首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
MapReduce offers an ease-of-use programming paradigm for processing large data sets, making it an attractive model for opportunistic compute resources. However, unlike dedicated resources, where MapReduce has mostly been deployed, opportunistic resources have significantly higher rates of node volatility. As a consequence, the data and task replication scheme adopted by existing MapReduce implementations is woefully inadequate on such volatile resources. In this paper, we propose MOON, short for MapReduce On Opportunistic eNvironments, which is designed to offer reliable MapReduce service for opportunistic computing. MOON adopts a hybrid resource architecture by supplementing opportunistic compute resources with a small set of dedicated resources, and it extends Hadoop, an open-source implementation of MapReduce, with adaptive task and data scheduling algorithms to take advantage of the hybrid resource architecture. Our results on an emulated opportunistic computing system running atop a 60-node cluster demonstrate that MOON can deliver significant performance improvements to Hadoop on volatile compute resources and even finish jobs that are not able to complete in Hadoop.  相似文献   

2.
As DNA sequencing outpaces improvements in computer speed, there is a critical need to accelerate tasks like alignment and SNP calling. Crossbow is a cloud-computing software tool that combines the aligner Bowtie and the SNP caller SOAPsnp. Executing in parallel using Hadoop, Crossbow analyzes data comprising 38-fold coverage of the human genome in three hours using a 320-CPU cluster rented from a cloud computing service for about $85. Crossbow is available from .  相似文献   

3.
With DNA sequencing now getting cheaper more quickly than data storage or computation, the time may have come for genome informatics to migrate to the cloud.  相似文献   

4.
5.
With the development of ubiquitous computing technology, users are using mobile devices which are for producing and accessing information. Due to the limited computing capability and storage, however, mobile cloud computing technology are emerging research issues in the architecture, design, and implementation. This paper proposes the trust management approach by analyzing user behavioral patterns for reliable mobile cloud computing. For this, we suggest a method to quantify a one-dimensional trusting relation based on the analysis of telephone call data from mobile devices. After that, we integrate inter-user trust relationship in mobile cloud environment. As a result, trustworthiness of data in data production, management, overall application, is enhanced.  相似文献   

6.
Cloud computing environment came about in order to effectively manage and use enormous amount of data that have become available with the development of the Internet. Cloud computing service is widely used not only to manage the users’ IT resources, but also to use enterprise IT resources in an effective manner. Various security threats have occurred while using cloud computing and plans for reaction are much needed, since they will eventually elevate to security threats to enterprise information. Plans to strengthen the security of enterprise information by using cloud security will be proposed in this research. These cloud computing security measures must be supported by the governmental policies. Publications on guidelines to information protection will raise awareness among the users and service providers. System of reaction must be created in order to constantly monitor and to promptly respond to any security accident. Therefore, both technical countermeasures and governmental policy must be supported at the same time. Cloud computing service is expanding more than ever, thus active research on cloud computing security is expected.  相似文献   

7.
An increasing number of personal electronic handheld devices (e.g., SmartPhone, netbook, MID and etc.), which make up the personal pervasive computing environments, are playing an important role in our daily lives. Data storage and sharing is difficult for these devices due to the data inflation and the natural limitations of mobile devices, such as the limited storage space and the limited computing capability. Since the emerging cloud storage solutions can provide reliable and unlimited storage, they satisfy to the requirement of pervasive computing very well. Thus we designed a new cloud storage platform which includes a series of shadow storage services to address these new data management challenges in pervasive computing environments, which called as “SmartBox”. In SmartBox, each device is associated its shadow storage with a unique account, and the shadow storage acts as backup center as well as personal repository when the device is connected. To facilitate file navigation, all datasets in shadow storage are organized based on file attributes which support the users to seek files by semantic queries. We implemented a prototype of SmartBox focusing on pervasive environments being made up of Internet accessible devices. Experimental results with the deployments confirm the efficacy of shadow storage services in SmartBox.  相似文献   

8.
Discovering small molecules that interact with protein targets will be a key part of future drug discovery efforts. Molecular docking of drug-like molecules is likely to be valuable in this field; however, the great number of such molecules makes the potential size of this task enormous. In this paper, a method to screen small molecular databases using cloud computing is proposed. This method is called the hierarchical method for molecular docking and can be completed in a relatively short period of time. In this method, the optimization of molecular docking is divided into two subproblems based on the different effects on the protein–ligand interaction energy. An adaptive genetic algorithm is developed to solve the optimization problem and a new docking program (FlexGAsDock) based on the hierarchical docking method has been developed. The implementation of docking on a cloud computing platform is then discussed. The docking results show that this method can be conveniently used for the efficient molecular design of drugs.  相似文献   

9.
10.
Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.  相似文献   

11.
12.
Cloud computing environments (CCEs) are expected to deliver their services with qualities in service level agreements. On the other hand, they typically employ virtualization technology to consolidate multiple workloads on the same physical machine, thereby enhancing the overall utilization of physical resources. Most existing virtualization technologies are, however, unaware of their delivered quality of services (QoS). For example, the Xen hypervisor merely focuses on fair sharing of processor resources. We believe that CCEs have got married with traditional virtualization technologies without many traits in common. To bridge the gap between these two technologies, we have designed and implemented Kani, a QoS-aware hypervisor-level scheduler. Kani dynamically monitors the quality of delivered services to quantify the deviation between desired and delivered levels of QoS. Using this information, Kani determines how to allocate processor resources among running VMs so as to meet the expected QoS. Our evaluations of Kani scheduler prototype in Xen show that Kani outperforms the default Xen scheduler namely the Credit scheduler. For example, Kani reduces the average response time to requests to an Apache web server by up to \(93.6\,\%\); improves its throughput by up to \(97.9\,\%\); and mitigates the call setup time of an Asterisk media server by up to \(96.6\,\%\).  相似文献   

