首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arabidopsis thaliana Em1 gene has been mapped to the lower arm of chromosome III. Fine analysis of 60 kb around this gene, based largely on identification and sequencing of cognate cDNAs, has allowed us to identify 15 genes or putative genes. Cognate cDNAs exist for ten of these genes, indicating that they are effectively expressed. Analysis by sequence alignment and intracellular localization prediction programs allows attribution of a potential protein product to these genes which show no obvious functional relationship. Comparison of the true exon/intron structure based on cDNA sequences with that proposed by three commonly used prediction programs shows that, in the absence of further information, the results of these predictions on anonymous genomic sequences should be interpreted with caution. Examination of the non-coding sequence showed the presence of a novel repeated, palindromic element. The results of this detailed analysis show that in-depth studies will be necessary to exploit correctly the complete A. thaliana genome sequence.  相似文献   

2.
3.
Gene targeting in Arabidopsis thaliana.   总被引:8,自引:0,他引:8  
Summary Gene targeting of a chromosomally integrated transgene in Arabidopsis thaliana is reported. A chimeric gene consisting of the promoter of the 35S RNA of CaMV, the polyadenylation signal of the octopine synthase gene and the coding region of the bacterial hygromycin phosphotransferase gene (hpt), which was rendered non-functional by deletion of 19 bp, was introduced into the genome of A. thaliana using Agrobacterium-mediated gene transfer. A total of 3.46 x 108 protoplasts isolated from 17 independent transgenic Arabidopsis lines harbouring the defective chimeric hpt gene were transformed via direct gene transfer using various DNA forms containing only the intact coding region of the hpt gene. Out of 150 hygromycin-resistant colonies appearing in the course of these experiments, four were the result of targeted recombination of the incoming DNA with the defective chromosomal locus as revealed by PCR and Southern blot analysis. Comparison with the number of transformants obtained when an hpt gene controlled by a promoter and terminator from the nopaline synthase gene was employed results in a maximal ratio of homologous to non-homologous transformation in A. thaliana of 1 x 10–4.  相似文献   

4.
We have designed a novel tiling array, AtMap1, for genomic deletion mapping. AtMap1 is a 60-mer oligonucleotide microarray consisting of 42 497 data probes designed from the genomic sequence of Arabidopsis thaliana Col-0. The average probe interval is 2.8 kb. The performance of the AtMap1 array was assessed using the deletion mutants mag2-2, rot3-1 and zig-2. Eight of the probes showed threefold lower signals in mag2-2 than Col-0. Seven of these probes were located in one region on chromosome 3. We considered these adjacent probes to represent one deletion. This deletion was consistent with a reported deleted region. The other probe was located near the end of chromosome 4. A newly identified deletion around the probe was confirmed by PCR. We also detected the responsible deletions for rot3-1 and zig-2. Thus we concluded that the AtMap1 array was sufficiently sensitive to identify a deletion without any a priori knowledge of the deletion. An analysis of the result of hybridization of Ler and previously reported polymorphism data revealed that the signal decrease tended to depend on the overlap size of sequence polymorphisms. Mutation mapping is time-consuming, laborious and costly. The AtMap1 array removes these limitations.  相似文献   

5.
Summary An Ac-derived, two-component transposable element system has been developed and analyzed with respect to its use in Arabidopsis thaliana. This system consists of an immobilized Ac element (Ac clipped wing, Accl) as the source of transactivating transposase and a nonautonomous Ds element, DsA, which is inserted into a chimaeric neomycinphosphotransferase gene used as excision marker. After separate introduction of Acc1 and DsA into Arabidopsis thaliana, progeny analysis of crosses between five different Accl lines and seven different DsA lines shows that: (1) different Accl lines differ greatly in their capacity to transactivate DsA; (2) different DsA lines do not differ significantly with respect to DsA transactivation by one Accl line; (3) reintegration of excised DsA elements, both at (genetically) linked and unlinked sites, occurs in about 50% of the excision events; and (4) plants with a high rate of somatic excisions can be used as source of new DsA transpositions, allowing the creation of a large number of independent DsA insertions.  相似文献   

6.
7.
Genome colinearity has been studied for two closely related diploid species of the Brassicaceae family, Arabidopsis thaliana and Capsella rubella. Markers mapping to chromosome 4 of A. thaliana were found on two linkage groups in Capsella and colinear segments spanning more than 10 cM were revealed. Detailed analysis of a 60 kbp region in A. thaliana and its counterpart in C. rubella showed virtually complete conservation of gene repertoire, order and orientation. The comparison of orthologous genes revealed very similar exon-intron structures and sequence identities of 90% or more were found for exon sequences. This extensive genome colinearity at the genetic and molecular level allows the efficient transfer of data from the well-studied A. thaliana genome to other species in the Brassicaceae family, substantially facilitating genome analysis studies for species of this family.  相似文献   

