首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new sprout decay and seedling stunting disease of unknown aetiology in upland cotton (Gossypium hirsutum L.) affecting nearly 5%–10% of young seedlings was noticed in vertisols of central Vidarbha (Maharashtra state, India) in July of 2017. The bacterium was consistently isolated from diseased seedlings and identified with a polyphasic method of characterization, including morphological, physiological, biochemical and 16S rRNA gene sequence analysis. The bacterium strain CICR-MGMG1 was isolated from diseased plants identified as Enterobacter sp. Inoculation of healthy cotton seed with an axenic culture of strain CICR-MGMG1 isolated from diseased young seedling reproduced disease symptoms of yellowing, stunting and deformed growth similar to the symptoms reported from infected field condition. The strain CICR-MGMG1 was consistently isolated from both diseased seedlings and stunted plants. Thus, the pathogenicity test of Koch's postulates was confirmed with the bacterium Enterobacter sp. strain CICR-MGMG1 as the causal organism of sprout decay and seedling stunting. To the best of our knowledge, this is the first record of Enterobacter sp. causing sprouts decay and seedling stunting of cotton.  相似文献   

2.
An undescribed, maternally heritable, rod-shaped bacterium (or “tertiary symbiont”) was detected by microscopy in hemolymph of about half (59/122) of pea aphid [Acyrthosiphon pisum (Harris)] clones collected from widely separated locations in California. On the basis of molecular phylogenetic analysis of 16S rDNA sequences, the bacterium was clearly placed among other Rickettsia in the α-subgroup of Proteobacteria, close to Rickettsia bellii—a rickettsia found in ticks. A PCR assay was developed to detect this bacterium in pea aphid clones with specific 16S rDNA PCR primers. Results of PCR-based assays completely correlated with detection by microscopy. This is the first confirmed detection of a Rickettsia in a herbivorous insect. Received: 26 January 1996  相似文献   

3.
The bacterium Rickettsia is found widely in phytophagous insects and often exerts profound effects on the phenotype and fitness of its hosts. Here, we decrypt a new, independent, phylogenetically ancient Torix Rickettsia endosymbiont found constantly in a laboratory line of an economically important insect Asia II 7, a putative species of the Bemisia tabaci whitefly complex (Hemiptera: Aleyrodidae), and occasionally in field whitefly populations. This new Rickettsia distributes throughout the body of its whitefly host. Genetically, compared to Rickettsia_bellii_MEAM1 found earlier in whiteflies, the new Rickettsia species has more gene families and pathways, which may be important factors in shaping specific symbiotic relationships. We propose the name ‘Candidatus Rickettsia_Torix_Bemisia_tabaci (RiTBt)’ for this new endosymbiont associated with whiteflies. Comparative genomic analyses indicate that RiTBi may be a relatively recent intruder in whiteflies given its low abundance in the field and relatively larger genome compared to Rickettsia_bellii_MEAM1.  相似文献   

4.
Spontaneous latex exudation is the main symptom of papaya sticky (meleira) disease caused by the Papaya meleira virus (PMeV), a double-stranded RNA (dsRNA) virus. This paper describes different effects of PMeV on papaya latex. Latex samples were subjected to different histochemical tests to evaluate their chemical composition. Additionally, the integrity of the latex particles was assessed by transmission and scanning electron microscopy analysis. Biochemical and micro- and macro-element measurements were performed. PMeV dsRNA extraction was performed to evaluate the interaction of the virus with the latex particles. Sticky diseased latex was positive for alkaloid biosynthesis and showed an accumulation of calcium oxalate crystals. PMeV also increased H2O2 synthesis within sticky diseased laticifers. The protein, sugar and water levels were altered, probably due to chemical changes. The morphology of the latex particles was further altered; PMeV particles seemed to be bound to the latex particles. The alkaloid and H2O2 biosynthesis in the papaya laticifers indicate a papaya defense response against PMeV. However, such efforts failed, as the virus affected the plant latex. The effects described here suggest some advantages of the infection process, including facilitating the movement of the virus within the papaya plant.  相似文献   

