首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary RFLPs were used to study genome evolution and phylogeny in Brassica and related genera. Thirtyeight accessions, including 10 accessions of B. rapa (syn. campestris), 9 cultivated types of B. oleracea, 13 nine-chromosome wild brassicas related to B. oleracea, and 6 other species in Brassica and allied genera, were examined with more then 30 random genomic DNA probes, which identified RFLPs mapping to nine different linkage groups of the B. rapa genome. Based on the RFLP data, phylogenetic trees were constructed using the PAUP microcomputer program. Within B. rapa, accessions of pak choi, narinosa, and Chinese cabbage from East Asia constituted a group distinct from turnip and wild European populations, consistent with the hypothesis that B. rapa had two centers of domestication. A wild B. rapa accession from India was positioned in the tree between European types and East Asian types, suggesting an evolutionary pathway from Europe to India, then to South China. Cultivated B. oleracea morphotypes showed monophyletic origin with wild B. oleracea or B. alboglabra as possible ancestors. Various kales constitute a highly diverse group, and represent the primitive morphotypes of cultivated B. oleracea from which cabbage, broccoli, cauliflower, etc. probably have evolved. Cauliflower was found to be closely related to broccoli, whereas cabbage was closely related to leafy kales. A great diversity existed among the 13 collections of nine-chromosome wild brassicas related to B. oleracea, representing various taxonomic states from subspecies to species. Results from these studies suggested that two basic evolutionary pathways exist for the diploid species examined. One pathway gave rise to B. fruticulosa, B. nigra, and Sinapis arvensis, with B. adpressa or a close relative as the initial ancestor. Another pathway gave rise to B. oleracea and B. rapa, with Diplotaxis erucoides or a close relative as the initial ancestor. Raphanus sativus and Eruca sativus represented intermediate types between the two lineages, and might have been derived from introgression or hybridization between species belonging to different lineages. Molecular evidence for an ascending order of chromosome numbers in the evolution of Brassica and allied genera was obtained on the basis of RFLP data and phylogenetic analysis.  相似文献   

2.
Four accessions of the wild species Brassica fruticulosa Cyrillo (Brassicaceae) were studied in order to identify its tolerance and antibiosis resistance to the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae), in comparison to a widely cultivated cauliflower cultivar and a rapid cycling Brassica oleracea L. line. Antibiosis was prominent, as the insects reared on resistant accessions showed reduced individual pupal weight, total pupal weight, adult dry weight, and the longest average fly eclosion time. Host plant resistance, however, did not affect the sex ratio of adult flies. A study of the root architecture of plants with and without root fly inoculation revealed differences in the structure within B. oleracea accessions. A long main root and a high number of lateral roots appeared to be important characteristics for a Brassica type, with a higher tolerance level to cabbage root fly attack.  相似文献   

3.
Simple, reliable methods for identification of species are required for management of many species and lines in a plant gene bank. Species-specific probes were designed from published sequences of the ITS1 region in rDNA of 16 species in Brassica and its related genera, and used as probes for dot-blot hybridization with plant genomic DNA. All the probes detected species-specific signals at dot-blots of genomic DNAs of the 16 species in Brassica, Diplotaxis, Eruca, and Raphanus. Signals of the Brassica digenomic species in the U’s triangle, i.e., B. napus, B. juncea, and B. carinata, were detected by the probes of their parental monogenomic species, i.e., B. rapa, B. nigra, and B. oleracea. The probe for B. oleracea showed signals of B. balearica, B. cretica, B. incana, B. insularis, and B. macrocarpa, which have the C genome as B. oleracea. Eruca vesicaria DNA was detected by the probe for E. sativa, which has been classified as a subspecies of E. vescaria. DNA of leaf tissue extracted by an alkaline solution and seed DNA prepared by the NaI method can be used directly for dot-blotting. Misidentification of species was revealed in 20 accessions in the Tohoku University Brassica Seed Bank. These results indicate dot-blot hybridization to be a simple and efficient technique for identification of plant species in a gene bank.  相似文献   