8.
9.
A genetic map of potato (Solanum tuberosum) was constructed based on 293 restriction fragment length polymorphism (RFLP) markers including 31 EST markers of Arabidopsis. The in silico comparison of all marker sequences with the Arabidopsis genomic sequence resulted in 189 markers that detected in Arabidopsis 787 loci with sequence conservation. Based on conserved linkage between groups of at least three different markers on the genetic map of potato and the physical map of Arabidopsis, 90 putative syntenic blocks were identified covering 41% of the potato genetic map and 50% of the Arabidopsis physical map. The existence and distribution of syntenic blocks suggested a higher degree of structural conservation in some parts of the potato genome when compared to others. Syntenic blocks were redundant: most potato syntenic blocks were related to several Arabidopsis genome segments and vice versa. Some duplicated potato syntenic blocks correlated well with ancient segmental duplications in Arabidopsis. Syntenic relationships between different genomic segments of potato and the same segment of the Arabidopsis genome indicated that potato genome evolution included ancient intra- and interchromosomal duplications. The partial genome coveridge and the redundancy of syntenic blocks limits the use of synteny for functional comparisons between the crop species potato and the model plant Arabidopsis.  相似文献   

10.
11.
The Brassica napus cDNA clone A9 and the corresponding Arabidopsis thaliana gene have been sequenced. The B. napus cDNA and the A. thaliana gene encode proteins that are 73% identical and are predicted to be 10.3 kDa and 11.6 kDa in size respectively. Fusions of an RNase gene and the reporter gene -glucuronidase to the A. thaliana A9 promoter demonstrated that in tobacco the A9 promoter is active solely in tapetal cells. Promoter activity is first detectable in anthers prior to sporogenous cell meiosis and ceases during microspore premitotic interphase.The deduced A9 protein sequence has a pattern of cysteine residues that is present in a superfamily of seed plant proteins which contains seed storage proteins and several protease and -amylase inhibitors.  相似文献   

12.
Flavonols are plant metabolites suggested to serve a vital role in fertilization of higher plants. Petunia and maize plants mutated in their flavonol biosynthesis are not able to set seed after self-pollination. We have investigated the role of these compounds in Arabidopsis thaliana. Like in all other plant species, high levels of flavonols could be detected in pollen of wild-type A. thaliana. No flavonols were detected in reproductive organs of the A. thaliana tt4 mutant in which the chs gene is mutated. Surprisingly, this mutant did set seed after self-fertilization and no pollen tube growth aberrations were observed in vivo. The role of flavonols during fertilization of Arabidopsis is discussed.Abbreviations CHS chalcone synthase - TLC thin-layer chromatography  相似文献   

13.
From an ethylmethane sulphonate-mutagenized M2 population of Arabidopsis thaliana L. var Landsberg erecta, a mutant was isolated on the basis of its ability to germinate in the presence of a germination inhibitory concentration (0.35 mM) of spermine. The mutant produced yellowish green seeds that lacked a mucilaginous sheath, exhibited reduced dormancy and were generally viviparous under ambient conditions. Dose-response assays indicated increased resistance of the mutant to spermine but normal sensitivity to spermidine, putrescine and abscisic acid. The spermine resistance and the associated phenotype of the mutant was inherited as a single recessive nuclear mutation. Following the genetic analysis, spermine-resistant mutant has been designated as spr2. The results suggest a role for spermine in seed dormancy.  相似文献   

14.
The Arabidopsis thaliana genome sequence provides a catalogue of reference genes that can be used for comparative analysis of other species thereby facilitating map-based cloning in economically important crops. We made use of a coffee bacterial artificial chromosome (BAC) contig linked to the SH3 leaf rust resistance gene to assess microsynteny between coffee (Coffea arabica L.) and Arabidopsis. Microsynteny was revealed and the matching counterparts to C. arabica contigs were seen to be scattered throughout four different syntenic segments of Arabidopsis on chromosomes (Ath) I, III, IV and V. Coffee BAC filter hybridizations were performed using coffee putative conserved orthologous sequences to Arabidopsis predicted genes located on the different Arabidopsis syntenic regions. The coffee BAC contig related to the SH3 region was successfully consolidated and later on validated by fingerprinting. Furthermore, the anchoring markers appeared in same order on the coffee BAC contigs and in all Arabidopsis segments with the exception of a single inversion on AtIII and AtIV Arabidopsis segments. However, the SH3 coffee region appears to be closer to the ancestral genome segment (before the divergence of Arabidopsis and coffee) than any of the duplicated counterparts in the present-day Arabidopsis genome. The genome duplication events at the origin of its Arabidopsis counterparts occurred most probably after the separation (i.e. 94 million years ago) of Euasterid (Coffee) and Eurosid (Arabidopsis).  相似文献   