13.
The science cloud paradigm has been actively developed and investigated, but still requires a suitable model for science cloud system in order to support increasing scientific computation needs with high performance. This paper presents an effective provisioning model of science cloud, particularly for large-scale high throughput computing applications. In this model, we utilize job traces where a statistical method is applied to pick the most influential features to improve application performance. With these features, a system determines where VM is deployed (allocation) and which instance type is proper (provisioning). An adaptive evaluation step which is subsequent to the job execution enables our model to adapt to dynamical computing environments. We show performance achievements by comparing the proposed model with other policies through experiments and expect noticeable improvements on performance as well as reduction of cost from resource consumption through our model.  相似文献   

14.
Cloud computing serves as a platform for remote users to utilize the heterogeneous resources in data-centers to compute High-Performance Computing jobs. The physical resources are virtualized in Cloud to entertain user services employing Virtual Machines (VMs). Job scheduling is deemed as a quintessential part of Cloud and efficient utilization of VMs by Cloud Service Providers demands an optimal job scheduling heuristic. An ideal scheduling heuristic should be efficient, fair, and starvation-free to produce a reduced makespan with improved resource utilization. However, static heuristics often lead to inefficient and poor resource utilization in the Cloud. An idle and underutilized host machine in Cloud still consumes up to 70% of the energy required by an active machine (Ray, in Indian J Comput Sci Eng 1(4):333–339, 2012). Consequently, it demands a load-balanced distribution of workload to achieve optimal resource utilization in Cloud. Existing Cloud scheduling heuristics such as Min–Min, Max–Min, and Sufferage distribute workloads among VMs based on minimum job completion time that ultimately causes a load imbalance. In this paper, a novel Resource-Aware Load Balancing Algorithm (RALBA) is presented to ensure a balanced distribution of workload based on computation capabilities of VMs. The RABLA framework comprises of two phases: (1) scheduling based on computing capabilities of VMs, and (2) the VM with earliest finish time is selected for jobs mapping. The outcomes of the RALBA have revealed that it provides substantial improvement against traditional heuristics regarding makespan, resource utilization, and throughput.  相似文献   

15.
16.
In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.  相似文献   

17.
Cluster Computing - Cloud computing enables businesses to decrease the total costs by outsourcing their required services. Therefore, it provides a new challenge of data protection regarding...  相似文献   

18.
While parameter sweep simulations can help undergraduate students and researchers to understand computer networks, their usage in the academia is hindered by the significant computational load they convey. This paper proposes DNSE3, a service oriented computer network simulator that, deployed in a cloud computing infrastructure, leverages its elasticity and pay-per-use features to compute parameter sweeps. The performance and cost of using this application is evaluated in several experiments applying different scalability policies, with results that meet the demands of users in educational institutions. Additionally, the usability of the application has been measured following industry standards with real students, yielding a very satisfactory user experience.  相似文献   

19.

Background

The clinical decision support system can effectively break the limitations of doctors’ knowledge and reduce the possibility of misdiagnosis to enhance health care. The traditional genetic data storage and analysis methods based on stand-alone environment are hard to meet the computational requirements with the rapid genetic data growth for the limited scalability.

Methods

In this paper, we propose a distributed gene clinical decision support system, which is named GCDSS. And a prototype is implemented based on cloud computing technology. At the same time, we present CloudBWA which is a novel distributed read mapping algorithm leveraging batch processing strategy to map reads on Apache Spark.

Results

Experiments show that the distributed gene clinical decision support system GCDSS and the distributed read mapping algorithm CloudBWA have outstanding performance and excellent scalability. Compared with state-of-the-art distributed algorithms, CloudBWA achieves up to 2.63 times speedup over SparkBWA. Compared with stand-alone algorithms, CloudBWA with 16 cores achieves up to 11.59 times speedup over BWA-MEM with 1 core.

Conclusions

GCDSS is a distributed gene clinical decision support system based on cloud computing techniques. In particular, we incorporated a distributed genetic data analysis pipeline framework in the proposed GCDSS system. To boost the data processing of GCDSS, we propose CloudBWA, which is a novel distributed read mapping algorithm to leverage batch processing technique in mapping stage using Apache Spark platform.
  相似文献   

20.
In cloud computing, service providers offer cost-effective and on-demand IT services to service users on the basis of Service Level Agreements (SLAs). However the effective management of SLAs in cloud computing is essential for the service users to ensure that they achieve the desired outcomes from the formed service. In this paper, we introduce a SLA management framework that will enable service users to select the best available service provider on the basis of its reputation and then monitor the run time performance of the service provider to determine whether or not it will fulfill its promise defined in the SLA. Such analysis will assist the service user to make an informed decision about the continuation of service with the service provider.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号