4.
The cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), is distributed throughout the tropical and subtropical areas of the world. The main crops attacked by B. brassicae are cabbage, collard greens, broccoli, Brussels sprouts, and cauliflower. To survive the attack of pest insects, plants have evolved various resistance mechanisms that may affect pest feeding behavior. The use of electronic monitoring through EPG (electrical penetration graph) can help characterize and distinguish the resistance mechanisms involved. This study evaluated the feeding behavior of B. brassicae in eight genotypes of collard greens, Brassica oleraceae L. var. acephala (Brassicaceae), exhibiting antixenosis and/or antibiosis resistance to this insect. Possible correlations were established between the glucosinolate levels, the hardness, and the epicuticular wax on the leaves vs. aphid feeding behavior. On the genotypes 22V, 5E, and 27VA, for which many ‘potential drop’ waves were performed, aphid development was slower, indicating antixenosis as resistance type. Aphids on the genotypes 22V and 24X required more time until accessing the phloem, also suggesting antixenosis as resistance category. Genotypes 22V and PE had hard leaves, which also points at antixenosis. Genotypes 20T and HS had higher total wax and wax mg−1. Feeding parameters on ARI and 24X were similar to those observed on HS; antibiosis is likely to be the predominant resistance category of this germplasm. Because HS was considered as a susceptible standard genotype in this study, a higher gluconapin amount indicates that this compound does not influence cabbage aphid feeding behavior. The present study confirms that analysis of the physical and chemical aspects of collard greens genotypes by the EPG technique can provide a useful approach for the study of plant resistance to cabbage aphids.  相似文献   

5.
 A cell suspension culture assay to determine the phytotoxicity of the fungal toxins phomalide, a host-selective toxin produced by the fungus Phoma lingam (Tode ex Fr.) Desm., perfect stage Leptosphaeria maculans (Desm.) Ces. et de Not., and destruxin B, the major host-selective toxin produced by the fungus Alternaria brassicae (Berk.) Sacc., was carried out with three Brassica spp. It was established that phomalide was significantly less phytotoxic to Cutlass (Brassica juncea), the cultivar resistant to L. maculans, than to Westar (B. napus), the cultivar susceptible to L. maculans, at concentrations ≤2×10–5  M. Similar to phomalide, destruxin B, at concentrations ≤5×10–5  M, decreased the viability of cells of the cultivar resistant to A. brassicae (Ochre, Sinapis alba) less than the viability of cells of the susceptible cultivar (Westar, B. napus). Considering the high selectivity of phomalide and its direct correlation with plant disease resistance, phomalide may have great potential application in breeding programs screening/selecting for blackleg resistance in brassicas. Received: 23 November 1999 / Revision received: 11 April 2000 / Accepted: 8 May 2000  相似文献   

6.
Many organisms possess chemical defences against their natural enemies, which render them unpalatable or toxic when attacked or consumed. These chemically‐defended organisms commonly occur in communities with non‐ or less‐defended prey, leading to indirect interactions between prey species, mediated by natural enemies. Although the importance of enemy‐mediated indirect interactions have been well documented (e.g. apparent competition), how the presence of prey chemical defences may affect predation of non‐defended prey in terrestrial communities remains unclear. Here, an experimental approach was used to study the predator‐mediated indirect interaction between a chemically‐defended and non‐defended pest aphid species. Using laboratory‐based mesocosms, aphid community composition was manipulated to include chemically‐defended (CD) aphids Brevicoryne brassicae, non‐defended (ND) aphids Myzus persicae or a mixed assemblage of both species, on Brassica oleracea cabbage plants, in the presence or absence of a shared predator (Chrysoperla carnea larvae). Aphid population growth rates, aphid distributions on host plants and predator growth rates were measured. In single‐species treatments, C. carnea reduced M. persicae population growth rate, but had no significant impact on B. brassicae population growth rate, suggesting B. brassicae chemical defences are effective against C. carnea. Chrysoperla carnea had no significant impact on either aphid species population growth rate in mixed‐species treatments. Myzus persicae (ND) therefore experienced reduced predation in the presence of B. brassicae (CD) through a predator‐mediated indirect effect. Moreover, predator growth rates were significantly higher in the M. persicae‐only treatments than in either the B. brassicae‐only or mixed‐species treatments, suggesting predation was impaired in the presence of B. brassicae (CD). A trait‐mediated indirect interaction is proposed, consistent with associational resistance, in which the predator, upon incidental consumption of chemically‐defended aphids is deterred from feeding, releasing non‐defended aphids from predatory control.  相似文献   