5.
Asr is a family of genes that maps to chromosome 4 of tomato. Asr2, a recently reported member of this family, is believed to be regulated by abscisic acid (ABA), stress and ripening. A genomic Asr2 clone has been fully sequenced, and candidate upstream regulatory elements have been identified. To prove that the promoter region is functional in vivo, we fused it upstream of the β-glucuronidase (GUS) reporter gene. The resulting chimeric gene fusion was used for transient expression assays in papaya embryogenic calli and leaves. In addition, the same construct was used to produce transgenic tomato, papaya, tobacco, and potato plants. Asr2 upstream sequences showed promoter function in all of these systems. Under the experimental conditions tested, ABA stimulated GUS expression in papaya and tobacco, but not in tomato and potato systems. Received: 24 March 1997 / Accepted: 26 November 1997  相似文献   

6.
Plant regeneration from encapsulated somatic embryos of Carica papaya L.   总被引:2,自引:0,他引:2  
Carica papaya L. (papaya) single somatic embryos (2.0 mm diameter) produced in a high-frequency liquid production system were encapsulated in two different synthetic encapsulation compounds. The frequency of regeneration from encapsulated embryos was significantly affected by (1) the concentration of sodium alginate, (2) the presence or absence of nutrient salts in the capsule, and (3) the duration of exposure to calcium chloride. A 2.5% sodium alginate concentration in a half-strength MS salts base resulted in significantly higher germination frequencies than other treatments. A relatively short (10 min) exposure to CaCl2 provided uniform encapsulation of embryos and the highest frequencies of successful germination (77.5%). Germinated artificial seeds produced normal plantlets. Received: 12 March 1997 / Revision recieved: 24 June 1997 / Accepted: 18 July 1997  相似文献   

7.
A sensitive hemi-nested polymerase chain reaction (PCR) was used for detection of Melissococcus plutonius, the causative agent of European foulbrood (EFB). Sampling was made in Switzerland, where EFB is a widespread disease and incidences have increased in recent years. Larvae from brood samples with and without clinical signs of disease (n = 92) and honey (n = 92) from the same colonies were investigated. Individual larvae (n = 60) and pupae (n = 30) from diseased brood in single colonies were also investigated to study the distribution of the bacterium within the brood between larvae. M. plutonius was detected in larvae in all apiaries where symptoms of EFB could be seen, but not in all colonies judged as cases of EFB in the field, when healthy-looking larvae from such colonies were tested. The occurrence of the bacterium within the brood was not limited to larvae with symptoms only, but was mainly found in diseased larvae. The bacterium was also found in pupae. Healthy-looking larvae—even from heavily diseased combs—failed, in a number of cases, to amplify product in the PCR. M. plutonius could only be detected in 35% of the brood nest honey from clinically diseased colonies.  相似文献   

8.
Migratory birds are known to play a role in the long‐distance transportation of microorganisms. To investigate whether this is true for rickettsial agents, we undertook a study to characterize tick infestation in populations of the migratory passerine bird Riparia riparia (Passeriformes: Hirundinidae), the sand martin. A total of 194 birds were sampled and ticks removed from infested birds. The ticks were identified as female Ixodes lividus (Acari: Ixodidae) using standard morphological and molecular techniques. Tick DNA was assayed to detect Rickettsia spp. using polymerase chain reaction and DNA was sequenced for species identification. A single Rickettsia spp. was detected in 100% of the ticks and was designated Rickettsia sp. IXLI1. Partial sequences of 17‐kDa and ompA genes showed greatest similarity to Rickettsia sp. TCM1, an aetiological agent of Japanese spotted fever‐like illness, previously described in Thailand. Phylogenetic analysis showed that Rickettsia sp. IXLI1 fitted neatly into a group containing strains Rickettsia japonica, Rickettsia sp. strain Davousti and Rickettsia heilongjiangensis. In conclusion, this research shows that U.K. migratory passerine birds host ticks infected with Rickettsia species and contribute to the geographic distribution of spotted fever rickettsial agents.  相似文献   

