2 as a function of the concentration of carbonic anhydrase permits calculation of the isotope effect on the enzymic reaction. The isotope effect on the dehydration is k12/k13 = 1.0101 +/- 0.0004. This effect is most consistent with a ping-pong mechanism for carbonic anhydrase action, in which proton transfer to or from the enzyme occurs in a step separate from the dehydration step. Substrate and product dissociation steps are at least 2-3-fold faster than the hydration/dehydration step.  相似文献   

3.
The pre-steady-state kinetics for the hydrolysis of fructose 1,6-bisphosphate by rabbit liver fructose bis-phosphatase have been investigated by stopped-flow kinetics utilizing an acid-base indicator method that permits the continuous monitoring of the inorganic phosphate product. The reaction sequence is characterized by two successive first-order steps followed by establishment of the steady-state rate. The first exponential process results from a conformational change in the protein that is dye sensitive owing to a perturbation of an acidic residue on the protein. A second process reflects the rapid initial turnover of all four subunits of the enzyme with the concomitant release of inorganic phosphate followed by the rate-limiting step of the catalytic cycle. This latter step may involve a product release (fructose 6-phosphate) or a second conformational change. The catalytic cycle ends with decay of the enzyme to its initial unreactive resting state.  相似文献   

4.
A rapid, simple and sensitive assay has been developed for tyrosine-3-monooxygenase, the enzyme catalyzing the rate-limiting step in catecholamine biosynthesis. The assay is based upon the release of 3H2O from 3H-[3,5]-L-tyrosine with adsorption of the isotopic substrate (and its metabolites) by an aqueous slurry of activated charcoal. This method routinely yields low blank values and is simpler than the procedure requiring the use of cation exchange columns to separate the isotopic substrate from the 3H2O formed during the hydroxylation reaction.  相似文献   

5.
M Labadie  J Debord  J C Breton 《Biochimie》1979,61(9):1091-1094
A "Batch" microcalorimeter is used at 30 degrees C for the study of the hydrolysis of 4-nitro-phenylphenylphosphonate with a calf-intestinal phosphonate esterase, in a tris buffer, pH 8. The yield of enzymatic hydrolysis is estimated by spectrophotometric determination of the p--nitrophenol evolved; we have then calculated the apparent molar enthalph of the reaction. (delta Happ = -72,2 kj. mol-1). Phenylphosphonic acid, the second reaction product, is not transphosphonylated on tris. The second acidity of phenylphosphonic acid was studied at 30 degrees C by sodium hydroxide electrotitration (pKa2 = 7,13) and by "Flow" microcalorimetry (delta Hionization = 19,8 kj.mol-1). In the same manner at 30 degrees C, we measured the heat of ionization of p-nitrophenol (delta Hionization = 26,75 kj.mol-1). These findings allow a calculation for the actual heat of hydrolysis of 4-nitro-phenyl-phenylphosphonate (delta Hrho = -29,7 kj.mol-1).  相似文献   

6.
The importance of the early steps of de novo fatty-acid biosynthesis is discussed in terms of rate-limiting enzymic reactions with respect to their inhibition by xenobiotics. The inhibitory spectra of allicin as an inhibitor of the acetyl-CoA-synthase, two classes of graminicides (cyclohexane-1,3-diones and aryloxyphenoxypropionic acids) as inhibitors of acetyl-CoA-carboxylase, and the two antibiotics cerulenin and thiolactomycin, which affect the condensing step in fatty-acid biosynthesis, are compared.  相似文献   

7.
8.
Acid phosphatase assay with alpha-naphthyl phosphate as substrate and the use of diazonium salt (Fast Red TR) for chromophore formation was kinetically analysed as a system of two chemical reactions coupled to an enzymic reaction. This system follows a mechanism defined as enzymic-chemical-chemical (EzCC). The accumulation of chromophore with reaction time presented a marked lag period, which was only dependent on the rate constants of the chemical reactions and was independent of the enzymic step. The specific rate constants of each chemical step were determined in 3.8-5.0 pH and 10-35 degrees C temperature ranges. Thermodynamic parameters of the chemical steps were also obtained. Measurement of acid phosphatase activity can be carried out in the pH range 3.8-5.0 (4.8 was optimal pH) without the need to eliminate the lag period.  相似文献   