7.
Status and Perspectives of Clubroot Resistance Breeding in Crucifer Crops   总被引:3,自引:0,他引:3  
Clubroot disease is a major threat to crops belonging to the Brassicaceae. It is controlled most effectively by the use of resistant cultivars. Plasmodiophora brassicae, the causal agent, shows a wide variation for pathogenicity, which can be displayed by using differential host sets. Except for Brassica juncea and B. carinata, resistant accessions can be found in all major crops. Most resistance sources are race-specific, despite some race-independent resistant accessions which can be found in B. oleracea. European field isolates from P. brassicae display great variation and show a tendency to overcome different resistance sources from either B. rapa or B. oleracea. At present, resistance genes from stubble turnips (B. rapa) are most effective and most widely used in resistance breeding of different Brassica crops. Resistance to P. brassicae from turnips was introduced into Chinese cabbage, oilseed rape, and B. oleracea. Although most turnips carry more than one resistance gene, the resistant cultivars from other crops received primarily a single, dominant resistance gene having a race-specific effect. Populations of P. brassicae that are compatible against most of the used resistance sources have been present in certain European areas for many decades. Such pathogen populations appeared in Japanese Chinese cabbage crops only a few years after the introduction of resistant cultivars. As the spread of virulent P. brassicae pathotypes seems to be slow, resistant cultivars are still a very effective method of control in many cropping areas. Mapping studies have revealed the presence of several clubroot-resistance genes in the Brassica A and C genomes; most of these genes are showing race specificity. Only in B. oleracea was one broad-spectrum locus detected. Two loci from the A genome confer resistance to more than one pathotype, but not to all isolates. Progress made in the determination of resistance loci should be used to formulate and introduce an improved differential set. Future efforts for breeding P. brassicae resistance will focus on durability by broadening the genetic basis of clubroot resistance by using either natural variation or transgenic strategies.  相似文献   

8.
The influence of cultivars of common cabbage, Brassica oleracea var. capitata with varying levels of resistance to Brevicoryne brassicae (L.) and Myzus persicae (Sulzer) on key biological characteristics of Aphidius colemani (Viereck) was investigated under laboratory conditions. The total development time for female parasitoids reared on M. persicae did not differ significantly between Minicole (green-leaved, partially resistant with antibiosis factors for B. brassicae) and Derby Day (green-leaved, susceptible to both aphid species); but development was significantly faster (ca 10%) on Ruby Ball (red-leaved, partially resistant with antixenosis factors for B. brassicae). Total development time for females reared on B. brassicae was slightly shorter on Ruby Ball than on Minicole. Males reared on M. persicae developed into adults significantly faster (ca 10%) on Ruby Ball than on Minicole. However, when B. brassicae was the host, no significant variations in development time were observed. Sex ratios, size and longevity of both male and female parasitoids on either host were not significantly influenced by cultivar. The results are discussed in relation to the compatible utilisation of host-plant resistance and biological control in the integrated management of aphids.  相似文献   

9.
Locating a resistance mechanism to the cabbage aphid in two wild Brassicas   总被引:1,自引:0,他引:1  
Feeding behaviour of the cabbage aphid,Brevicoryne brassicae, was monitored electronically on two resistantBrassica species,B. fruticulosa andB. spinescens, and compared with a susceptible controlB. oleracea var.capitata cv. Offenham Compacta. Aphids, monitored for 10 h on the under side of leaves, performed recognizable feeding behaviour on all species. Electrical Penetration Graphs (EPGs) of aphids on resistant and susceptible plants showed no difference in behaviour for aphids on resistantBrassica species compared to susceptible until stylets penetrated the phloem sieve elements when a large reduction in the duration of passive phloem uptake (E2 pattern) onB. fruticulosa was indicated. Although feeding behaviour on 6 week-old plants ofB. spinescens was similar to the susceptible controls, behaviour on 10 week-old plants was similar to that recorded forB. fruticulosa. The mechanism of resistance is thought to be located in the sieve element as the normal sieve element salivation (E1) signal was either quickly terminated by withdrawal of the stylets from the sieve element or continued as a disrupted E2 pattern. Analysis of secondary plant compounds in the threeBrassica species only identified significant differences in the glucosinolate profile. No reproducible differences were detected in the concentration of phenolics or anthocyanins. The major glucosinolate component ofB. fruticulosa andB. spinescens was gluconapin rather than glucobrassicin and glucoiberin as found in the susceptible host plant. However, both pure glucosinolates and glucosinolate extracts from all three species did not reduce aphid survival on chemically-defined artificial diets. These results suggest that the mechanism of resistance may be a mechanical blocking of the sieve element or stylets rather than a difference in the secondary plant chemistry of glucosinolates and phenolics.  相似文献   