9.
The larval endoparasitoid, Neochrysocharis formosa (Westwood), is an important natural enemy of the leafminer Liriomyza trifolii (Burgess) in Japan. The thelytokous strain of N. formosa mostly produces female progeny. Male progeny were produced by females treated with tetracycline, suggesting that microorganisms induce thelytoky in N. formosa. The result of nucleotide sequencing of the 16S rRNA gene indicated that the parasitoid is infected with a Rickettsia bacterium, which appears to be causative of the thelytoky. Although Rickettsia-bellii-like bacteria have been found to be associated with various reproductive disorders, this is the first finding of a parthenogenesis-inducing Rickettsia among insects.  相似文献   

10.
An endophytic bacterium named Pseudomonas putida MGY2 was isolated from papaya fruit. The effect of MGY2 on reducing anthracnose caused by Colletotrichum gloeosporioides infection in harvested papaya fruit and the possible mechanisms involved were investigated. Fruit treated with MGY2 showed a significant lower disease index, disease incidence, and lesion diameter than the control. MGY2 reduced the decrease in firmness and delayed the peak of ethylene production of harvested papaya fruit stored at 25 °C. MGY2 also significantly enhanced the activities of phenylalanine ammonia-lyase (PAL), catalase (CAT), and peroxidase (POD) and increased the phenolic content. The expression levels of PAL1, CAT1, and POD genes were obviously elevated in MGY2-treated fruit. These results suggested that papaya fruit is capable of responding to the endophyte P. putida MGY2, which could activate defensive enzymes and genes and thereby induce host disease resistance.  相似文献   

11.
Abstract The whitefly Bemisia tabaci harbors Portiera aleyrodidarum, an obligatory symbiotic bacterium, as well as several secondary symbionts, including Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium and Fritschea, the function of which is unknown. In Israel, Rickettsia is found in both the B and Q of B. tabaci biotypes, and while all other secondary symbionts are located in the bacteriomes, Rickettsia can occupy most of the body cavity of the insect. We tested whether Rickettsia influences the biology of B. tabaci and found that exposing a Rickettsia‐containing population to increasing temperatures significantly increases its tolerance to heat shock that reached 40°C, compared to a Rickettsia‐free population. This increase in tolerance to heat shock was not associated with specific induction of heat‐shock protein gene expression; however, it was associated with reduction in Rickettsia numbers as was assessed by quantitative real‐time polymerase chain reaction and fluorescence in situ hybridization analyses. To assess the causes for thermotolerance when Rickettsia is reduced, we tested whether its presence is associated with the induction of genes required for thermotolerance. We found that under normal 25°C rearing temperature, genes associated with response to stress such as cytoskeleton genes are induced in the Rickettsia‐containing population. Thus, the presence of Rickettsia in B. tabaci under normal conditions induces the expression of genes required for thermotolerance that under high temperatures indirectly lead to this tolerance.  相似文献   

12.
Tetrachloroethene reductive dechlorination was studied with cell extracts of a newly isolated, tetrachloroethene-utilizing bacterium, Desulfitobacterium sp. strain PCE-S. Tetrachloroethene dehalogenase mediated the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with artificial electron donors such as methyl viologen. The chlorinated aromatic compounds tested so far were not reduced. A low-potential electron donor (E 0′ < –0.4 V) was required for tetrachloroethene reduction. The enzyme in its reduced state was inactivated by propyl iodide and reactivated by light, indicating the involvement of a corrinoid in reductive tetrachloroethene dechlorination. Received: 28 April 1997 / Accepted: 11 July 1997  相似文献   