9.
Thermodynamic properties of 12 different F1-ATPase enzymes were analyzed in order to gain insights into the catalytic mechanism and the nature of energy coupling to delta mu H+. The enzymes were normal soluble Escherichia coli F1, a group of nine beta-subunit mutant soluble E. coli F1 enzymes (G142S, K155Q, K155E, E181Q, E192Q, M209I, D242N, D242V, R246C), and both soluble and membrane-bound bovine heart mitochondrial F1. Unisite activity was studied by use of Gibbs free energy diagrams, difference energy diagrams, and derivation of linear free energy relationships. This allowed construction of binding energy diagrams for both the unisite ATP hydrolysis and ATP synthesis reaction pathways, which were in agreement. The binding energy diagrams showed that the step of Pi binding is a major energy-requiring step in ATP synthesis, as is the step of ATP release. It is suggested that there are two major catalytic enzyme conformations, and ATP- and an ADP-binding conformation. The effects of the mutations on the rate-limiting steps of multisite as compared to unisite activity were correlated, suggesting a direct link between the rate-limiting steps of the two types of activity. Multisite activity was analyzed by Arrhenius plots and by study of relative promotion from unisite to multisite rate. Changes in binding energy due to mutation were seen to have direct effects on multisite catalysis. From all the data, a model is derived to describe the mechanism of ATP synthesis. ATP hydrolysis, and energy coupling to delta mu H+ in F1F0-ATPases.  相似文献   

10.
Dihydrofolate reductase from Mycobacterium tuberculosis (MtDHFR) catalyzes the NAD(P)H-dependent reduction of dihydrofolate, yielding NAD(P)(+) and tetrahydrofolate, the primary one-carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism can be maintained. Previously, steady-state studies revealed that the chemical step significantly contributes to the steady-state turnover number, but that a step after the chemical step was likely limiting the reaction rate. Here, we report the first pre-steady-state investigation of the kinetic sequence of the MtDHFR aiming to identify kinetic intermediates, and the identity of the rate-limiting steps. This kinetic analysis suggests a kinetic sequence comprising two parallel pathways with a rate-determining product release. Although product release is likely occurring in a random fashion, there is a slight preference for the release of THF first, a kinetic sequence never observed for a wild-type dihydrofolate reductase of any organism studied to date. Temperature studies were conducted to determine the magnitude of the energetic barrier posed by the chemical step, and the pH dependence of the chemical step was studied, demonstrating an acidic shift from the pK(a) observed at the steady state. The rate constants obtained here were combined with the activation energy for the chemical step to compare energy profiles for each kinetic sequence. The two parallel pathways are discussed, as well as their implications for the catalytic cycle of this enzyme.  相似文献   

11.
J J Driscoll  D J Kosman 《Biochemistry》1987,26(12):3429-3436
Solvent and solvent proton dependent steps involved in the mechanism of the enzyme galactose oxidase have been examined. The deuterium kinetic solvent isotope effect (KSIE) on the velocity of the galactose oxidase catalyzed oxidation of methyl beta-galactopyranoside by O2 was measured. Examination of the thermodynamic activation parameters for the reaction indicated that the isotope effect was attributable to a slightly less favorable delta H value, consistent with a KSIE on proton transfer. A detailed kinetic analysis was performed, examining the effect of D2O on the rate of reaction over the pH range 4.8-8.0. Both pL-rate profiles exhibited bell-shaped curves. Substitution of D2O as solvent shifted the pKes values for the enzymic central complex: pKes1 from 6.30 to 6.80 and pKes2 from 7.16 to 7.35. Analysis of the observed shifts in dissociation constants was performed with regard to potential hydrogenic sites. pKes1 can be attributed to a histidine imidazole, while pKes2 is tentatively assigned to a Cu2+-bound water molecule. A proton inventory was performed (KSIE = +1.55); the plot of kcat vs. mole fraction D2O was linear, indicating the existence of a single solvent-derived proton involved in a galactose oxidase rate-determining step (or steps). The pH dependence of CN- inhibition was also examined. The Ki-pH profile indicated that a group ionization, with pKa = 7.17, modulated CN- inhibition; Ki was at a minimum when this group was in the protonated state. The inhibition profile followed the alkaline limit of the pH-rate profile for the enzymic reaction, suggesting that the group displaced by CN- was also deprotonating above pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The enzyme-[14C] carboxybiotin complex of sheep liver pyruvate carboxylase was isolated and the reaction between this and pyruvate was studied by using the quenched-flow rapid-reaction technique. At 0.5 degrees C the reaction was 80% complete within 180 ms. The reaction was monophasic and obeyed pseudo-first-order kinetics. Increasing concentrations of Mg2+ caused a decrease in the magnitude of the observed pseudo-first-order rate constant. Throughout the carboxylation of pyruvate, the rate-limiting step of the reaction occurred after the dissociation of carboxybiotin from the first sub-site, whereas in the slow phase of the reaction with 2-oxobutyrate this dissociation is the rate-limiting step. It is possible, from the reaction scheme proposed, that the inhibition of overall enzymic activity by high concentrations of Mg2+ could be caused by the transfer of the carboxy group from biotin to pyruvate becoming rate-limiting. The efficacy of a substrate as a signal for the movement of carboxybiotin from the first sub-site is reflected by the amount that the effective affinity of the enzyme- carboxybiotin complex for Mg2+ is lowered. In the presence of the substrates tested, the affinities of the carboxybiotin complex can be arranged in order of increasing magnitude, i.e.: (formula; see text). The kinetics of the decay of the enzyme-[14C] carboxybiotin complex at 0 degree C in the absence of substrates are similar to the reaction with pyruvate except that the carboxybiotin is also unstable in the first sub-site, to some degree. This similarity allows for the proposal of a general scheme for the decarboxylation of the enzyme- carboxybiotin complex in the presence or in the absence of substrates.  相似文献   