10.
Because they remained almost uncolonized by the cabbage aphid (Brevicoryne brassicae (L.)) throughout the growing season, plants of Brussels sprouts were singled out in each of 4 years, from plots heavily infested with the aphid, as possibly being resistant to attack. Clones of these plants were established from cuttings and tested in a controlled environment by inoculation with B. brassicae and later, in the field, by natural infestation. The tests confirmed that some of the plants were resistant to the aphid, and the most resistant of those from the first year of the work proved at least as resistant as any subsequently found. The resistance was expressed as antibiosis, but in the field host non-preference was also shown by incoming winged aphids. The possibility that biotypes of B. brassicae might exist, to which the resistant sprout clones were not necessarily resistant, was investigated using B. brassicae collected from sprouts from each of several areas in England. Eight sprout clones, seven of which were known to be resistant, and the other susceptible, to B. brassicae from Wellesbourne were tested with these other B. brassicae. The results showed that biotypes of the aphid, with differing abilities to colonize respective sprout clones, existed in each area, and of the seven sprout clones resistant to the Wellesbourne aphid, only one appeared never to be fully susceptible to one or more of the other biotypes of B. brassicae.  相似文献   

11.
Mustard aphid, Lipaphis erysimi (Kaltenbach) is a major constraint in increasing the yield of rapeseed-mustard crops in India. Resistance to mustard aphid infestation and its correlation to some physiological and biochemical traits in selected varieties of different Brassica species were studied. Yield and oil content losses of up to 29.4% and 2.84%, respectively, were observed due to aphid infestation. Eruca sativa var. T-27 and Brassica carinata var. DLSC-2 were less susceptible to aphid infestation and had minimal yield losses. Surface wax, total glucosinolate, and phenol contents were found to correlate negatively with the aphid infestation, whereas the opposite relationship was obtained for the sugar content. The study suggests that physical and chemical barriers potentially play an important role in resistance against aphid infestation.  相似文献   

12.
Summary The feasibility of creating a restriction fragment length polymorphism (RFLP) linkage map in Brassica species was assessed by screening EcoRI-, HindIII-, or EcoRV-digested total genomic DNA from several accessions of B. campestris, B. oleracea, and B. napus using random genomic DNA clones from three Brassica libraries as hybridization probes. Differences in restriction fragment hybridization patterns occurred at frequencies of 95% for comparisons of accessions among species, 79% for comparisons of accessions among subspecies within species, and 70% for comparisons among accessions within subspecies. In addition, species differences in the level of hybridization were noted for some clones. The high degree of polymorphism found even among closely related Brassica accessions indicates that RFLP analysis will be a very useful tool in genetic, taxonomic, and evolutionary studies of the Brassica genus. Development of RFLP linkage maps is now in progress.  相似文献   

13.
14.
1. Plant resistance against herbivores can act directly (e.g. by producing toxins) and indirectly (e.g. by attracting natural enemies of herbivores). If plant secondary metabolites that cause direct resistance against herbivores, such as glucosinolates, negatively influence natural enemies, this may result in a conflict between direct and indirect plant resistance. 2. Our objectives were (i) to test herbivore‐mediated effects of glucosinolates on the performance of two generalist predators, the marmalade hoverfly (Episyrphus balteatus) and the common green lacewing (Chrysoperla carnea) and (ii) to test whether intraspecific plant variation affects predator performance. 3. Predators were fed either Brevicoryne brassicae, a glucosinolate‐sequestering specialist aphid that contains aphid‐specific myrosinases, or Myzus persicae, a non‐sequestering generalist aphid that excretes glucosinolates in the honeydew, reared on four different white cabbage cultivars. Predator performance and glucosinolate concentrations and profiles in B. brassicae and host‐plant phloem were measured, a novel approach as previous studies often measured glucosinolate concentrations only in total leaf material. 4. Interestingly, the specialist aphid B. brassicae selectively sequestered glucosinolates from its host plant. The performance of predators fed this aphid species was lower than when fed M. persicae. When fed B. brassicae reared on different cultivars, differences in predator performance matched differences in glucosinolate profiles among the aphids. 5. We show that not only the prey species, but also the plant cultivar can have an effect on the performance of predators. Our results suggest that in the tritrophic system tested, there might be a conflict between direct and indirect plant resistance.  相似文献   