13.
The widespread presence of cellulose-binding domains in cellulases from aerobic bacteria and fungi suggests the existence of a strong selective pressure for the retention of these non-catalytic modules. The complete nucleotide sequence of the cellulase gene, celA, from the aerobic soil bacterium Cellvibrio mixtus, was determined. It revealed an open reading frame of 1089 bp that encoded a polypeptide, defined as cellulase A (CelA), of M r 41 548. CelA displayed features characteristic of an endo-β-1,4-glucanase, rapidly decreasing the viscosity of the substrate while releasing only moderate amounts of reducing sugar. Deletion studies in celA revealed that removal of 78 nucleotides from the 5′ end or 75 from the 3′ end of the gene led to the complete loss of cellulase activity of the encoded polypeptides. The deduced primary structure of CelA revealed an N-terminal signal peptide followed by a region that exhibited significant identity with the catalytic domains of cellulases belonging to glycosyl hydrolase family 5. These data suggest that CelA is a single-domain endoglucanase with no distinct non-catalytic cellulose-binding domain. Analysis of the biochemical properties of CelA revealed that the enzyme hydrolyses a range of soluble cellulosic substrates, but was inactive against Avicel, xylan or any other hemicellulose. CelA was resistant to proteolytic inactivation by pancreatic proteinases and surprisingly, in view of its mesophylic origin, was shown to be thermostable. The significance of these findings in relation to the role of single-domain cellulases in plant cell wall hydrolysis by aerobic microorganisms is discussed. Received: 26 May 1997 / Received revision: 4 July 1997 / Accepted: 4 July 1997  相似文献   

14.
The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a key pest of tomato (Solanum lycopersicum L.) and other vegetable crops worldwide. To combat this pest, a non-crop banker plant system was evaluated that employs a parasitoid, Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) with whitefly, Trialeurodes variabilis (Quaintance) (Hemiptera: Aleyrodidae), as an alternative host for rearing and dispersal of the parasitoid to the target pest. (a) Multi-choice and no-choice greenhouse experiments were conducted to determine host specificity of T. variabilis to papaya (Carica papaya L.) and three vegetable crops including tomato, green bean (Phaseolus vulgaris L.), and cabbage (Brassica oleracea L.). The result showed that papaya was an excellent non-crop banker plant for supporting the non-pest alternative host, T. variabilis, whose adults had a strong specificity to papaya plants for feeding and oviposition in both multi-choice and no-choice tests. (b) The dispersal ability of E. sophia was investigated from papaya banker plants to tomato and green bean plants infested with B. tabaci, as well as to papaya control plants infested with T. variabilis; and (c) the percent parasitism by E. sophia on T. variabilis reared on papaya plants and on B. tabaci infested on tomato plants was also evaluated. These data proved that E. sophia was able to disperse at least 14.5 m away from papaya plants to target tomato, bean or papaya control plants within 48–96 h. Furthermore, E. sophia was a strong parasitoid of both T. variabilis and B. tabaci. There was no significant difference in percent parasitism by E. sophia on T. variabilis (36.2–47.4%) infested on papaya plants or B. tabaci (29–45.9%) on tomato plants. Thus, a novel banker plant system for the potential management of B. tabaci was established using papaya as a non-crop banker plant to support a non-pest alternative host, T. variabilis for maintaining the parasitoid to control B. tabaci. The established banker plant system should provide growers with a new option for long-term control of B. tabaci in greenhouse vegetable production. Ongoing studies on the papaya banker plant system are being performed in commercial greenhouses.  相似文献   

15.
The present study evaluated the rickettsial infection in Amblyomma parvum ticks collected in Northwestern Córdoba Province, Argentina. Each tick was subjected to DNA extraction and tested by polymerase chain reaction (PCR) targeting fragments of the rickettsial genes gltA and ompB. Nine (69.2%) out of 13 adult ticks yielded expected PCR products for the two rickettsial genes. Products from the ompB PCR were sequenced, generating DNA sequences 100% identical for the nine PCR-positive ticks. Three of these ticks were tested in another battery of PCR targeting fragments of the rickettsial genes gltA, htrA, and ompA. Products from the gltA, htrA, and ompA PCRs were sequenced generating DNA sequences 100% identical for the three PCR-positive ticks. The rickettsia detected in the A. parvum ticks was designated as Rickettsia sp. strain Argentina. Phylogenetic analyses performed with partial sequences of the rickettsial genes gltA, htrA, ompB, and ompA showed that Rickettsia sp. strain Argentina belonged to the spotted fever group, being distinct from all known Rickettsia species and genotypes available in GenBank, representing possibly a new Rickettsia species. This was the first evidence of rickettsial infection in the tick A. parvum, and the third report of rickettsial infection among the Argentinean tick fauna. The role of Rickettsia sp. strain Argentina as a human pathogen is unknown. Further studies are needed to obtain tissue-cultured isolates of Rickettsia sp. strain Argentina, in order to better characterize it and to determine its taxonomic status as a new species.  相似文献   