13.
In contrast to steady-state kinetic isotope effects (KIEs), transient-state tKIEs are both time and signal dependent and therefore require a very different form of theory for their interpretation. We have previously provided such a theory for the case of single-step isotopic substitutions. No such properly derived theory applicable to the analysis of multiple-step isotopic substitutions required by transient-state solvent isotope effect studies has been available up to this time. Here, we set forth a more general form of that theory which is applicable to multiple-step substituted cases. We prove three theorems: 1. the observed transient-state KIE for any given reactive component in the reaction sequence evaluated at zero time (tKIE(0)) is in fact the arithmetic product of the intrinsic KIEs of all the steps that precede the formation of that component. 2. The observed tKIE(0) is completely independent of the intrinsic KIEs of any reverse step in the reaction. 3. The intrinsic KIE of any step may be obtained by dividing the value of the tKIE(0) for that step by the value of the tKIE(0) of the immediately preceding step in the reaction sequence.  相似文献   

14.
15.

Background

Cloning of parasites by limiting dilution is an essential and rate-limiting step in many aspects of malaria research including genomic and genetic manipulation studies. The standard Giemsa-stained blood smears to detect parasites is time-consuming, whereas the more sensitive parasite lactate dehydrogenase assay involves multiple steps and requires fresh reagents. A simple PCR-based method was therefore tested for parasite detection that can be adapted to high throughput studies.

Methods

Approximately 1 μL of packed erythrocytes from each well of a microtiter cloning plate was directly used as template DNA for a PCR reaction with primers for the parasite 18s rRNA gene. Positive wells containing parasites were identified after rapid separation of PCR products by gel electrophoresis.

Results

The PCR-based method can consistently detect a parasitaemia as low as 0.0005%, which is equivalent to 30 parasite genomes in a single well of a 96-well plate. Parasite clones were easily detected from cloning plates using this method and a comparison of PCR results with Giemsa-stained blood smears showed that PCR not only detected all the positive wells identified in smears, but also detected wells not identified otherwise, thereby confirming its sensitivity.

Conclusion

The PCR-based method reported here is a simple, sensitive and efficient method for detecting parasite clones in culture. This method requires very little manual labor and can be completely automated for high throughput studies. The method is sensitive enough to detect parasites a week before they can be seen in Giemsa smears and is highly effective in identifying slow growing parasite clones.  相似文献   

16.
The kinetics and mechanism of the citrate synthase from a moderate thermophile, Thermoplasma acidophilum (TpCS), are compared with those of the citrate synthase from a mesophile, pig heart (PCS). All discrete steps in the mechanistic sequence of PCS can be identified in TpCS. The catalytic strategies identified in PCS, destabilization of the oxaloacetate substrate carbonyl and stabilization of the reactive species, acetyl-CoA enolate, are present in TpCS. Conformational changes, which allow the enzyme to efficiently catalyze both condensation of acetyl-CoA thioester and subsequently hydrolysis of citryl-CoA thioester within the same active site, occur in both enzymes. However, significant differences exist between the two enzymes. PCS is a characteristically efficient enzyme: no internal step is clearly rate-limiting and the condensation step is readily reversible. TpCS is a less efficient catalyst. Over a broad temperature range, inadequate stabilization of the transition state for citryl-CoA hydrolysis renders this step nearly rate-limiting for the forward reaction of TpCS. Further, excessive stabilization of the citryl-CoA intermediate renders the condensation step nearly irreversible. Values of substrate and solvent deuterium isotope effects are consistent with the kinetic model. Near its temperature optimum (70 degrees C), there is a modest increase in the reversibility of the condensation step for TpCS, but reversibility still falls short of that shown by PCS at 37 degrees C. The root cause of the catalytic inefficiency of TpCS may lie in the lack of protein flexibility imposed by the requirement for thermal stability of the protein itself or its temperature-labile substrate, oxaloacetate.  相似文献   