15.
Turnip yellows virus (TuYV; previously known as beet western yellows virus) causes major diseases of Brassica species worldwide resulting in severe yield-losses in arable and vegetable crops. It has also been shown to reduce the quality of vegetables, particularly cabbage where it causes tip burn. Incidences of 100% have been recorded in commercial crops of winter oilseed rape (Brassica napus) and vegetable crops (particularly Brassica oleracea) in Europe. This review summarises the known sources of resistance to TuYV in B. napus (AACC genome), Brassica rapa (AA genome) and B. oleracea (CC genome). It also proposes names for the quantitative trait loci (QTLs) responsible for the resistances, Tu rnip Y ellows virus R esistance (TuYR), that have been mapped to at least the chromosome level in the different Brassica species. There is currently only one known source of resistance deployed commercially (TuYR1). This resistance is said to have originated in B. rapa and was introgressed into the A genome of oilseed rape via hybridisation with B. oleracea to produce allotetraploid (AACC) plants that were then backcrossed into oilseed rape. It has been utilised in the majority of known TuYV-resistant oilseed rape varieties. This has placed significant selection pressure for resistance-breaking mutations arising in TuYV. Further QTLs for resistance to TuYV (TuYR2-TuYR9) have been mapped in the genomes of B. napus, B. rapa and B. oleracea and are described here. QTLs from the latter two species have been introgressed into allotetraploid plants, providing for the first time, combined resistance from both the A and the C genomes for deployment in oilseed rape. Introgression of these new resistances into commercial oilseed rape and vegetable brassicas can be accelerated using the molecular markers that have been developed. The deployment of these resistances should lessen selection pressure for resistance-breaking isolates of TuYV and thereby prolong the effectiveness of each other and extant resistance.  相似文献   

16.
Three ancient varieties of wheat and two spring-sown modern varieties were screened in the laboratory to assess their resistance to the cereal aphids Sitobion avenae and Metopolophium dirhodum. Resistance was measured in terms of non-preference and antibiosis on plants at three growth stages. The ancient variety Einkorn was the most resistant in terms of both non-preference and antibiosis to both species of aphids at all growth stages examined. The ancient variety Emmer and the modern Sicco exhibited some resistant properties, whereas the ancient Spelt and modern Timmo were relatively susceptible to aphid attack.  相似文献   

17.
Six cabbage (Brassica oleracea var. capitata) varieties with different levels of resistance to Mamestra brassicae (Lepidoptera: Noctuidae) were investigated in order to assess whether antibiosis and antixenosis mechanisms are involved in the resistance to this pest or not. Four experiments were conducted to determine the effect of variety and plant ontogeny on larval behaviour, adult oviposition and leaf damages in non‐choice and choice tests. Larval survival, time to development and larval weights differed depending on the varieties and plant stages that we tested. At the pre‐head stage, larval mortality was higher, larvae died faster, time to pupation was shorter, pupae were lighter and the percentage of viable pupae and growth index (GI) values were lower than larvae reared from plants at the head stage. The commercial hybrid ‘Corazón de buey’ and the local variety named ‘BRS0535’ exhibited antibiosis to M. brassicae as they reduced its survival and growth and delayed its development time. In addition, these varieties were the most resistant after artificial infestation in terms of head foliage consumption and number of larvae per plant. Oviposition tests demonstrated that resistance found in ‘Corazón de buey’ and BRS0535 could be also based on antixenosis mechanisms as they resulted in fewer egg batches on plants, whereas BRS0402 could be classified as resistant because M. brassicae larvae showed less preference for it. Thus, resistance to M. brassicae found in cabbage crops may be due to the joint action of several factors involving antibiosis and antixenosis. We found significant differences in the resistance of BRS0535 depending on the plant ontogeny as it loses its resistance while developing. Further studies are required to identify the mechanism of antibiotic resistance which is present in this variety at the pre‐head stage and the changes that occur in plant defence as it grows.  相似文献   