15.
The eco-physiology of salt tolerance, with an emphasis on K+ nutrition and proline accumulation, was investigated in the halophyte Thellungiella halophila and in both wild type and eskimo-1 mutant of the glycophyte Arabidopsis thaliana, which differ in their proline accumulation capacity. Plants cultivated in inert sand were challenged for 3 weeks with up to 500 mM NaCl. Low salinity significantly decreased A. thaliana growth, whereas growth restriction was significant only at salt concentrations equal to or exceeding 300 mM NaCl in T. halophila. Na+ content generally increased with the amount of salt added in the culture medium in both species, but T. halophila showed an ability to control Na+ accumulation in shoots. The analysis of the relationship between water and Na+ contents suggested an apoplastic sodium accumulation in both species; this trait was more pronounced in A. thaliana than in T. halophila. The better NaCl tolerance in the latter was associated with a better K+ supply, resulting in higher K+/Na+ ratios. It was also noteworthy that, despite highly accumulating proline, the A. thaliana eskimo-1 mutant was the most salt-sensitive species. Taken together, our findings indicate that salt tolerance may be partly linked to the plants’ ability to control Na+ influx and to ensure appropriate K+ nutrition, but is not linked to proline accumulation.  相似文献   

16.
Analysis of the rate-limiting dehydrogenases of the oxidative pentosephosphate pathway (OPPP), as well as changes in the contributions of14C1- and 14C6-labelled glucose torespired CO2 during germination, indicated activation of the OPPPduring Arabidopsis seed germination. An approximatelyfour-fold increase in free proline (Pro) was also observed prior to radicleemergence in most seeds. Delayed radicle emergence in transgenicArabidopsis seeds which expressed an antisense copy of thegene encoding the Pro biosynthetic enzyme1-pyrroline-5-carboxylate synthetase correlated with anapproximately 35% reduction in the maximal concentration of Pro accumulated bythe antisense lines during germination. A dose-dependent inhibition ofArabidopsis seed germination by millimolar concentrationsof Pro capable of feedback inhibition of Pro synthesis reinforced the role ofPro synthesis in promoting germination. The ability of the artificial oxidantsmethylene blue and phenazine ethosulphate to overcome the inhibitory effects ofPro suggests a functional link between elevated Pro synthesis and increasedOPPPactivity and the importance of coupling of both pathways in stimulatinggermination.  相似文献   

17.
Summary. In this work, we analyzed the developmental anatomy of cotyledons and leaves in the has mutant of Arabidopsis thaliana. It is a recessive T-DNA insertion mutation that causes changes in the size, shape, and tissue organization of the cotyledons and leaves of has plants. Analysis of has cotyledons revealed a prominent decrease in the cell number and an increase in the area of cotyledon cells and intercellular spaces of has plants. At early stages of development, has leaves are fingerlike structures, but later they develop small, lobed blades with rare trichomes. An important characteristic of the mutant leaf anatomy is the absence of mesophyll tissue differentiation. In addition, both cotyledons and leaves display a disrupted pattern of vascular bundles. Furthermore, mutant plants are defective in root and shoot morphology, indicating that the has mutation affects a number of aspects in plant development. Correspondence and reprints: Institute of Botany and “Jevremovac” Botanical Garden, Faculty of Biology, Belgrade University, Takovska 43, 11 000 Belgrade, Serbia.  相似文献   

18.
A gene encoding a proto-oncogene, a myb-related gene named Atmyb1, was cloned from Arabidopsis thaliana, and its nucleotide sequence was determined. The Atmyb1 gene contains an intron of 494 bp, and there are no highly homologous sequences present in the A. thaliana genome, but evidence was found that other myb-related genes exist. In the 5 flanking region, we found several typical cis-acting elements found in plant promoters. Sequence comparisons revealed that the ATMYB1 protein has a putative DNA-binding domain with two repeats of tryptophan clusters, which is common in MYB-related proteins in plants, while animal MYB-related proteins contain DNA-binding domains with three repeats of tryptophan clusters. The putative DNA-binding domain of the ATMYB1 protein has higher homology with that of the human c-MYB protein than with those of other plant MYB proteins.  相似文献   

19.
20.
Frataxin, a nuclear-encoded mitochondrial protein, has been proposed to participate in Fe-S cluster assembly, mitochondrial energy metabolism, respiration, and iron homeostasis. However, its precise function remains elusive. Frataxin is highly conserved in living organisms with no major structural changes, in particular at the C-terminal protein domain, suggesting that it plays a key function in all organisms. Recently, a plant gene, AtFH, with significant homology to other members of the frataxin family has been described. To gain insight on the frataxin role in plants, the frataxin domain was expressed in Escherichia coli BL21-codonPlus (DE3)-RIL cells and purified using a Ni-chelating column. The purified protein, added to a mixture containing Fe(II) and H2O2, attenuates the Fenton reaction indicating that the recombinant plant frataxin is functional. The procedure described here produced high yield of 99% pure protein through only one chromatographic step, suitable for further structure-function studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号