17.
The kinetics of aniline hydroxylation with: 1) rat liver microsomes involving NADPH and O2 (System I); 2) hepatic microsomes and tertiary butylhydroperoxide (System II) and 3) microsomes and cumyl hydroperoxide (System III) within 15--37 degrees C has been studied. The reactions were characterized by the values of the aniline oxidation rate constants, k2=v/[E]0, where [E]0 is the initial concentration of cytochrome P--450: k1 2=1,60.10(8) exp (--13400/RT) sec-1., k2 2=1,66.10(9) exp (--14500/RT) sec-1., k3 2=6,83.10(9) exp (--15300/RT) sec-1. The values of delta H* and delta S* were calculated and compared for these three systems. A conclusion is drawn that the act of oxygen insertion into the substrate molecule is the rate-limiting step in the reaction of aniline oxidation for the mentioned system.  相似文献   

18.
The reduction of enzyme-bound DPN constitutes a half-reaction of phosphoglycerate dehydrogenase and has been investigated fluorometrically. Serine was found to inhibit the half-reaction to the same extent and with the same degree of cooperation as the steady state reaction. This finding identifies the ternary complex conversion as the point in the reaction sequence at which serine inhibition occurs. Delta H determinations for the half-reaction showed no difference whether serine was or was not present and led to the conclusion that the inhibitory effect of serine could only manifest itself through the delta S term in the expression for the formation of the activated transition state complex. DL-3-P[2-2H]glyceric acid showed no primary isotope effect in the half-reaction. This result excludes hydrogen transfer as the rate-limiting step in the half-reaction and confirms that an isomerization step, affected by serine, exists in the ternary complex conversion scheme. The deuterated 3-P-glyceric acid shows an isotope effect of 2 in the steady state reaction.  相似文献   

19.
The kinetics of formation and of dissociation of open complexes (RPo) between Escherichia coli RNA polymerase (R) and the lambda PR promoter (P) have been studied as a function of temperature in the physiological range using the nitrocellulose filter binding assay. The kinetic data provide further evidence for the mechanism R + P in equilibrium I1 in equilibrium I2 in equilibrium RPo, where I1 and I2 are kinetically distinguishable intermediate complexes at this promoter which do not accumulate under the reaction conditions investigated. The overall second-order association rate constant (ka) increases dramatically with increasing temperature, yielding a temperature-dependent activation energy in the range 20 kcal (near 37 degrees C) to 40 kcal (near 13 degrees C) (1 kcal = 4.184 kJ). Both isomerization steps (I1----I2 and I2----RPo) appear to be highly temperature dependent. Except at low temperatures (less than 13 degrees C) the step I1----I2, which we attribute to a conformational change in the polymerase with a large negative delta Cp degrees value, is rate-limiting at the reactant concentrations investigated and hence makes the dominant contribution to the apparent activation energy of the pseudo first-order association reaction. The subsequent step I2----RPo, which we attribute to DNA melting, has a higher activation energy (in excess of 100 kcal) but only becomes rate-limiting at low temperature (less than 13 degrees C). The initial binding step R + P in equilibrium I1 appears to be in equilibrium on the time-scale of the isomerization reactions under all conditions investigated; the equilibrium constant for this step is not a strong function of temperature and is approximately 10(7) M-1 under the standard ionic conditions of the assay (40 mM-Tris . HCl (pH 8.0), 10 mM-MgCl2, 0.12 M-KC1). The activation energy of the dissociation reaction becomes increasingly negative at low temperatures, ranging from approximately -9 kcal near 37 degrees C to -30 kcal near 13 degrees C. Thermodynamic (van't Hoff) enthalpies delta H degrees of open complex formation consequently are large and temperature-dependent, increasing from approximately 29 to 70 kcal as the temperature is reduced from 37 to 13 degrees C. The corresponding delta Cp degrees value is approximately -2.4 kcal/deg. We propose that this large negative delta Cp degrees value arises primarily from the burial of hydrophobic surface in the conformational change (I1 in equilibrium I2) in RNA polymerase in the key second step of the mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A Bracher  N Schramek  A Bacher 《Biochemistry》2001,40(26):7896-7902
GTP cyclohydrolase I catalyzes a mechanistically complex ring expansion affording dihydroneopterin triphosphate from GTP. The inherently slow enzyme reaction was studied under single turnover conditions monitored by multiwavelength ultraviolet spectroscopy. The spectroscopic data array was subjected to singular value decomposition and thereby shown to comprise six significant linearly independent optical processes. The data were fitted to a model of six consecutive unimolecular reaction steps where the first was considered to be reversible. The rate-limiting step was shown to occur rather late in the reaction sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号