16.
A marine strain (BS107), identified as a Roseobacter species, was antagonistic to Vibrio species on agar plates. Results suggested that the inhibitory effect was displayed only in the presence of another bacterium. Quantification of the antibacterial activity showed that 48-hour-coculture supernatants from BS107 and another bacterial strain (V. anguillarum 408) reached the highest titers of bacterial inhibition. The antibacterial substance was also liberated when supernatants from V. anguillarum 408 were added to pure cultures of the inhibition-productive bacterium. The presence of a proteinaceous molecule may induce BS107 to display the inhibitory effect. The antibacterial substance was sensitive to trypsin (8000 U/ml) and stable at 100°C. Cell extracts of the isolate BS107 (106 cells/ml) significantly enhanced scallop larval survival, thus being beneficial to the rearing process. Received December 8, 1997; accepted July 15, 1998.  相似文献   

17.
Abstract

Field observations made over 10 years suggested that a bacterial disease of adults of the terrestrial amphipod Orchestia hurleyi Duncan, caused by Bacillus subtilis, is progressing southwards down the eastern side of New Zealand's South Island. As the disease spread, amphipod density appeared to decline and population age structure became truncated. In the vicinity of Dunedin and further south the amphipods are still disease-free. Signs of the disease are a progressive weakening and wasting. The animal cannot jump, and its speed of walking is reduced. Its body becomes opaque white instead of the normal translucent reddish-brown. Diseased females do not brood. There is no evidence that diseased animals moult. Death is caused by general wasting or by predators. The disease-causing organism was isolated, and healthy amphipods were re-infected from the isolate. Signs of the disease were apparent within 7 days of inoculation. The presence of the disease-causing organism in the haemocoel causes host defences to be mobilised, as shown by elevated haemocyte counts (4512 mm?3, cf. 300 mm?3 in healthy, disease-free adults), but as the disease progresses the animal's defences are overcome, and haemocyte counts fall to an average of 784 mm?3 during the later stages of disease. The blood of terminally diseased amphipods is thick and creamy white, packed with motile bacterial cells, and few (if any) haemocytes are present in the circulation. Two populations were studied, one disease-free (at Dunedin) and the other heavily diseased (at Christchurch). The incidence of disease (as measured by a performance test) was about 30%r in Christchurch adults. The disease-causing strain of B. subtilis was found on the body surface of almost all adults in the diseased population. It is possible that the bacterium gains entry to the haemocoel through wounds suffered during ecdysis, conflict, or predator attack. The main differences shown by the diseased population relative to the disease-free population were: lower average density (992 m?2, cf. 1677 m?2); lower maximum density (3104 m?2, cf. 9971 m?2); smaller average size, with fewer adult instars; a smaller proportion of females brooding in each instar; and much lower egg production. The brood size/mother age relationship was the same for both populations — number of eggs in brood = -4.9 + 0.64(instar number of mother)—because in the diseased population only healthy females breed. Lower egg production in the diseased population reflects the smaller proportion of healthy females, and the number of broods per female is lower since life expectancy is much less. A computer model based on Leslie matrices was used to simulate the ecological effects of the disease. It gave predictions which conformed with the observed population features with respect to age structure and density.  相似文献   