18.
Abstract We report the results of a study investigating the influence of elevated CO2 on species interactions across three trophic levels: a plant (Brassica oleracea), two aphid herbivores (the generalist Myzus persicae and the specialist Brevicoryne brassicae), and two natural enemies (the coccinellid Hippodamia convergens (ladybird) and the parasitoid wasp Diaeretiella rapae). Brassica oleracea plants reared under elevated CO2 conditions (650 ppmv vs. 350 ppmv) were larger and had decreased water and nitrogen content. Brevicoryne brassicae reared on plants grown in elevated CO2 were larger and accumulated more fat, while there was no change in M. persicae traits. Fecundity of individual aphids appeared to be increased when reared on plants grown in elevated CO2. However, these differences were generally lost when aphids were reared in colonies, suggesting that such changes in plant quality will have subtle effects on aphid intraspecific interactions. Nevertheless, CO2 treatment did influence aphid distribution on plants, with significantly fewer M. persicae found on the shoots, and B. brassicae was only found on senescing leaves, when colonies were reared on plants grown in elevated CO2. We reared B. brassicae and M. persicae in competition on plants grown at both the CO2 concentration treatments. We found a significantly lower ratio of M. persicae: B. brassicae on plants grown under elevated CO2 conditions, strongly suggesting that increasing CO2 concentrations can alter the outcome of competition among insect herbivores. This was also reflected in the distribution of the aphids on the plants. While the CO2 treatment did not influence where B. brassicae were found, fewer M. persicae were present on senescing leaves under elevated CO2 conditions. Changes in plant quality resulting from the CO2 treatments did not appear to alter aphid quality as prey species, as the number consumed by the ladybird H. convergens, and the number parasitised by the parasitoid wasp D. rapae, did not change. To our knowledge, this study provides the first empirical evidence that changes in host plant quality mediated by increasing levels of CO2 can alter the outcome of interspecific competition among insect herbivores.  相似文献   

19.
A field assessment of 26 accessions of Vicia narbonensis and three of V. johannis confirmed previous laboratory studies demonstrating higher levels of resistance to Aphis fabae in these two wild species compared to the closely related crop, Vicia faba. Accessions of V. johannis were significantly more resistant than most accessions of V. narbonensis for all resistance indices measured except survival of aphid nymphs. Plant growth stage significantly affected levels of resistance in both Vicia species, resistance being moderate at pre-bud stage, decreasing on flowering and rising again at pod fill and onset of leaf senescence. Significant intraspecific variability in aphid resistance was found only within the 26 accessions of V. narbonensis, var. serratifolia being more resistant than var. narbonensis. Possible resistance factors and the agronomic potential of these two wild relatives of Faba bean are considered.  相似文献   

20.
Forty-one accessions of wild and cultivated wheats belonging to 19 Triticum species were tested in the field for resistance to three species of aphids, Rhopalosiphum padi Linnaeus, Sitobion avenae Fabricius and Schizaphis graminum Rondani. Antibiotic resistance was estimated by the increase in biomass of aphids over 21 days on adult plants. Overall resistance was estimated by the plant biomass lost due to aphid infestation. All three species of aphids survived and reproduced on all wheats, and reduced spike biomass compared to uninfested controls. The level of antibiosis varied among wheat species and among accessions, with accessions from three, five and one species showing antibiosis to R. padi, S. avenae and S. graminum, respectively. Overall resistance to the three aphid species was observed in five to seven accessions per aphid species. Resistance was usually specific to one aphid species. The frequency of accessions with antibiosis or overall resistance was associated with the ploidy level of the plant species. Except for overall resistance to R. padi, resistance was highest for diploid species and lowest for hexaploid species. No consistent relationship between resistance and level of domestication was detected. Accessions of the wild wheats, Triticum boeoticum Bois, Triticum tauschii (Coss.) Schmal. and Triticum araraticum Jakubz. exhibited high levels of resistance to aphids, as did Triticum monococcum L. which is derived from T. boeoticum. Nevertheless, individual susceptible or resistant accessions occurred at all levels within the evolutionary tree of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号