18.
Field-collected specimens of glossiphoniid leeches, Torix tagoi, Torix tukubana, Hemiclepsis marginata, and Hemiclepsis japonica, were surveyed for Rickettsia infection by using a diagnostic PCR assay. Rickettsia was detected in 96% (69/72) of T. tagoi, 83% (24/29) of T. tukubana, 29% (33/113) of H. marginata, and 0% (0/30) of H. japonica. The frequencies of Rickettsia infection were stably maintained in different seasons. In H. marginata and T. tukubana, distant local populations exhibited remarkably different frequencies of Rickettsia infection. Eggs carried by infected females of T. tagoi and H. marginata were all Rickettsia-positive, indicating nearly 100% vertical transmission. Analysis of 16S rDNA sequences revealed that phylogenetic relationship of the leech-associated Rickettsia reflected the specific and populational divisions of the host leeches. However, circumstantial lines of evidence strongly suggested that horizontal transmission of Rickettsia must have occurred in the ancestors of these leeches. In T. tagoi and T. tukubana, infected individuals were remarkably larger in size than uninfected individuals, wheras in H. marginata, infected and uninfected individuals were almost comparable in size. This study first provides information on ecological aspects of leech-bone endocellular bacteria of the genus Rickettsia. On the basis of these data, we discuss possible mechanisms whereby Rickettsia infection is maintained in natural populations of these leeches in the freshwater ecosystem.  相似文献   

19.
Knowledge about ticks (Acari) and screening of ticks parasitizing various hosts are necessary to understand the epidemiology of tick‐borne pathogens. The objective of this study was to investigate tick infestations on snakes (Reptilia: Squamata: Serpentes) arriving at the serpentarium at the Institute Vital Brazil, Rio de Janeiro. Some of the identified ticks were individually tested for the presence of bacteria of the genera Rickettsia (Rickettsiales: Rickettsiaceae), Borrelia (Spirochaetales: Spirochaetaceae), Coxiella (Legionellales: Coxiellaceae), Bartonella (Rhizobiales: Bartonellaceae), Ehrlichia (Rickettsiales: Anaplasmataceae), Anaplasma (Rickettsiales: Anaplasmataceae), and Apicomplexa protozoa of the genera Babesia (Piroplasmida: Babesiidae) and Hepatozoon (Eucoccidiorida: Hepatozoidae). A total of 115 hard ticks (Ixodida: Ixodidae) were collected from 17 host individuals obtained from four Brazilian states. Two species of tick were identified: Amblyomma dissimile Koch 1844 (four larvae, 16 nymphs, 40 adults), and Amblyomma rotundatum Koch 1844 (12 nymphs, 43 adults). Rickettsia bellii was found in A. rotundatum and A. dissimile ticks and Rickettsia sp. strain Colombianensi, Anaplasma‐like and Hepatozoon sp. in A. dissimile ticks. Among the tested ticks, no DNA of Borrelia, Bartonella, Coxiella or Babesia was found. The present findings extend the geographic range of Rickettsia sp. strain Colombianensi in Brazil and provide novel tick–host associations.  相似文献   

20.
Recently, we showed that the southern green stink bug (SGSB), Nezara viridula (L.), can transmit Pantoea agglomerans (Ewing and Fife), an opportunistic bacterium, into green cotton bolls resulting in plant disease. Here, we hypothesized that our established model could be used to determine if the SGSB was a general, non-discriminate vector by using two other opportunistic bacterial pathogens of bolls (Pantoea ananatis [Serano] and Klebsiella pneumoniae [Schroeter]) and the known fungal pathogen Nematospora coryli (Peglion). Variants of P. ananatis (strain Pa-1R) and K. pneumoniae (strain Kp 5-1R) selected for rifampicin (Rif) resistance were used as bacterial opportunists. N. coryli was detected only from laboratory-reared SGSB directly exposed to the fungus. Both Pa-1R and Kp 5-1R were recovered from SGSB previously provided a contaminated food source (2 days), sterile food (5 days), and then harvested after being caged on bolls (2 days) at levels reaching 103 and 104 colony forming units (cfus) per insect, respectively. However, bolls caged with insects infected with Pa-1R or Kp 5-1R and with evidence of feeding did not become diseased nor were either opportunists detected from boll tissues. Insects infected with N. coryli transmitted the pathogen, which resulted in diseased bolls and fungi concentrations reached 106 cfus/g locule tissue at 2 weeks following the caging period. Notably, each of the three pathogens independently caused boll disease when mechanically inoculated using a needle puncture. Generally, these results suggest that cotton pathogen acquisition by the SGSB was not sufficient to determine whether the insects were disease vectors of the opportunists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号